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Abstract— Many calibration methods calibrate a pair of
sensors at a time. For robotic systems with many sensors,
they are often time-consuming to use, and can also lead to
inaccurate results. In this paper, we combine a number of
ideas in the literature to derive a unified framework that jointly
calibrates many sensors a large system. Key to our approach
are (i) grouping sensors to produce 3D data, thereby providing
a unifying formalism that allows us to jointly calibrate all
of the groups at the same, (ii) using a variety of geometric
constraints to perform the calibration, and (iii) sharing sensors
between groups to increase robustness. We show that this gives
a simple method that is easily applicable to calibrating large
systems. Our experiments show that this method not only
reduces calibration error, but also requires less human time.

I. INTRODUCTION

Calibration remains a challenging and time-consuming

task in robotics despite being a prerequisite for the success

of many applications, such as manipulation. The problem

of accurate calibration is especially pronounced on robots

equipped with multiple sensors such as the STanford AI

Robot (STAIR).

Researchers have proposed many techniques for calibrat-

ing specific types of sensors or pairs of sensors. Typical

examples include one-camera, camera-to-camera [1] and

laser-to-camera calibration [2]. There is, however, a lack

of methods that jointly (simultaneously) calibrate a large

system consisting of multiple sensors. A standard approach

is to divide the system into many pairs of sensors and

calibrate each pair at a time. In this process, one needs to use

different algorithms for different pairs. Consequently, system

calibration becomes very difficult, time-consuming, and often

also inaccurate.

The main contribution of our paper is to combine various

ideas in the literature to derive a unified framework that

jointly calibrates a large system. Key to our approach is

the use of one objective function for the entire system.

The framework comprises two main ideas. First, we group

different sensors on the robot to form systems that output

3D data (distances to visible objects). For example, two

cameras might be grouped together to form a stereo vision

system. Then we use geometric constraints (such as distance

preservation, collinearity, coplanarity) to form an objective

function for the entire system. We call our approach joint

calibration.

Interestingly, we recommend sharing sensors between

groups. That is, if there are many possible combinations of

sensors that can produce 3D data, we recommend having as
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many pairs as possible in the objective function, so that a

single sensor may participate in many different groups. This

redundancy in the objective adds robustness to the calibration

result, and our experiments show that it leads to reduced

error.

An advantage of having groups that output 3D data is

that the same calibration objective can now be used for

the “extrinsic” calibration problem of calibrating the groups

relative to each other, regardless of the type of sensor. More

specifically, extrinsic calibration of these systems can be

done via a closed form solution (Horn’s algorithm [3], which

requires solving for the eigenvectors of a symmetric 4x4

matrix) or via numerical optimization methods. We also

combine this with an objective for “intrinsic” calibration (of

the sensor parameters within each group), so that intrinsic

and extrinsic calibration of all the sensors is performed

simultaneously.

Our approach can be applied to many practical robotic

systems because most sensors in such systems either already

output 3D data or can be grouped to have this feature: ex-

amples include active triangulation sensors, stereo cameras,

range finders and especially robot arms.1

Our experiments illustrate the advantages of the joint

calibration approach. Compared to standard techniques, our

method is more accurate and requires less human supervi-

sion. On our robot platform (STAIR), we are able to jointly

calibrate many sensors to a 5 DOF robot arm with an average

error of less than two millimeters. Using this accurate cali-

bration, our robot is able to perform manipulation tasks such

as turning knobs, pressing small elevator buttons, opening

drawers and picking up small objects.

II. PREVIOUS WORK

The field of sensor calibration has a long history. Camera

calibration is a well studied subject [4], [5], [6]. Jointly

calibrating the intrinsic and extrinsic parameters of cameras

has been studied as well; for example, Zhang [5] proposed

jointly estimating the intrinsics and extrinsics using one

objective function. There is also software for camera-to-

camera calibration, such as the well-known Caltech cali-

bration toolbox [1], that implements this idea. Calibrating

multiple cameras simultaneously has recently gained some

interest. For example, using silhouette geometry constraints,

[7] suggest a bundle optimization method that allows a joint

optimization of many cameras.

The problem of calibrating different types of sensors

together has received less attention, but one example is [8],

1For robot arms, intrinsic calibration corresponds to finding the kinematic
parameters.
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which proposed an algorithm to calibrate a camera to a

range finder using plane constraints. A similar algorithm is

implemented in the CMU laser-to-camera calibration toolbox

[2]. Their techniques are simple yet rather specific to the

properties of the sensors, and there are no known extensions

to other types of sensors.

