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Abstract— We present an approach to the problem of 3D
map building in urban settings for service robots, using three-
dimensional laser range scans as the main data input. Our sys-
tem is based on the probabilistic alignment of 3D point clouds
employing a delayed-state information-form SLAM algorithm,
for which we can add observations of relative robot displace-
ments efficiently. These observations come from the alignment
of dense range data point clouds computed with a variant of
the iterative closest point algorithm. The datasets were acquired
with our custom built 3D range scanner integrated into a mobile
robot platform. Our mapping results are compared to a GIS-
based CAD model of the experimental site. The results show
that our approach to 3D mapping performs with sufficient
accuracy to derive traversability maps that allow our service
robots navigate and accomplish their assigned tasks on a urban
pedestrian area.

I. INTRODUCTION

3D mapping in urban environments has been recognized

as a challenging task in the past. Urban settings have many

specific characteristics, e. g., non-flat terrain, occasional poor

GPS coverage, underpasses, points with aliasing, moderate

vegetation, and sunlight exposure severely subject to shad-

ows.

In order to avoid problems related to cameras, such as

illumination issues, 3D mapping in outdoor environments has

been usually addressed using 3D laser range finders. In this

paper we describe a solution to the Simultaneous Localiza-

tion and Mapping (SLAM) problem in urban environments,

using three-dimensional laser range scans as the main data

input.

The intended application of this solution is the building

of the necessary maps for a heterogeneous fleet of service

robots that navigate in urban settings during the execution

of their tasks [1]. For this purpose, from 3D point cloud

maps we also compute traversability maps, which are 2D grid

layers with continuous-valued cells indicating the maximum

traversability speed.

Our approach consists of the probabilistic alignment of

3D point clouds employing a delayed-state Extended Infor-

mation Filter (EIF) SLAM algorithm. From consecutive 3D

point clouds we compute relative pose constraints with the

Iterative Closest Point (ICP) algorithm [2]. In our approach

to point cloud fitting, we use a hierarchical correspondence
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Fig. 1. Final map of the experimental site computed with our approach.

search strategy, using a point-to-plane metric at the coarsest

level and a point-to-point metric at finer levels. When search-

ing for point matches, we use kd-trees to reduce the compu-

tational complexity. And, during the minimization step, we

perform compensation between translation and rotation by

using a weighted distance metric [3].

The pose constraints computed from consecutive 3D point

clouds are then used as relative pose measurements in a

6 degrees-of-freedom (DOF) delayed-state information-form

SLAM algorithm. State transition and measurement models

are computed using motion compositions. In addition, mo-

tivated by [4], we employ a reordering of the information

matrix and a QR decomposition to efficiently recover the

covariance and state estimate.

Finally, once we have these 3D point clouds correctly

registered we derive traversability maps by dividing the

environment into cells and assigning velocities for each cell

using the kinematic model of the mobile robot.

The reminder of this paper is organized as follows. A brief

description of the related work is presented in section II.

In section III we describe our strategy for computing pose

constraints from 3D point clouds. Section IV is devoted

to explain our SLAM algorithm. The experimental setup

is described in section V and the corresponding results

are shown in section VI. In Section VII we show how

traversability maps are extracted from 3D scans. Finally,

concluding remarks are depicted in Section VIII.

II. RELATED WORK

Mapping with 3D laser range finders has been addressed

in many ways. A non-probabilistic approach is proposed in

[5], where the alignment of two scans is done mainly by

improvements to the basic ICP algorithm proposed in [2].

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3076



Nevertheless, probabilistic methods allow a straightforward

way to distribute errors when closing a loop. One possibility

for 3D probabilistic SLAM in outdoor environments is to

employ a delayed-state framework with an Extended Kalman

Filter (EKF) [6].

