
  

  

Abstract—This study attempts to make a compact humanoid 
robot acquire a giant-swing motion without any robotic models 
by using reinforcement learning; only the interaction with 
environment is available. Generally, it is widely said that this 
type of learning method is not appropriated to obtain dynamic 
motions because Markov property is not necessarily guaranteed 
during the dynamic task. However, in this study, we try to avoid 
this problem by embedding the dynamic information in the 
robotic state space; the applicability of the proposed method is 
considered using both the real robot and dynamic simulator. 
This paper, in particular, discusses how the robot with 5-DOF, 
in which the Q-Learning algorithm is implemented, acquires a 
giant-swing motion. Further, we describe the reward effects on 
the Q-Learning. Finally, this paper demonstrates that the 
application of the Q-Learning enable the robot to perform a 
very attractive giant-swing motion. 

I. INTRODUCTION 
CQUISITION of robotic motions by applying learning 
methods is a very attractive theme in robotics. In 

previous studies, several control algorithms with learning 
methods have been proposed, such as adaptive control and 
neural-network control; most of them are categorized into a 
supervised learning. However, few studies have reported how 
the robot acquires the optimized motion form, which 
comprises several action patterns, in the learning process. For 
example, Doya debated the acquisition of robotic walking 
due to reinforcement learning [1]. The reinforcement learning 
is one of unsupervised learning methods where the interaction 
between the robot and the environment is used instead of 
teacher signal. As one of the reinforcement learning, 
Q-Learning is widely employed for the acquisition of robotic 
actions [2]. In this method, the learning proceeds as an agent 
interacts with the environment like an evolutionary process of 
primitive creature. The most significant point in the 
unsupervised learning is that any preliminary knowledge is 
 

Manuscript received March 1, 2009. This work was supported in part by 
the Grant-in-Aid for Scientific Research B2 No. 20300075. 

M. Hara and H. Bleuler are with Ecole Polytechnique Fédérale de 
Lausanne, Lausanne, 1015 Switzerland (phone: +41 21 693 59 47, e-mail: 
masayuki.hara@epfl.ch, hannes.bleuler@epfl.ch). 

N. Kawabe is with Graduate School of Information Science and 
Technology, The University of Tokyo, Tokyo, 113-8656 Japan (e-mail: 
kawabe@ynl.t.u-tokyo.ac.jp). 

N. Sakai and T. Yabuta are with Dept. of Mechanical Engineering, 
Yokohama National University, Yokohama, 240-8501 Japan (e-mail: 
sakai@yabsv.jks.ynu.ac.jp,  yabuta@ynu.ac.jp). 

J. Huang is with Dept. of Intelligent Mechanical Engineering, School of 
Engineering, Kinki University, Higashi-Hiroshima, 739-2116 Japan (e-mail: 
huang@hiro.kindai.ac.jp). 

not required. Hence, its application to the real robot has a 
tremendous potential to produce very attractive robotic 
motions beyond our expectations; the supervised learning 
cannot generate such unexpected motion. Asada et al. 
attempted to propose its applications through the RoboCup 
[3]. Further, Kimura et al. demonstrated that the application 
of reinforcement learning enabled the robot to cause the 
advancement actions [4]. In our previous studies, we also 
have studied on the acquisition of various motions in mobile 
robots, such as a caterpillar-shaped and a starfish-shaped 
robots as shown in Fig. 1, by using the Q-Learning [5]. As the 
other trial, we also attempt the learning of the gait pattern 
with a gecko-shaped robot from a state of ignorance. These 
works examined the effect of the environmental variation and 
reward combination on the acquired motion forms.  

