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Abstract— The use of accelerometer and gyro observations
in a visual SLAM implementation is beneficial especially in
high dynamic situations. The downside of using inertial is that
traditionally high prediction rates are required as observations
are provided at high sample rates. An accurate orientation and
velocity estimate must also be maintained at all times in order
to integrate the inertial observations and correct for the effect
of gravity.

This paper presents a way to pre-integrate the high rate
inertial observations without the need for an initial orientation
or velocity estimate. This allows for a slower filter prediction
rate and use of inertial observations when the initial velocity
and attitude of the platform are unknown. Additionally the
initial velocity and roll and pitch of the platform become
observable over time and an estimate of these values is provided
by the filter. An estimate of the gravity vector is also provided.

Results are presented using a delayed state information
smoother implementation however due to the linearity of the
equations this technique can be applied to extended Kalman
filter (EKF) implementations just as easily.

I. INTRODUCTION

An inertial measurement unit (IMU) is a useful sensor
to navigation and SLAM as it provides information about
the motion of the platform that it is attached to that is
independent of the characteristics of the platform and does
not require any external infrastructure.

The use of observations from an IMU in vision based
SLAM has received some attention in recent years by a
number or people such as those presented in [1]–[4].

The addition of IMU observations to visual SLAM pro-
vides many advantages. It allows:
• the tracking of high dynamic motions
• constraining the platform’s position when insufficient

visual observations are made in an unbiased way
• constraining of roll and pitch estimates in a drift free

way
• possible scale factor observability in monocular SLAM

as shown in [5]
Inertial units often operate at much higher rates than

what visual observations are taken at either requiring the
SLAM filter to operate at a high prediction rate, such as
in [3], or to fuse the inertial observations in an external
navigation solution and use the results of this solution in
the SLAM filter, as in [4]. In visual SLAM the intermediate
poses between camera observations, produced from the high
prediction rate of the inertial observations are of little interest
and do no need to be estimated.
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Inertial observations can only be integrated if the initial
position, velocity and attitude of the platform are known to a
high degree of certainty by using long established techniques
[3], mostly derived from inertial navigation algorithms from
the aerospace community [6].

If the initial conditions of the vehicle are not well known,
such as in the case where no specialized initialization routine
is used, then these techniques can cause instability and
robustness problems due to the linearizations that need to
be made and the incorrect adjustment for the gravity vector.

This paper presents a technique that allows inertial obser-
vations to be pre-integrated before being added to a SLAM
filter in a way that does not require the initial conditions of
the platform to be known, and that allows the initial velocity
and roll and pitch of the vehicle to become observable. The
result of which is an efficient, initialization stage free method
of incorporating inertial observation into visual SLAM.

II. METHODOLOGY

A. Inertial Integration

The IMU measures the linear acceleration and rotation
rates of the platform which can be integrated to provide
estimates of orientation, velocity and position with respect
to an inertial frame.

One of the drawbacks of using inertial observations is that
in order for them to be integrated the initial position, velocity
and attitude of the platform needs to be known to a high
degree of certainty.

The accuracy of the attitude estimate is especially critical
as the effect of gravity needs to be compensated for before
the linear acceleration observations are integrated. If the
attitude estimate, specifically roll and pitch, of the platform
with respect to the inertial frame is incorrect then the gravity
compensation will be incorrect and lead to a large error in
the acceleration estimate.

Also the inherent non-linearity of attitude equations makes
the accuracy of their estimates even more critical when a
linearized filter, such as an extended Kalman filter (EKF) is
used.

B. Traditional Method for Inertial SLAM

The traditional method for integrating inertial observation
into SLAM is during the prediction stage in the place of
the process model [7] and is based on inertial navigation
techniques developed for aerospace application [6].

The transition of the estimated vehicle position (p), veloc-
ity (v), and attitude (φ) from one time step to another using
a single inertial observation is shown in equation 1.
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b
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φnt + Enbtω
b
t∆t

 (1)

Where f bt and ωbt are the linear acceleration and rotation
rate observations in the body frame at time t respectively.
Cnbt and Enbt are the rotation matrix and the rotation rate
matrix from the body frame to the navigation frame using
the attitude estimate at time t. ∆t is the time between inertial
observations and gn is the gravity vector in the navigation
frame.

This step has to be repeated for every inertial observation,
which could be running at several hundred samples per
second and the attitude of the platform must be known to
a high degree of certainty at all times so that the Cnbt and
Enbt matrices can be formed as they are highly non-linear.