However, using an EIF within the delayed-state framework

has better scalability properties compared to the EKF [7]. A

delayed-state EIF generates exact sparse information matri-

ces and, during open loop traverse, the information matrix

becomes tri-block diagonal as consecutive robot poses are

added to the state. At loop closure, the matrix structure is

only modified sparsely, setting information links between

non-consecutive robot poses. Thus, one advantage of the

delayed-state information-form for SLAM is that predictions

and updates take constant time, assuming an efficient or

approximate way for state recovery is used to evaluate

Jacobians.

The approximations performed by linearizations, together

with covariance and state recovery and data association are

issues of concern in the use of EIF filters for SLAM. In

[8] we proposed an alternative to reduce the overconfidence

effects of linearizations by closing only the most infor-

mative loops, decreasing the total number of loop closure

links, maintaining the sparsity of the information matrix.

The technique not only defers filter inconsistency but also

has better scalability properties. As for state recovery in

information form, efficient techniques for exact recovery of

covariance and state estimates are proposed in [4] and [9].

Our latest work shows that during open loop traverse exact

state recovery can be performed in constant time, and that

we can perform efficient data association in O(log n) for

the delayed-state EIF framework [10].

III. COMPUTATION OF RELATIVE POSE CONSTRAINTS

The purpose of the Iterative Closest Point (ICP) algorithm

is to compute the relative motion between two partially over-

lapped 3D point clouds. The algorithm iteratively minimizes

the Mean Square Error (MSE) over point matches proceeding

as follows: for each point in one data set, the closest point

in the second one is found or vice-versa (correspondence

step), then the motion that minimizes the MSE between the

correspondences is computed (registration step), finally, the

point matches are updated (update step).

A. Point to Point Distance

Traditionally, the minimization is performed over the sum

of Euclidean distances. However, we resort to a metric that

gives different weight to sensor rotation than translation [3].

This distance between points p1 and p2 is defined as

d(p1, p2) =

√

‖δ‖2 −
‖p1 × δ‖2

k
, (1)

with k = ‖p1‖
2

+ L2, δ = p2 − p1, and L is a user

specified weighting factor that trades-off between translation

and rotation. Note that when L→ ∞ the new distance tends

to the Euclidean distance. In our experiments L = 30, see

Fig. 2.

(a) L = 30.

(b) L → ∞ (Euclidean distance).

Fig. 2. Comparison of ICP metrics.

B. Sampling Strategy and Outlier Removal

The iterative nature of the ICP minimization step requires

reduced sample sets to be used. To this end, point clouds are

uniformly sampled, which helps also to reduce sensor noise.

Unfortunately, performing ICP over sampled data is very

sensitive to data content, e.g. noise level, occlusion areas,

complexity of the range data, etc. When the number of out-

liers is large, many wrong correspondences are unavoidable,

and would produce convergence to a local minimum leading

to poor final overlap, or in the worst case, to divergence. We

shall remember that the original ICP algorithm considers data

sets without outliers, which is not our case. For this reason,

after sampling, outlier removal is performed by keeping

only those points with a mean distance from their k-nearest

neighbors lower than an experimentally chosen threshold.

C. Correspondence Search

Several metrics can be used to compute feature correspon-

dences in 3D range data, such as point-to-point, point-to-

plane, and point-to-projection with triangular surfaces [11].

In our method we propose a hierarchical correspondence

search, using a point-to-plane strategy at the coarsest level

3077



and a point-to-point metric at finer levels.

The closest plane to a query point is computed by fitting a

planar patch to the approximate nearest neighboring (ANN)

points from the reference data [12]. The plane is least squares

fitted [13], and the fitting error stored. If the plane fitting

error is larger than a given threshold, we consider that the

plane does not have sufficient support and the point-to-point

metric is used instead.

Several approaches to dismiss possible outliers during the

correspondence step in the ICP have also been proposed. We

choose to remove wrong correspondences limiting the angle

between adjacent normals and also rejecting those correspon-

dences whose distances are larger than some multiple of the

standard deviation of all distances within the matching set.