There are also works concentrating on calibrating the

kinematic parameters of robotic manipulators [9], [10], [11],

[12], [13]. The goal is to obtain very high precision for

(primarily) industrial robots. Zhang and Roth [14] divide

robot calibration into four sub-tasks: kinematic modelling,

pose measurements, kinematic identification and kinematic

compensation. The calibration technique in our work focuses

on pose measurements and kinematic identification. In [9],

authors describe techniques for identifying the static and

dynamic parameters of a manipulator. Some approaches use

the aid of extra sensors such as cameras [13] to calibrate the

kinematic parameters. In [15], the authors show a statistical

method for calibrating the odometry parameters of a mobile

robot. Recently, methods to learn the kinematic parameters

and models for legged robots [16] or manipulators [17] have

been proposed.

Most prior work in sensor-to-arm calibration such as the

early articles by Tsai et al. [18], [19], concentrates primarily

on eye-in-hand calibration, where a camera is rigidly attached

to a robot arm. Also for this configuration, Horaud and

Dornaika [20] propose a numerical method while Daniilidis

[21] uses dual quaternions. Simultaneously calibrating the

hand and the camera is the focus of [22], [23]. While eye-

in-hand calibration is beyond the scope of our work, the

ideas of numerical optimization (e.g., [20]) and simultaneous

calibration (e.g., [22]) are also used in our approach.

In general, most state-of-the-art calibration techniques are

hardware-specific and do not generalize well to other types

of sensors. As a result, calibrating a multi-sensor system

requires both understanding the low-level details of each

sensor and applying a variety of specialized algorithms. This

approach is prohibitively expensive and complex for large

systems. We present a unified framework that incorporates

some of the ideas described above, and develop a general

technique for joint calibration of multiple sensors.

III. SUMMARY OF JOINT CALIBRATION

In this section we present a summary of our approach.

Consider the problem of calibrating the intrinsic and extrinsic

parameters of a robot system which contains two cameras, a

laser projector2 and a robot arm.

A standard procedure for calibrating such a system is

shown in Fig. 1. For example, we might first calibrate

the pair of cameras to each other, then a camera to the

laser projector, and so on. Sensors are grouped into smaller

systems and each system is calibrated separately. Although

there exist algorithms for each of these groups, the principles

behind the groupings are unclear. Also, note that at each

2This projector can only send a laser beam and does not measure the
distance directly.

calibration step we have to collect different datasets and use

different algorithms. Finally, this procedure can often lead to

inaccurate calibrations.3

Fig. 1. Standard calibration requires many steps to calibrate an entire
system.

In contrast, our approach to joint calibration is summarized

in Fig. 2. The groups are formed using a unifying principle:

each group is created to output 3D data.4 We make use

of the fact that a sensor can appear in different groups to

have redundancy. Then we calibrate the entire system in one

optimization.

Fig. 2. Joint calibration, in which all calibration parameters are simultane-
ously solved for. Note the sharing and redundancy enjoyed by this method:
One sensor can appear in many groups (shown by circles), and multiple
links (each representing a coordinate transformation) connect the different
groups. Each group is capable of outputting 3D data.

In detail, we use geometric constraints (distance preserva-

tion, collinearity, coplanarity) for intrinsic calibration within

each group. Extrinsic calibration between groups can be

done via Horn’s algorithm [3] or Levenberg-Marquardt opti-

mization. More importantly, although intrinsic and extrinsic

calibration could have been done separately, we argue instead

that intrinsic and extrinsic calibration should be combined

and performed simultaneously. In our approach, this is done

by posing a single calibration optimization objective, that is

minimized through numerical optimization.

IV. EXTRINSIC AND INTRINSIC PARAMETERS

A. Extrinsic parameters

The extrinsic parameters of two coordinate systems consist

of a rotation matrix and a translation vector between the

frames. More specifically, a 3D coordinate transformation

takes a point in one frame and gives the coordinate of the

point in another frame. Associated with this transformation

3For example, suppose sensor 1 (or group 1) is calibrated to sensor
2, which is calibrated to sensor 3, and so on in a long chain. If each
calibration step introduces even a small amount of error, then the error
in the transformation between sensor 1 and sensor n may become large,
since the errors along the chain would accumulate.