The draw back of this method is that if an EKF implemen-
tation is used, such as in [7], once the inertial observations
are integrated into the filter they are fixed and can not be
updated later on if a more accurate estimate of the vehicles
velocity or attitude at that time is available.

If a delayed state information smoothing technique is used
where all observations are retained separately, such as in
[5], then the inertial observations can be relinearized at a
later date but a new set of vehicle pose states needs to be
added for each inertial observation leading to unnecessary
bloating of the state vector and increase in the memory and
computation requirements of the filter. The high non-linearity
of the attitude equations can also still cause instability in this
case if the initial estimate of the attitude is far from the truth.

C. Inertial Delta Observations

If inertial observations can be pre-integrated so that only
one pseudo-observation incorporating all the inertial obser-
vations between two poses where images are taken in a way
that is independent of the initial position, velocity or attitude
of the vehicle then the ability to relinearize observations at a
later date can be retained without the need to add extra pose
states to the state vector or increase computational load.

This method will also allow inertial observations to be
used in a filter where no initial information is know about
the vehicles position, velocity or attitude as this information
is no longer needed for integration of the inertial data.

These inertial pseudo-observations will be referred to as
inertial delta observations.

D. Inertial Delta Observation Theory

If equation 1 is separated into its three components for
the position, velocity and attitude update, and written in
the continuous form so that it can cover multiple inertial
observation samples, equations 2, 3 and 4 are obtained.

pnt2 = pnt1 +
∫ t2

t1

vnt dt (2)

vnt2 = vnt1 +
∫ t2

t1

(
Cnbtf

b
t + gn

)
dt (3)

φnt2 = φnt1 +
∫ t2

t1

Enbtω
b
tdt (4)

Where t2 > t1.
The inertial observation integration components from

equations 2, 3 and 4 can be separated out from the compo-
nents of the equations that require knowledge of the state
of the vehicle at time t1 resulting in three inertial delta
observation components as shown in equations 5, 6 and 7.

∆p+t1
t2 =

∫∫ t+1

t

Ct1t f
b
t dt

2 (5)

∆vt1t2 =
∫ t2

t1

Ct1t f
b
t dt (6)

∆Ct1t2 =
∫ t2

t1

Et1t ω
b
tdt (7)

The Ct1t rotation matrix and the Et1t rotation rate matrix
are formed using the current estimate of the attitude for
the vehicle at time t relative to its attitude at time t1.
This estimate only requires the integration of rotation rate
observations from the IMU from time t1 to time t, which is
performed in equation 7 anyway. The actual attitude of the
vehicle at time t1 is not required for these operations.

Once the inertial delta observations are calculated they can
be combined back with the components of equations 2, 3 and
4 that do require knowledge of the initial vehicle states as is
shown in equations 8, 9 and 10.

pnt2 = pnt1 + (t2− t1)vnt1 +Cnbt1∆p+t1
t2 +

1
2

(t2− t1)2gn (8)

vnt2 = vnt1 + Cnbt1∆vt1t2 + (t2− t1)gn (9)

φnt2 = EulerFromRotationMatrix
(
Cnbt1∆Ct1t2

)
(10)

Rotation matrices must be formed for the operation in
equation 10, and then Euler angles recovered from the result
instead of just using the delta Euler angles multiplied by a
rotation rate matrix. This is because the integrated deltas may
be over an extended period of time with a large change in
orientation so the small angle approximation made with the
use of a rotation rate matrix, as in equation 1, is no longer
valid.

An interesting outcome from inspection of equation 8 is
the proof that the initial instantaneous velocity of the vehicle
in the navigation frame is observable given two consecutive
position estimates. This can be seen from rearranging equa-
tion 8 to obtain equation 11.

vnt1 =
pnt1 − pnt2 + Cnbt1∆p+t1

t2 + 1
2 (t2− t1)2gn

(t2− t1)
(11)

The IMU sensor biases can easily be incorporated into
the inertial delta observation calculations if an estimate of
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them is known at the time. This results in the modification
of equations 5, 6 and 7 to produce equations 12, 13 and 14.

∆p+t1
t2 =

∫∫ t+1

t

Ct1t
(
f bt − biasobsf

)
dt2 (12)

∆vt1t2 =
∫ t2

t1

Ct1t
(
f bt − biasobsf

)
dt (13)

∆Ct1t2 =
∫ t2

t1

Et1t
(
ωbt − biasobsω

)
dt (14)

These delta observations are then used as normal.