IV. 6 DOF POSE SLAM

We refer to Pose SLAM as the delayed-state information-

form of SLAM in which one estimates the state vector x,

containing the history of poses from time 0 to k, given

the history of proprioceptive observations Z and the set of

motion commands U . Using the canonical parameterization,

p(x|Z,U) = N (x; µ,Σ) = N−1(x; η,Λ), (2)

Λ = Σ
−1, and η = Σ

−1
µ, (3)

where µ is the mean state vector and Σ its covariance matrix,

and Λ and η are the information matrix and information

vector, respectively.

In our implementation one robot pose (the k-th component

of the state vector x) is defined as

xk =
[

t⊤k ,Θ
⊤

k

]⊤

, (4)

where tk = [xk, yk, zk]⊤ indicates the position of the robot,

and Θk = [φk, θk, ψk]⊤ is the vector of Euler angles to

represent the orientation.

The noise-free motion model is defined using the com-

pounding operation [14], and defines the state transition

model, relating state components xk+1 and xk,

xk+1 = f(xk,uk)

= xk ⊕ uk, (5)

and uk is the relative motion between consecutive poses as

computed with the ICP algorithm, i.e. the relative travelled

distance and the relative rotation change.

A first order Taylor series approximation of this model is

given by

xk+1 ≈ f(µk,uk) + F(xk − µk) + wk, (6)

where

F =
∂f

∂x

∣

∣

∣

∣

µ
k
,uk

, (7)

and zero mean white noise wk with covariance Σu, used to

accommodate for higher order terms and modeling errors.

We form our proprioceptive observation model also using

the compounding operations. The noise-free measurement

model is given by Equation 8, which tells us how much the

robot has moved between any robot pose xi and the current

pose xk,

zik = h(xi,xk)

= ⊖xi ⊕ xk, (8)

The linearized measurement model is given by

zik ≈ h(µi,µk) + H(xi,k − µi,k) + vk, (9)

where xi,k = [x⊤i ,x
⊤
k ]⊤ , vk is zero mean white measurement

noise with covariance Σz , and

H =

[

∂h
∂xi

∣

∣

∣

∣

µ
i

∂h
∂xk

∣

∣

∣

∣

µ
k

]

. (10)

A. State Augmentation

In the delayed-state framework we do not marginalize

out past robot poses as in other classical SLAM approaches

such as the EKF and the EIF. Instead, we append the time-

propagated robot pose xt+1 to the state vector, obtaining the

prior probability distribution

p
(

x0:k,xk+1|Z
k, Uk+1

)

= p
(

x0:k|Z
k, Uk

)

p (xk+1|xk,uk+1) , (11)

where x0:k represents the robot trajectory before time k+1,

and Zk and Uk are the history of observations and odometry

increments up to time k, respectively. This probability is

factored into the product of the state posterior at time k and

the transition probability multiplied by the prior probability

—i.e. the posterior distribution computed at time k. For

Gaussian distributions, the parameters η and Λ of Eq. (11)

in the form of (2) are given by

ηk,k+1 = η̄k,k+1 + F
⊤
augΣ

−1
u (f(µk, uk) − Fµk) (12)

and

Λk:k+1,k:k+1 = Λ̄k:k+1,k:k+1 + F
⊤
augΣ

−1
u Faug, (13)

in which Faug =
[

−F I
]

, and η̄k+1 and Λ̄k+1,k+1

represent the posterior information vector and information

matrix at time k, with zero entries for time k+1, indicating

infinite uncertainty for that robot pose.

The augmentation process introduces information only

between the new robot pose xk+1 and the previous one

xk. Moreover, the shared information between the new pose

xk+1 and the rest of the robot trajectory x0:k−1 is always

zero when we have not closed any loop. This matrix results

in a naturally sparse information matrix with a tridiagonal

block structure.