4Here, we assume that grouping Cam1 and Laser projector will result in
an active triangulation sensor (as described in Section VIII-B).
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are a rotation matrix and a translation vector, which we

denote by R and t. Assume the coordinate of a point p

is [x, y, z]T in frame A; its coordinates in frame B is then

given by

R[x, y, z]T + t (1)

The rotation matrix also satisfies and orthonormal constraint:

R
T
R = I (2)

B. Intrinsic models and parameters

We define a 3D system as a sensor or a group of sensors

that gives us 3D data with known depth scales. Informally,

a 3D system can measure 3D coordinates of objects in front

of it. With such systems we can define an intrinsic model

that takes intrinsic parameters and data and returns a point

in 3D

I(α, u) ∈ R
3 (3)

where u is a calibration datum (e.g., corresponding pixels

in two images), and α are the intrinsic model parameters.

Here α may be sensor dependent; for example, for a stereo

vision system, α would include the standard camera param-

eters (such as focal length, distortion, etc.) as well as the

transformation between the two cameras.

Note that our concept of intrinsic parameters is different

from that in the camera calibration literature. In that litera-

ture, a camera’s intrinsic parameters include focal length,

distortion, principal point, skewness, etc. In contrast, in

our setting the intrinsic parameters of a 3D system may

also include the rotation and translation between different

members of a group.

In our definition, a single camera is not a 3D system

because it does not produce known scaled depth data. In

contrast, a 3D range finder or a stereo camera are 3D

systems.

V. EXTRINSIC CALIBRATION OF 3D SYSTEMS

This task requires us to find rotation and translation

parameters between systems, or informally, to find locations

and orientations of different frames relative to each others.

To simplify notations, we begin by considering the task of

calibrating two 3D systems.

One way to find rotation and translation from one frame

to another frame given corresponding 3D data is via a closed

form solution given by Horn’s algorithm [3].

Horn’s algorithm is elegant, but can be used only to find

extrinsic parameters given point constraints. In order to also

address intrinsinc calibration, and to incorporate a broader

set of constraints than point constraints (such as line and

plane constraints, described later), we will instead use a

numerical optimization method. In detail, assume a point

p(A) = IA(αA, u(A)) in frame A and that same point in

frame B is p(B) = IB(αB , u(B)). Now, the coordinate

of p(A) in frame B under the coordinate transformation is

Rp(A) + t.

Perfect extrinsic parameters will make Rp(A) + t =
p(B). As data may be noisy, we can model the distance

d = ‖Rp(A) + t − p(B)‖ as a normal random variable

d ∼ N (0, λ2). Assume that we can collect many correspond-

ing points {u
(A)
i , u

(B)
i }n

i=1, maximum likelihood estimation

requires us to minimize

Extr(R, t) =
∑

i

‖RI(αA, uA
i ) + t − I(αB , uB

i )‖2 (4)

subject to the orthonormal constraint (Eq. 2). Calibrating

multiple sensors can be done in the same fashion by adding

more terms to the objective function.

VI. INTRINSIC CALIBRATION OF 3D SYSTEMS

This task requires us to find intrinsic parameters of 3D

systems. Informally, this means we have to determine the

internal parameters of a 3D system such that it obeys

geometric rules. For example, if the world has a set of points

belonging to a line, then from the perspective of the sensor,

the points should also form a line.

The set of constraints we can use for intrinsic calibration

of a 3D system are distance preservation, collinearity, copla-

narity.5 In our framework, these constraints are enforced by

likelihood estimation.

A. Distance preservation constraints

Suppose we can collect calibration data ui and uj with

known distance d̄ij in 3D. Intrinsic models of a 3D system

give us two points in 3D, pi and pj . The distance dij between

pi and pj is represented by a random normal variable dij ∼
N (d̄ij , σ

2), or more explicitly

p(dij) =
1

Z
exp(−

‖dij − d̄ij‖
2

σ2
) (5)

An example of distance preservation constraints arise in

the case of a stereo intrinsic model of two cameras (see

Fig. 3). Here ui = {u
(1)
i , u

(2)
i } which are the corresponding

pixels of two cameras’ images. Using ui, this system can

construct a point in 3D pi. Likewise, uj gives pj . We can

use the ground truth distance d̄ij of these two points as a

distance preservation constraint.

B. Collinearity and Coplanarity constraints

Not only distance preservation can be employed as cali-

bration constraints, the knowledge of some points belong to

a plane or a line can also be used to help calibration.