E. Inertial Delta Observation Creation

Algorithm 1 shows an example of how the inertial delta
observations are calculated from the raw inertial measure-
ment unit observations. This example uses first order Euler
integration for clarity, however higher order integration tech-
niques can also be used. t1 and t2 are the times at which two
consecutive poses are required, such as the time two images
were taken.

The deltas calculated are in the reference frame of the first
position; the position at t1 in this case. The rotation matrix,
Ct1t , and rotation rate matrix, Et1t , are calculated using the
intermediate delta attitude at time t, ∆φt, this is the estimated
attitude of the vehicle at time t relative to the body frame at
time t1 as calculated from the integrated gyro observations.

Algorithm 1 Inertial Delta Observation Creation
∆p+

t = 0
∆vt = 0
∆φt = 0
for t1 < t < t2 do

∆t = tt+1 − tt
fnt = Ct1t

(
f bt − biasobsf

)
∆vt+1 = ∆vt + fnt ∆t
∆p+

t+1 = ∆p+
t + ∆vt∆t

∆φt+1 = ∆φt + Et1t
(
ωbt − biasobsω

)
∆t

end for

obs =

 ∆p+

∆v
∆a


The biases biasobsf and biasobsω are the estimated biases of

the inertial measurement unit at the time the delta observa-
tions are calculated. Derivatives with respect to these biases
will be calculated so that small changes in this bias estimate
at a later date can be accounted for. However, the relationship
is non-linear so if a large change in the estimated bias occurs
the inertial delta observations may need to be recalculated.

Algorithm 2 shows how the inertial delta observation
Jacobian and covariance matrices are calculated for the
example shown in algorithm 1. The variable ordering used
is position, velocity, attitude, accelerometer bias, gyro bias.
The J matrix is the Jacobian for the observation with respect
to the initial platform states at time t1 and bias estimates

and the R matrix is the covariance for the integrated inertial
observation where Q is the sensor noise covariance matrix
for the inertial measurement unit.

Algorithm 2 Inertial Delta Jacobian and Covariance Creation
J = I15

R = 015

for t1 < t < t2 do
∆t = tt+1 − tt
α =

dCt1
t (fb

t−bias
obs
f )

dattt

β =
dEt1

t (ωb
t−bias

obs
ω )

dattt

F =


I3 I3∆t 03 03 03

03 I3 α∆t −Ct1t ∆t 03

03 03 I3 + β∆t 03 −Et1t ∆t
03 03 03 I3 03

03 03 03 03 I3



G =


03 03

Ct1t ∆t 03

03 Et1t ∆t
03 03

03 03


J = FJ
R = FRF ′ +GQG′

end for

The Jacobian and covariance matrix calculations use inter-
mediate results from the delta observation calculations from
algorithm 1 so these two calculations should be performed
simultaneously as the Jacobian and covariance matrices can
not be recovered directly from the delta observations. As the
delta observations are fixed in the initial position, velocity
and attitude frame of the vehicle at time t1 only the last two
columns of the J matrix are actually required for later use
when the deltas are incorporated in the filter as these columns
relate to the estimated inertial measurement unit bias values.
The full J matrix is required for the intermediate calculations
in algorithm 2.

If only one inertial observation is used in the inertial
delta observation then the covariance matrix for that delta
observation will only be of rank 6 as in this case the delta
velocity and the delta position plus components can not be
independently observed.

F. Inertial Delta Observation Use

Once the inertial delta observations and their Jacobian
and covariance matrices have been calculated, they can be
incorporated into a SLAM filter in the same way as any
other observation. Only the prediction of the inertial delta
observation given the current state estimates, h(x̂t), and the
predicted observation Jacobian matrix, Ht, still need to be
calculated.

Equations 8, 9 and 10 can be rearranged to obtain the
equations for the predicted inertial delta observations given
the current state estimates as is shown in equations 15, 16
and 17.
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h∆p+(x̂t) = Ĉn
′

bt1

(
p̂t2 − p̂t1 − v̂t1∆t− 1

2
g∆t2

)
+
d∆p+

t

dbiasf

(
b̂iasf − biasobsf

)
+
d∆p+

t

dbiasω

(
b̂iasω − biasobsω

)
(15)

h∆v(x̂t) = Ĉn
′

bt1 (v̂t2 − v̂t1 − g∆t)

+
d∆vt
dbiasf

(
b̂iasf − biasobsf

)
+
d∆vt
dbiasω

(
b̂iasω − biasobsω

)
(16)

h∆φ(x̂t) = EulerFromRotationMatrix(Ĉn
′

bt1Ĉ
n
bt2)

+
d∆φt
dbiasω

(
b̂iasω − biasobsω

)
(17)

The biasobsf and biasobsω variables are the estimated IMU
biases used in the creation of the deltas in algorithm 1 and
the b̂iasf and b̂iasω variables are the filter’s current estimate
of these biases.