As an extension of our previous studies, this study attempts 
the acquisition of dynamic motions by using the Q-Leaning 
method although the Q-Learning is generally unsuitable for 
learning dynamic tasks because Markov property is not 
necessarily guaranteed. Especially, this study focuses on a 
giant-swing motion by a compact humanoid robot, which has 
multi-degree of freedom. With regard to the robotic swing 
control, many researchers have reported on the Acrobot, a 
two-link robot with a single actuator. For example, Spong 
proposed the swing-up algorithm based on zero dynamics for 
Acrobot [6]. Michitsuji et al. discussed the control of a 
gymnast-like Acrobat-robot with three links on a horizontal 
bar [7]. As for the application of learning algorithm, Boone 
showed that the learning speed could improve by explicitly 
leaning the system equation [8]. Nishimura et al. achieved a 
swing-up control of a real Acrobot due to the switching rules 
of multiple controllers obtained by the reinforcement learning 
[9]. As a unique study, Fukuda and Hasegawa et al. attempted 
to realize the robotic bracheation by multi controllers based 
on learning. However, in these studies, the swing motion 
could be realized by using the robotic model or several 
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Fig. 1.  Mobile robots for the Q-Learning in the previous studies. 
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controllers. Very few studies attempted to control the swing 
motion of the real robot with multi-degree of freedom without 
preliminary knowledge. Thus, in particular, we attempt the 
learning of the giant-swing motion by only the interaction 
with the environment, in which the preliminary knowledge is 
removed as far as possible. Further, to achieve the 
giant-swing motion is very difficult in comparison to 
previous studies because the employed robot has more 
degrees of freedom than the conventional Acrobot. This 
paper demonstrates very attractive giant-swing motions of a 
real robot generated by the Q-Learning. Further, we discuss 
how to give the reward to obtain the giant-swing motion. 

II. EXPERIMENTAL SYSTEM 

A. Giant-swing Robot 
In this study, we fabricated and employed a compact 

humanoid robot with 5-DOF, as shown in Fig. 2; the main 
parameters are listed in Table I. The robot mainly comprises 
five actuators (model: Dynamixel AX-12+, ROBOTIS) and 
they are all enabled as the position control mode for achieving 
the giant-swing motion. These actuators are allocated on the 
robot so as to approximate human degree-of-freedom. There 
exist two bearings between the horizontal bar and robotic arm 
components, which enable the robot to freely swing around 

the bar. Similarly, the robotic shoulder comprises free joints, 
but in this study, two constraint components are attached to 
restrain the rotation at the shoulder in order to simplify the 
learning. On the back of the robot, a communication module 
with Bluetooth is attached as shown in Fig. 2 (b). By using 
this module, motor commands are transmitted via a radio 
communication based on RS-232C. As for the measurement 
system, a PSD-sensor system (model: C5949, Hamamatsu 
Photonics) is employed in order to obtain the robotic position. 
Using measured position data, the robotic swing angle can be 
calculated, as shown in Fig. 3. In this experimental system, 
the sampling rate is set to 250 ms in order to completely drive 
the motors to the desired position within a sampling step. 

B. Dynamics Simulator 
This study also created a dynamics simulator of the 

developed compact humanoid robot by using Open Dynamics 
Engine, a free physical-calculation simulator. Fig. 4 shows a 
three-dimensional graphics of the robot in the developed 
simulator. In this simulator, the robotic parameters, such as 
the motor characteristics and damping effect generated by the 
friction between the horizontal bar and arm components, are 
adjusted to those of the real robot as far as possible. 

III. REINFORCEMENT LEARNING 

A. Q-Learning Algorithm 
This study applied the Q-Learning algorithm, which is one 

of the reinforcement learning methods, to the giant-swing 
robot. The basic equation is given as follow: 
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(a) Giant-swing robot and its link allocation 

(b) Experimental system 
Fig. 2  Schematic diagram of experimental system. 

 
TABLE I 

ROBOTIC PARAMETERS 
1st link 0.141 
2nd link 0.074 
3rd link 0.068 

Size  m 

4th link 0.046 
Weight  kg 0.801 

cX
X

Y
Robot base

RobotBar

l

⎥
⎦

⎤
⎢
⎣

⎡
−

=
01
10

R

[ ]Tl00=L
0pc

[ ]Tyx=p

[ ]Tccc yx=p

[ ]Tccc yx 000 =p

LED target

p )( pc

Parameters
cY

Camera base

)( 0 LppRp −−= cc

0θ

call

0l

Swing angle: ),(2atan0 yx ppθ =

Fig. 3.  Calculation method of the robotic swing angle. 
 