Suppose some of our calibration data belong to a line or

a plane, we can model the distance d from the points to the

line/plane as a normal random variable d ∼ N (0, σ2)

p(d) =
1

Z
exp(−

‖d‖2

σ2
) (6)

In detail, distances d’s can be obtained by fitting a line

or a plane to a set of points (via SVD - singular value

decomposition [24]) and computing the distances of the

points to the line or the plane.

5Note, that these sets of constraints can also be used for extrinsic
calibration.
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Fig. 3. An example of distance preservation constraints. Cameras Cam1

and Cam2 use a datum ui (corresponding pixels in two cameras) to find a
point pi ∈ R

3 and use a datum uj to find a point pj ∈ R
3. We know

ground truth distance between them d̄ij (size of checkerboard square),
current calibration parameters give hypothetical distance dij . By forcing

dij to be close to d̄ij , we get good estimate of calibration parameters.

C. Generating constraints

Distance preservation constraints can be generated by a

standard “checkerboard procedure.” For example, in the case

of stereo cameras, we can collect images of a checkerboard

with known square sizes and use a corner detector algorithm

to find the corners (e.g., the algorithm in [25]).

We can generate collinearity and coplanarity constraints by

using flat (planar) surfaces as calibration targets. For exam-

ple, flat walls, desks, checkerboards give plane constraints;

whereas intersections between them give line constraints.

Coplanarity constraints can be generated more easily and

quickly than distance preservation constraints because corner

detection can sometimes be imprecise. There is, however,

a trade-off between distance preservation and coplanarity

constraints because artificial flat surfaces may not be exactly

planar. Also, one can notice that line and plane constraints

suffer from the scale problem: we can scale all points down

to one single point and get a much higher likelihood.6

D. Combining all constraints

Combining likelihood of the constraints in Eq. 5 and 6,

maximum likelihood estimation requires us to minimize

Intr(α) =
∑

i

(‖I(α, ui) − I(α, uj)‖ − d̄ij)
2

+ σ2
1

∑

L

∑

k∈L

d(I(α, uk),L)2

+ σ2
2

∑

P

∑

l∈P

d(I(α, ul),P)2 (7)

where d(x,L) is the distance from a point x to a line L and

d(x,P) is the distance from a point x to a plane P .

VII. JOINT INTRINSIC AND EXTRINSIC CALIBRATION OF

3D SYSTEMS

Assume we have two 3D systems and want to calibrate

their intrinsic and extrinsic parameters. Using the above

6To alleviate this, we must at least have one distance preservation
constraint.

ideas, we first calibrate the intrinsics of each system, and

then calibrate the extrinsics between them. However, in a

similar approach to Zhang’s idea [5], we should combine

the two steps and jointly calibrate all parameters at once.

Again, using the maximum likelihood estimation, we need

to minimize

ExtrIntr(R, t, αA, αB) =Intr(αA) + Intr(αB)

+ γExtr(R, t, αA, αB) (8)

where the optimization variables in the above are

αA, αB ,R, t and γ is the tradeoff between the intrinsic

and extrinsic objectives. The difference of this approach to

the two-step incremental approach is that we are going to

estimate intrinsic and extrinsic parameters jointly.

VIII. SOME 3D SYSTEMS

Although a camera is not a 3D system, there are many 3D

systems in a standard robot system. Stereo cameras, active

triangulation sensors, range finder sensors and robotic arms

are examples of such 3D systems. This section explains these

3D systems and their intrinsic models in more details.

A. Stereo systems

A stereo system contains two or more cameras. With

stereo systems, depth is found by triangulation [26], [27].

Given corresponding pixels in two images, when there is no

occlusion, we can find a unique 3D point. For simplicity and

clarity, in this section we consider stereo systems with two

cameras. We define the following Stereo function

Stereo({R, t, α(1)
cam, α(2)

cam}, {u(1), u(2)}) = [x, y, z]T (9)

where R, t are the rotation and translation parameters be-

tween the two cameras, α
(1)
cam, α

(2)
cam are parameters of the

two cameras. The parameters R, t, α
(1)
cam, α

(2)
cam form the

set of intrinsic parameters of a stereo system, i.e αS =

{R, t, α
(1)
cam, α

(2)
cam}. This Stereo function takes pixel co-

ordinates u(1), u(2) in two images of the two cameras and

give us a point in 3D. Calibration data are u(1) and u(2).