The d
dbias terms in equations 15, 16 and 17 are obtained

from the final J matrix from algorithm 2. The final J matrix
is of the form shown in equation 18.

J =



d∆p+t2
dpt1

t1

d∆p+t2
dvt1

t1

d∆p+t2
dφt1

t1

d∆p+t2
dbiasf

d∆p+t2
dbiasω

03
d∆vt2
dvt1

t1

d∆vt2
dφt1

t1

d∆vt2
dbiasf

d∆vt2
dbiasω

03 03
d∆φt2
dφt1

t1
03

d∆φt2
dbiasω

03 03 03
dbiasf

dbiasf
03

03 03 03 03
dbiasω

dbiasω


(18)

Therefore the total predicted inertial delta observation is:

h(x̂t) =

 h∆p+(x̂t)
h∆v(x̂t)
h∆φ(x̂t)

 (19)

The predicted observation Jacobian matrix, Ht, is made by
taking the derivatives of equations 15, 16 and 17 with respect
to the estimated vehicle position, velocity and attitude at both
time t1 and t2 and the current estimates of the biases.

G. Observability and Convergence with Unknown Initial
Conditions

If the initial velocity of the vehicle is unknown then
it can become observable once estimates of the first two
positions are available as has been shown in equation 11.
From differentiating the inertial delta observation prediction
equations (equations 15, 16 and 17) with respect to the
initial velocity, as shown in equation 20, it can be seen that
given the initial attitude the relationship becomes linear and
therefore easy to estimate.

d∆p+t1
t2

dvn
t1

= −Cn′

bt1∆t
d∆vt1

t2
dvn

t1
= −Cn′

bt1

dd∆φt1
t2

dvn
t1

= 0

(20)

This result is useful for both filtering and smoothing
(delayed state) techniques if the initial attitude is know to
a high degree of accuracy as then initial velocity estimation
becomes a highly linear problem.

However even if initial attitude is not know to a high
degree of accuracy, or at all, the initial velocity and roll and
pitch estimation can become a linear problem with a slight
change to the estimated states.

The reason that attitude has to be known accurately when
using inertial observations is because the gravity vector needs
to be subtracted from the accelerometer observations before
being used. The vehicle attitude with respect to the gravity
vector needs to be known so that this subtraction can take
place.

If instead of trying to estimate the initial attitude of the
vehicle in the inertial frame, the gravity vector in the frame
of the first vehicle position can be estimated. This way the
initial attitude of the vehicle can be considered to be perfectly
known, making the derivatives in equation 20 constant (as
Cn

′

bt1 is now a constant), and the gravity vector unknown.
The advantage of this arrangement is that not only does

the estimation of the initial velocity become linear, but the
estimation of the gravity vector given a fixed initial attitude
is also a linear problem where as the estimation of the initial
attitude relative to a fixed gravity vector is highly non-linear.

The linearity of the gravity vector estimation can be seen
from the derivatives of equations 15, 16 and 17 with respect
to the gravity vector as shown in equation 21.

d∆p+t1
t2

dg = − 1
2C

n′

bt1∆t2
d∆vt1

t2
dg = −Cn′

bt1∆t
dd∆φt1

t2
dg = 0

(21)

Which with a fixed initial attitude (making Cn
′

bt1 constant)
makes estimation of the gravity vector a linear problem.

A beneficial side effect of this approach is that if no initial
estimate of the vehicle attitude is available an all zero (or
any arbitrary value) prior on the gravity vector can be used
for the starting point of the solution instead of having to use
a heuristic for the initial attitude.

III. RESULTS

A. Experimental Setup

To test the inertial pre-integration technique described in
this paper data was collected using a Honeywell HG1900
inertial measurement unit and a Point Grey Research Bum-
blebee 2 stereo camera custom fitted with 2.1mm focal length
wide angle lenses. Inertial observations were recorded at
600Hz and images were taken at 6.25Hz, at this sample rate
96 inertial observations are integrated into each inertial delta
observation.
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Fig. 2. Estimated map and trajectory. Landmarks are shows as green
crosses. The connected blue crosses are the estimated poses with the red
cross being the first pose.