B. State Update

After augmenting the state we add observations with the

EIF update equations,

ηi,k+1 = η̄i,k+1 + H
⊤
Σ

−1
z

`

zk+1 − h(µi, µ̄k+1) + Hµ̄i,k+1

´

(14)

Λi:k+1,i:k+1 = Λ̄i:k+1,i:k+1 + H
⊤
Σ

−1
z H, (15)
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where zk+1 is the observation at time k + 1, which is the

relative pose measurements between the current pose xk+1

and any pose xi.

In the same way as with the prediction step, given the two-

block size of the measurement Jacobian H in Eq. (10), only

the four blocks relating poses i and k+1 in the information

matrix will be updated.

C. Covariance and State Recovery

Motivated by [4], we employ a QR factorization of the

information matrix to solve Λµ = η and ΛΣ = I, for µ

and Σ.

In order to reduce the fill-in in the right triangular matrix

from the QR factorization, we first reorder the information

matrix using the column approximate minimum degree (CO-

LAMD) ordering [15], then we apply QR factorization to the

reordered information matrix and solve for each state variable

via back substitution.

V. EXPERIMENTAL SETUP

The goal application of the work presented in this paper

is to build the required maps for a heterogeneous fleet of

service robots in urban settings [1]. With these maps the

robots should be able to perform path planning and navigate

to accomplish their tasks, such as guidance, assistance,

transportation of goods, and surveillance.

Our experimental site is the Barcelona Robot Lab, lo-

cated at the Campus Nord of the Universitat Politècnica de

Catalunya, part of the URUS project, and equipped with a

camera network. This experimental area has over 15,000

square meters, several levels and underpasses, poor GPS

coverage, moderate vegetation, several points with aliasing,

large amounts of regularity from building structures, and

sunlight exposure severely subject to shadows. An aerial

view of the site is shown in Fig. 6.

In order to build the maps described in this paper, we

built our proprietary 3D scanning system, using a Leuze

RS4 scanner and controlling its pitch with a DC motor and

a computer. The system was installed atop an Activmedia

Pioneer 2AT robotic platform. The system yields 3D point

clouds with ranges up to 30 meters, and sizes of about 76,000

points. The sensor noise level is ±5 cm in depth estimation

for each laser beam. Figure 3 portrays the complete device.

VI. 3D MAPPING RESULTS

The robot was teleoperated through the site along a path

of over 600 m (see Fig. 4(a)). The figure contains results

from state augmentation purely from concatenation of ICP

computed motion constraints. The hyper-ellipsoids shown

indicate marginal covariances of the robot position. Position

uncertainty is larger along the direction perpendicular to the

motion plane. This open loop traverse causes an increment

of the accumulated estimation error. The mapping strategy

discussed closes 19 loops, with the consequent improvement

on localization uncertainty, as depicted in Fig. 4(b). The

complete alignment of the 3D point clouds is shown in Fig. 1.

Fig. 3. 3D laser range finder mounted on our robotic platform.

(a) State estimate before loop closure.

(b) Estimated trajectory after loop closure.

Fig. 4. 6D range-based SLAM results.
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(a) Top view of the 3D map.

(b) A section of the map. The blue points indicate the robot position
estimates.

Fig. 5. Projection of the 3D point cloud on a 3D georeferenced CAD
model.

The accompanying video shows the complete map building

process.

The results of our mapping technique are compared em-

pirically to a manually built CAD model of the experimental

site. The model is made using geo-referenced information.

Figures 5(a) and 5(b) show two views of the final 3D point

cloud map projected into the 3D model.

VII. TRAVERSABILITY MAPS

After the 3D point clouds are aligned, we employ this

final map to derive 2D layers that allow robots to perform

localization. Additionally, from these 2D layers, we build

traversability maps in the form of 2D grid maps where each

cell indicates the maximum linear velocity in a given 2D

robot position (x, y).