B. Active triangulation systems

A typical active triangulation system contains a laser pro-

jector (scanner) and a camera [28], [29]. The laser projector

sends a laser pattern and the camera captures a series of

images. A motor on the laser projector records offset angles.

An example of active triangulation system with a line pattern

is described in [28].

An active triangulation system finds 3D location of image

pixels. We define the following function

ActiveTriangulation({R, t, αcam}, {β, u}) = [x, y, z]T

(10)

that takes rotation R, translation t, camera intrinsic αcam,

pixel coordinates u and laser offset angle β and gives us a

point in 3D. Calibration data are β, u.

The parameters R, t, αcam form the ’intrinsic’ parameters

of an active triangulation system, i.e. αActiveTriangulation =
{R, t, αcam}.
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C. Robot arms

Given a robot arm, the job of forward kinematics is to

compute the position and orientation of the end effector

[30] given the link lengths, encoder offsets, joint angles and

joint angle offsets. For calibration, we only consider the 3D

position of the end effector

ForwardKinematics({l, β}, e) = [x, y, z]T (11)

where e is the encoder readings, β is the joint angle offsets

and encoder offsets, and l is the link lengths.7

Here, we treat the link lengths and angle offsets, encoder

offsets {l, β} as intrinsic parameters and encoder readings e

as calibration data.

An advantage of using encoder readings as calibration data

is that encoder readings are usually very accurate while link

lengths or angle offsets are harder to measure. For example,

if the last link of the arm is modified, it is hard to accurately

measure its length.

D. Range finders

The intrinsics of off-the-shelf range finders, such as a laser

scanner (SICK), are already well calibrated internally by the

manufacturers. We can assume that these sensors do not have

any intrinsic parameters that need further calibration. Thus,

the range finder operation can be defined as follows

RangeF inder(u) = [x, y, z]T (12)

where calibration data u can be a ’pixel’ location in the depth

map image.

IX. CALIBRATION OF NON-3D SYSTEMS

There are many sensors that are not 3D, for example,

cameras. There are two possible solutions for calibrating

them.

One immediate solution is to directly apply our joint

calibration method to non-3D systems at the cost of dealing

with sensor-dependent problems. For example, we can cali-

brate a camera to a camera using the extrinsic and intrinsic

calibration ideas described above. The only difference is that

we have to treat the scale factors as optimization variables.

This, however, violates our framework because the scale

factor is a sensor-dependent variable.

A better solution is to build 3D systems out of non 3D

systems. For example, we can group two cameras together

and have a 3D system. Another example is that we can

group a laser projector and a camera to have a 3D active

triangulation system.

Grouping is advantageous because it simplifies calibration.

For example, it is very challenging to calibrate a camera

with a laser range finder [8], [2]. This is because the camera

gives 3D rays whereas a laser range finder gives 3D points.

However, if we find another camera and group two cameras

together, calibrating a laser range finder vs. a stereo system

can be easier.

7Here, we only consider static parameters.

X. OPTIMIZATION

Although the above optimization objectives are noncon-

vex, they have a small number of parameters. They are also in

the form of sum of squares. We can thus use the Levenberg-

Marquardt algorithm to find a local minimum [31], [32], [33].

Software packages such as MATLAB has an implementation

of this algorithm.

Levenberg-Marquardt is fast but can converge to poor local

minima. To alleviate this problem, we use random restart.8

Using random restart, we usually obtain better local minima.

In our experiments, we used numerical differentiation [33].

This is because we treat each component black-box and it is

hard to take analytical derivatives. Numerical differentiation

is implemented in MATLAB.

Finally, there are many ways to enforce the orthonormal

constraints. In our experiments, we added ν‖RT
R− I‖2

2 to

the objective function with large value of ν. This usually

works very well for us.

XI. EXPERIMENTS

We perform calibration experiments with our robot (see

Fig. 4). Our robot has one 5 DOF Katana arm, two visible

light cameras, one Pan-Tilt-Zoom camera9 and one laser

projector. Our goal is to calibrate all of these devices against

the arm.

In the next sections, we will first describe the calibration of

a 3D system (camera and laser projector) and then describe

the joint calibration of the whole system.

Fig. 4. Our robot platform with all sensors and the arm used in the
experiment.

In the experiments, optimization variables are initialized

by simple guesses. For example, the translation vector be-

tween two cameras can be measured by a ruler, the rotation

is set to the identity matrix.