A sideways trajectory with sinusoidal up and down motion
at an average walking pace was used in an indoor office
environment. Sample images from the dataset can be seen
in figure 1 and the trajectory itself can be seen with the
estimated map in figure 2.

A delayed state information smoothing implementation
similar to that described in [5] was used with initial estimates
for the camera to IMU alignments provided with some
associated uncertainty which was refined in the estimation
by the filter. IMU biases, the gravity vector and the initial
velocity of the sensor unit were also estimated as described
in section II-G.

B. Analysis

Figure 2 shows the reconstructed feature map and trajec-
tory estimated by the filter. The connected blue crosses are
the pose locations with the red cross being the first pose.

Figure 3 shows the estimated velocity of the sensor unit
in the north, east and down directions in the frame of the
first pose. The sinusoidal motion can be seen in the down
component of the velocity and the translation can been seen
in the negative offset of the east component.

The initial velocity was estimated to be
[−0.0516,−0.4841, 0.3932]′m/s in the north, east and
down directions respectively.

The estimated attitude of the sensor unit during the exper-
iment is shown in figure 4, as with the position and velocity
estimates the attitude estimate is in the frame of the first pose
and that is why the initial estimates for roll, pitch and yaw
are all zero.

The final estimate of the gravity vector in the first poses
frame, as described in section II-G, for this experiment is
[0.5473, 0.1131, 9.7847]′m/s2 giving an estimated magni-
tude of the gravity vector of 9.8006m/s2 which is within
0.04% of the true value which is 9.797m/s2 in Sydney,
Australia.

From this gravity vector estimate an initial roll and pitch
in the inertial frame of 0.6621o and −3.2015o respectively
can be calculated.

Fig. 3. Estimated velocity over the 60 image sequence in the north, east
and down directions in the frame of the first pose.

Fig. 4. Estimated attitude over the 60 image sequence in roll pitch and
yaw in the frame of the first pose.

Figures 5 and 6 show the estimated velocity and attitude
of the sensor unit during the first 20 images along with the
estimates obtained if standard inertial observations fusion
was performed where every inertial observation creates a new
pose. The crosses on the figures indicate the estimated poses
and it can be seen that there is a strong agreement between
the two cases as should be expected.

The normalized innovations for the camera observations
can be seen is figure 7, the horizontal line indicates the 2σ
value. With the exception of a few points near the end of the
run, which are outliers due to misassociation of features, the
innovations are largely under the 2σ line indicating that the
estimated trajectory and landmark locations are consistent
with the feature observations made by the cameras.

IV. CONCLUSION

This paper has presented a new technique for the incorpo-
ration of inertial observations in a visual SLAM implemen-
tation that avoids many of the complications traditionally
associated with using IMUs.

With the described method of pre-integrating inertial ob-
servations into inertial delta pseudo-observations the high
filter prediction rates associated with IMU observations can
be avoided.
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Fig. 1. Sample images taken from the dataset. The sensor unit was hand held and moved sideways towards the left while also being moved up and down
in a sinusoidal motion.

Fig. 5. Comparison of the velocity estimates for the same dataset using
the inertial deltas as described in this paper and using standard inertial
observations where each observation generates a new pose.

Fig. 6. Comparison of the attitude estimates for the same dataset using
the inertial deltas as described in this paper and using standard inertial
observations where each observation generates a new pose.

Also the combined use of inertial delta pseudo-
observations and the estimation of the gravity vector in
an attitude fixed frame allows inertial observations to be
used in a SLAM implementation without the need for an
initialization stage to obtain the initial attitude and velocity
of the platform. This is true even if a filter structure with
fixed linearizations, such as an EKF, is used.

Results have been presented to demonstrate the consis-
tency of the solution and the estimation of the unknown
initial velocity and attitude of the platform.

Fig. 7. Normalized innovation of the camera observations over the 60
image sequence. The horizontal red line indicates the 2σ value. It can be
seen that the majority of the innovations are below this line indicating that
the estimated trajectory is consistent with the camera observations.

The authors are currently looking into how this technique
can be extended to include the estimation of the initial
vehicle yaw in an absolute frame if it is observable as well
as how absolute position information, such as that obtained
from GPS observations, can be integrated into the solution.
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