The 2D layers are extracted cutting the 3D map at the

robot’s frontal laser height. Then, using topological infor-

mation the floor is removed. In the next step, the 2D layer

is discretized and transformed into a binary image, which

in turn is processed by morphological operations to increase

the size of obstacles, to filter noise, and to fill gaps. Thus,

this binary image is used as a grid map, with each cell

representing the presence of an obstacle at that location in

the environment.

Once a 2D layer is extracted and transformed into a

grid map, we build its corresponding traversability map as

follows. For every element in the configuration space we

determine the maximum linear velocity that generates a

collision-free path. Then, for a given robot position, we select

the minimum velocity from all orientations. This process is

detailed below.

We discretize the configuration space C, in 10 cm for the

robot position and 0.25 rad for robot orientation, and the

action space U = V × Ω, in 0.1 m/s for linear velocity and

0.01 rad/s for angular velocity, where V and Ω are the sets

of all possible linear and angular velocities, respectively.

Next, for each robot configuration qi = (x, y, θ)
⊤

, we

compute the set A (qi) of all actions that generate a collision-

free path for this configuration as follows. Given qi ∈ C, we

test every control action uj ∈ U using the kinematic model

of our mobile robot, iterating k-times a fixed time step ∆t,
and for each action we generate a path

τ : s→ X, (16)

where s ∈ [0, k∆t] and X ∈ C. From this path, we add uj

to A (qi) if, for every s, τ (s) is within the free space Cfree,

wherein collision detection is performed using the previously

computed grid map.

Finally, we compute a function that associates every robot

position (x, y) to the maximum linear velocity Vfree that

warrants a collision-free path

m : (x, y) → Vfree. (17)

To compute Vfree we define the set V (x, y, θ), which

contains all linear velocities from A (qi), for configuration

qi = (x, y, θ)
⊤

, and the set

V (x, y) =
⋃

θ∈Θ

max (V (x, y, θ)) , (18)

where Θ are all orientations from Cfree. In consequence,

Vfree = min (V (x, y)) for a given robot position (x, y).

VIII. CONCLUSIONS

This paper presents an approach to the problem of 3D

map building in urban settings for service robots, which

consists of probabilistic alignment of 3D point clouds. A

delayed-state EIF algorithm was employed to build the final

map using only observations derived with our ICP algorithm.

Relative pose constraints from consecutive robot poses were

used to augment the state, and a sparse set of loop closures

is used to refine the estimate reducing the accumulated drift.

Our version of the ICP algorithm employs both point-to-

plane and point-to-point correspondence search at different

levels of granularity. A distance metric that weighted differ-

ently rotations and translation was used. Values of L between

30 and 50 for this metric worked well for our data sets.

Regarding the estimation process, we can note that the

delayed-state EIF allows an efficient and straightforward way

to distribute error when closing a loop, since observation

updates take constant time when an efficient or approximate

way for state recovery is employed, such as the one we used
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(a) 2D Layer superimposed on an aerial image (b) Corresponding traversability map. Velocity varies from 0 m/s (blue) to
1 m/s (red).

Fig. 6. Traversability map from 2D layers of the aligned 3D point clouds.

here. Finally, with this approach we were able to close loops

of aproximately 250 m of length, along a path of over 600 m.

Additionally we showed how, from the aligned 3D point

cloud, one can compute maps useful for robots path planning

and navigation; a much needed step usually neglected in most

SLAM implementations. Traversability maps were derived

by transforming the map of point clouds into a representation

compatible with the robot kinematic chracteristics.

Given the empirical comparison with the geo-referenced

CAD model and the orthographic views of the scene, our

approach performed well enough to derive the traversability

maps that allow service robots of our intended application

[1] to navigate and accomplish their assigned tasks. We

hypothesize that the overall estimation error of the presented

method varies from 5 cm to 50 cm. These values however can

not be verified with sufficient precision since no sufficiently

accurate ground truth is available.
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