8Every time the algorithm converges we restart the algorithm by adding
some perturbations to the best-so-far parameters and use these as initializa-
tion for the next iteration.

9The PTZ camera is held fixed in the experiments.
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A. Intrinsic active triangulation calibration

The major focus of this work is calibrating a system that

has many 3D groups. We can, however, apply our algorithm

to a very basic level to calibrate the intrinsic parameters of

a 3D group.

We would like to calibrate intrinsic parameters of an active

triangulation sensor consisting a laser projector and a camera

(camera 2 in Fig. 4). The intrinsic parameters of this system

are described earlier in Section VIII-B.

We collected 10 images of a checkerboard (see Fig. 5) and

5 images of planes (see Fig. 6). We used 9 checkerboard

images and 4 plane images for training and the rest for

validation.

First, we considered incremental calibration which cali-

brates intrinsic, extrinsic incrementally. We used the Caltech

calibration toolbox [1] to obtain the intrinsic parameters of

the camera. We then held these intrinsic parameters fixed and

calibrated other parameters of the active triangulation sensor.

We call this ’Incremental calibration’ based on the fact that

we did not calibrate the intrinsic parameters of the camera

jointly with other parameters.

Next, we considered our joint approach that optimizes

all intrinsic parameters of the active triangulation system

simultaneously and called the method ’Joint calibration’.

The results of different calibration methods on the valida-

tion set are reported in Table I. As can be seen from the table,

the joint calibration technique with random restart gives

very good result for calibration. A result of joint intrinsic

calibration is illustrated in Fig. 7.

Fig. 5. An image of a (distorted) checkerboard and a laser beam captured
by camera 2 (right corner).

Fig. 6. Three images of three planar regions captured by camera 2.

We have just showed that by a very simple and general

method, we can calibrate the intrinsic parameters of an

active triangulation system very accurately. We note that

special techniques exist for calibrating these systems [34].

However, although their method [34] may produce better

results, it is prohibitively more expensive in terms of human

TABLE I

MEAN VALIDATION ERROR OF ACTIVE TRIANGULATION CALIBRATION

Method Error (mm)

Incremental calibration 4.11
(without random restart)

Incremental calibration 1.83
(with random restart)

Joint calibration 0.75
(with random restart)

Fig. 7. Test result of intrinsic calibration of an active triangulation sensor.
Left: Image taken by camera. Right: 3D data captured by the active sensor.
The table and wall surfaces are flat thanks to very accurate calibration.

supervision and complex hardware compared to our method.

In particular, they [34] use an LCD projector with coded

line patterns for the sensor and granite reference plane with

flatness of 7 microns for the calibration target. Nevertheless,

we think smaller calibration error is not needed for robotic

manipulation tasks because robot arms usually have repeata-

bility of a millimeter.

B. Simple calibration test

Over several years, we had made small changes to our

Katana robot arm; as a result, the manufacturer supplied

parameters were no longer accurate. Further, we found it

difficult to directly measure these parameters (using a ruler,

for example). To better understand the effects of these

errors, we took the best calibration parameters of the active

triangulation sensor in the previous section, and calibrated

that against our arm, using the default link lengths and angle

offsets provided by the manufacturer. We did this using the

algorithm in [3], and global optimization using Levenberg-

Marquardt. We obtained a calibration error of more than 3

cm on a validation set. For many manipulation tasks, this

error is unacceptably high.

Since the active triangulation sensor has an error well

under 3 cm (and the arm arm has high repeatability), this

strongly suggests that the main source of error in this

result is the inaccurate kinematic parameters. Here, kinematic

parameters include link lengths, angle offsets, encoder offsets

and angle offsets. It is very difficult to directly measure

angle offsets or encoder offsets, so a better way to fix these

parameters is by separately calibration the arm’s kinematic

parameters. We describe this in the next section.

C. Whole system calibration

In this experiment, we would like to calibrate the en-

tire system at once. This includes the extrinsic parameters

between sensors and intrinsic parameters of each sensor.
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Throughout the experiment, we would like to assess the

contribution different ideas mentioned earlier in the paper:

joint intrinsic-extrinsic, sharing sensors, and redundancy.

Candidates for comparison are incremental calibration, and

joint calibration with some degrees of sharing and redun-

dancy. These methods are described as follows.

First, we used an incremental approach to calibration.