 
Fig. 4.  Dynamic simulator of the giant-swing robot by ODE. 
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where Q is the action-value function. st and at are the state and 
action of the agent at the time t, respectively. α and γ denote 
the learning rate and discount rate; these two parameters 
determine the learning responsiveness and convergence, 
respectively. Finally, rt indicates the reward that is allocated 
for all the actions in each state. In this study, an action in each 
state was selected by using ε-greedy method; in this method, 
the explorative action is selected with the probability ε  (0 ≤ ε  
≤ 1), whereas the agent acts greedily by the probability 1–ε . 
In our learning, ε is simply decreased due to the learning step. 

B. Application of the Q-Learning Algorithm 
As shown in equation (1), it is necessary to define the state 

space of the robot. In this study, the robotic state based on the 
swing angle is employed, as shown in Fig. 4 (a). In addition, 
its angular velocity state, as shown in Fig. 4 (b), is also 
considered in order to include the dynamic effect. Finally, we 
define the state space with 144 states (24 states in the swing 
angle × 6 states in the angular velocity). In the learning 
process, the robotic transition state at each step is observed by 

using the PSD-sensor system. In the learning, the state st+1 at 
the time t+1, which is obtained as the result of the action at, 
cannot be predicted at the time t because the robotic model is 
not available. Thus, this study uses a method with the delayed 
reward, where the action-value function Q(st, at) is renewed at 
the time t+1. Also, the renewed action-value function 
fluctuates due to the reward even if the robot experiences the 
same transition; the reward includes small fluctuation 
because the robotic state space is roughly defined to avoid the 
explosion in the state number. Hence, this study uses the 
averaged action-value function over a series of renewals. 

IV. PRELIMINARY EXPERIMENT 

A. Experimental Condition and Method 
In order to verify whether the developed robot can achieve 

the giant-swing motion or not, a preliminary experiment was 
conducted by actually using the real robot; the dynamic 
simulator was not employed in this preliminary test. In this 
preliminary experiment, we allowed each enabled actuator to 
drive by 9 action patterns—0, ±10, ±20, ±30, and ±40 
deg—as shown in Fig. 6. Further, the reward based on the 
decrease in the height of a LED target attached on the arm 
was allocated for all the actions in each state; we supposed 
that the decrease in the swing height includes the potential 
energy, which may be effective for enhancing the swing 
motion. As for the ε-greedy method, ε was decreased by 0.2 
every 10000 learning steps from 1.0, i.e. it means that the 
frequency of greedy actions increases every 10000 learning 
steps. Hence, the leaning was finished when ε became 0. 

B. Experimental Results and Discussion 
Fig. 7 shows the transition in the swing angle for 60 s when 

using the action-value functions renewed in 20000 learning 
steps. In this graph, the swing angle over ±180 deg means that 
the robot could rotate around the horizontal bar. As shown in 
Fig. 7, it should be noted that the robot could not perform the 
giant-swing motion. Fig. 8 shows a distribution of the 
action-value functions obtained in this learning, where the 
action-value functions are categorized by five levels. The 
result shows that the action-value functions in the bottom of 
the horizontal bar are relatively low and have no remarkable 
difference in the neighborhood of state 72. In most cases, the 
robot was easy to fall into a motion loop with few action 
patterns in the early stage of the greedy action. This motion 
loop caused the stagnation of the swing at the bottom of the 
horizontal bar. The stagnant state prevented the robot from 
shifting to a new state for increasing the swing angle. When 
the robot accidentally shifted to the new state from the 
stagnant states, there were cases where the robot was able to 
achieve the giant-swing motion. Actually, the robot could 
jump out of the stagnant state if we applied small forced 
oscillation due to the external force in the early stage. Fig. 9 
shows the transition in the swing angle when applying the 
random actions for 10 s instead of the forced oscillation. In 