We calibrated the two cameras using the Caltech camera

calibration toolbox [1], then calibrated an active triangulation

system formed by grouping camera 1 and Laser. In the third

step, we took the arm manufacturer’s kinematic parameters,

and then further adjusted them improve how well they match

a set of of measured positions of the arm when placed

in a variety of poses. Finally, we calibrated three systems

together. This procedure is illustrated in Fig. 8.

Fig. 8. Incremental calibration steps.

Next, we used our joint calibration approach and calibrated

everything jointly using the method described in this paper.

Since there are so many possible groupings. First, we decided

to use the same groupings as before. The difference is that

we will calibrate these two systems and the arm altogether in

one optimization. This procedure is called ’Joint calibration

1’ and illustrated in Fig. 9.

Fig. 9. Joint calibration 1: one-step calibration without sharing and without
redundancy in extrinsic parameters.

Finally, as there are also other possible groupings, for

example, we can group any pair of cameras or any camera

and the laser projector. We decided to use all possible

groupings between cameras and the projector. Such grouping

has a property that some sensors are shared between many

groups. The two procedures are called ’Joint calibration 2’

(Fig. 10) and ’Joint calibration 3’ (Fig. 11). The difference

between these two methods is that ’Joint calibration 2’ has

a tree structure while ’Joint calibration 3’ is a graph. Thus

there is more redundancy in ’Joint calibration 3’.

We collected 10 checkerboard images with corresponding

encoder readings for each corner of the checkerboard. We

also collected 5 images of planes. To extensively evaluate

calibration methods, we employed a five-fold cross validation

scheme. Each fold contains 8 checkerboard images and 4

plane images for training and the rest for validating. Every

calibration method was trained and validated five times.

Cross validation results of all the calibration methods are

Fig. 10. Joint calibration 2: one-step calibration with sharing and some
redundancy.

Fig. 11. Joint calibration 3: one-step calibration with sharing, more
redundancy.

reported in Table II. 10 It can be seen from the table, our

joint calibration approaches give significantly better results

than the incremental approach. Also, joint calibration with

more redundancy has higher accuracy. An explanation is that

different pair sees different views of the world, the algorithm

can make use of more constraints. Another reason is that

joint calibration does not accumulate errors like in the case

of calibrating in pairs.

TABLE II

MEAN/STD CROSS VALIDATION ERRORS OF WHOLE SYSTEM

CALIBRATION.

Method Error in calibration (mm)

Incremental calibration 24.76 ± 6.32
(one component at a time, Fig. 8)

Joint calibration 1 5.19 ± 2.41
(no sharing, Fig. 9)

Joint calibration 2 2.08 ± 1.27
(sharing, some redundancy, Fig. 10)

Joint calibration 3 1.17 ± 0.89
(sharing, more redundancy, Fig. 11)

The incremental calibration method is more costly in

human time because we have to work with one group at a

time. In contrast, with our joint calibration technique, there is

much less work on planning, code running. In total, it takes

10To compute the errors, we used geometric constraints on pair of sensor
and arm and averaged errors all pairs.
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us less than 2 hours of human time to get all the calibration

parameters of the whole system.

Note that compared to the work of [16], [17], our method

assumes parametric kinematic models of the arm. We chose

this because the kinematic model is known, simple and

accurate. For a comparison, the average errors presented in

[17] are in the order of centimeters while our average errors

are in the order of a millimeter.

XII. CONCLUSION

We considered joint calibration as a method to calibrate

multiple sensors simultaneously. We built our framework

upon 3D systems, geometric constraints and sharing sensors.

Our experiment showed strong results for calibration of a

robot that has many sensors.

Many robotic manipulation applications require calibration

accuracy in the order of a millimeter. Examples of such

tasks are opening doors, pressing elevator buttons, rotating

thermometer buttons, picking up small objects [35], [36],

[28]. The algorithm presented in this paper is our first suc-

cessful method which fulfills the precision requirements for

the tasks. Not only does it satisfy the accuracy requirement,

this method also requires much less human time compared to

older methods. The fact that it takes less time is significant

because the arrangement of our sensors changes quickly over

time and we would like to have a method that can calibrate

everything as fast as possible.

Thanks to accurate calibration, we improved significantly

the success rates of the above tasks in our STanford AI

Robot (STAIR). Video segments of STAIR pressing elevator

buttons, pulling drawers, rotating knobs using our method

can be found in our project website (http://stair.stanford.edu).

We note that in the videos, the hardware settings changed

over time and thus having a fast and good approach for

calibration is essential.
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