 
(a) Angular state: 24 states 

 
(b) Angular velocity state: 6 states 

Fig. 5.  State space of the giant-swing robot. 
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Fig. 6.  Robotic action patterns in the preliminary experiment. 
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this experiment, the robot could select the best actions based 
on the learning result, which was the same with that in Fig. 7, 
after the robot performed the random actions for 10 s. The 
results demonstrate that the robot could rotate around the 
horizontal bar with some repeatability, as shown in Fig. 9; in 
this method, the giant-swing motion was almost regularly 
performed between 30 s and 70 s. Fig. 10 graphically shows 
the highlight. These results imply that the reward based on the 
decrease in the swing height was not so effective for 
generating the giant-swing motion; how to give the reward 
may break the problem related to the repeatability. However, 
it could be confirmed that the developed giant-swing robot 
has the ability to perform the giant-swing motion. 

V. ACQUISITION OF HUMAN-LIKE GIANT-SWING MOTION 

A. Experimental Condition and Method 
We attempted to avoid the stagnant state at the bottom of the 

horizontal bar by applying various types of rewards. In this 
experiment, the rewards based on the robotic physical 
quantities—decrease in swing height, swing angle, tip angle, 
and mechanical energy—as listed in Table II were given to 
the robotic actions in the Q-Learning process. The tip angle 

tθ  was calculated by means of the kinematic information of 
the robot, as shown in Fig. 11. In addition to this condition, 
the movable ranges of enabled motors were constrained as 
shown in Fig. 12 in order to imitate those of human beings; 
we expected that the robot may acquire a human-like motion. 
Similar to the experiment in chapter IV, the Q-Learning with 
ε-greedy method was applied. Then, ε was reduced with the 
time transition at the rate of 2.0 × 10−6 per learning step. First, 
we executed the Q-Learning for each reward by using the 
ODE-based dynamic simulator of the giant-swing robot in 
order to reduce the learning time and to avoid the fatigue 
breakdown. Subsequently, we attempted to pick up the 
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Fig. 7.  Transition of the swing angle during the greedy actions. 
 

Fig. 8.  Distribution of the action value functions. 
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Fig. 9.  Transition of the swing angle when applying the random actions 
for 10 s in the early stage. 

 
Fig. 10.  Highlight of the acquired giant-swing motion. 

 
TABLE II  REWARD TYPES IN THE Q-LEARNING SIMULATION 
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Fig. 11.  Measurement of the tip position and angle of the giant-swing 
robot. 
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effective learning results and actually implemented them in 
the real robot so as to examine the performance and 
applicability of the learning results obtained in the simulation. 

B. Simulation Results and Its Application 
Fig. 13 shows the results when the four types of rewards, as 

listed in Table II, were applied to the robot in the dynamic 
simulator. As shown in the blue line, the robot could not 
intensify the swing motion when applying the learning results 
for the swing-height-based reward. This result corresponds 
with the result in chapter IV. In addition, the robot could not 
also make the motion when the swing angle and the change in 
mechanical energy were given as the rewards, as shown in the 
red and green lines. On the other hand, as shown in the orange 
line, only the reward based on the tip angle enables the robot 
to achieve the giant-swing motion in the simulation. These 
results imply that the kinematic information of the robot 
might be significant to perform the giant-swing motion. With 
regard to the rewards except the tip-angle-based reward, they 

all use the swing angle of the arm; these rewards have only 
the information from the horizontal bar to the robotic arm. 
Hence, the robot was not able to know its own posture beyond 
the arms in the learning process. This condition might hinder 
jumping out of the stagnant action loop at the bottom of the 
horizontal bar. On the other hand, the tip-angle-based reward 
includes the information of robotic posture, as shown in Fig. 
11. Thus, it is implied that the posture information enabled 
the comprehensive exploration in the learning process and 
might result in achieving the giant-swing motion. 

As the next step, we practically implemented the learning 
result obtained by the application of the tip-angle-based 
reward in the real robot. The result demonstrated that the real 
robot could make a revolution around the horizontal bar. 
However, the robot frequently stopped the movement due to 
the motor spec; the employed motor has the characteristic that 
automatically stops the motor drive if the intensive actions are 
taken many times. In the most serious case, the cog in the 
motor chipped due to the intensive actions. This is because in 
the obtained learning result, the robot moves very vigorously 
at the bottom of the horizontal bar so as to jump out of the 
stagnant action loop; the motors were exposed to heavy loads 
around the limitation. Thus, the perfect repeatability could 
not be verified due to the marginal performance in the real 
robot. However, these results imply the possibility of the 
obtained learning result for achieving the giant-swing motion. 

C. Manipulation of Learning Results 
When the gymnasts start to perform the giant-swing motion, 

they usually bend their elbows and lift their body in order to 
promote the swing angle; they do not start the giant-swing 
motion while stretching out their arms like our robot. Hence, 
it may be necessary to change the learning strategy at the 
bottom of the horizontal bar to smoothly perform the 
giant-swing motion. In this study, we attempted to divide the 
giant-swing motion into two stages as shown in Fig. 14 and 
employed the individual learning results obtained in each 
stage. In the first stage, by using the dynamic simulator again, 
we had the robot learn the optimized angular frequency for 
releasing from the stagnant action loop by using a sinusoidal 
action pattern. According to the result, the best parameter 
obtained in this simulation was 6.2 rad/s; the robot could not 
perform the giant-swing motion even if the sinusoidal action 
with this parameter was applied over all the states. Once the 
robot jumped out of the stagnant state, the learning result in 
the first stage would not be used anymore. Instead, the 
learning results based on the tip-angle-based reward in the 
previous simulation were employed in the second stage. 

Fig. 15 shows a transition in the swing angle when applying 
these two learning results to the real robot in each stage; Fig. 
16 demonstrates the highlight. These results indicate that the 
real robot was able to rotate around the horizontal bar quickly. 
To confirm the repeatability, we also tried the giant-swing 
motion ten times with the same results. The robot could 
regularly rotate around the horizontal bar for 24.7 s on 
average. Hence, the reliability of learning results in section B 

          
Fig. 12.  Robotic action patterns. 
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can be verified. These results imply that the action patterns 
for jumping out of the stagnant action loop in the early stage 
is required to enhance the swing motion and perform the 
giant-swing motion smoothly. 

VI. CONCLUSION 
In this study, we attempted to have a compact humanoid 

robot rotate around the horizontal bar from a state of 
ignorance by applying the Q-Learning method. Generally, the 
Q-Learning method is not suitable for learning dynamic 
motions. However, this study attempted to avoid this problem 
by considering the dynamic information in the robotic state 
space. First, we preliminarily confirmed that the developed 
robot had the ability to perform the giant-swing motion. After 
that, the effects of several rewards on acquiring the motion 
were examined in the dynamic simulator. The simulation 
results implied that the reward with the robotic kinematic 
information is effective for learning the giant-swing motion. 
Further, we practically applied an effective learning result to 
the real robot and examined the performance. The result 
showed the possibility of the learning result, but did not 
exhibit the repeatability because of the marginal performance 
in the motors. To solve this problem, the other learning result 
was applied in the early stage. The integration of two learning 
results enabled the robot to smoothly perform the giant-swing 
motion with the repeatability. 

This paper implied that the Q-Learning has a possibility to 
enable the robot to acquire the dynamic task like the 
giant-swing motion by slightly giving knowledge in the early 
stage. In our future work, the robotic degree-of–freedom will 

be increased by removing the hampers at the shoulder and we 
try to examine how the robot with two free joints acquires the 
giant-swing motion in the Q-Learning.  
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Fig. 16.  Highlight of the giant-swing motion generated by the integrated 
learning results. 

 
Fig. 14.  Division of the learning stage.. 
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