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Abstract— Different from previous works that require prior
trim conditions on the helicopter, this paper proposes a hier-
archical PD controller that is robust in controlling untrimmed
and therefore critically unstable helicopters. This controller can
yield asymptotic stability of the helicopter in horizontal motion
control, which can be proven by the linear stability analysis.
And this controller can flawlessly engage with traditional dual
loop autopilot by using auto-varying references in an inner
stabilizing loop. Moreover, to facilitate the controller design,
this paper derives the dynamics of hingeless helicopters with
an emphasis on gyroscopic effect. Finally, the stability and
superior performance of the proposed controller are empirically
demonstrated on an instrumented JR Voyager GSR helicopter.

I. INTRODUCTION

Unmanned aerial robots have been migrating from theo-

retical design to the practical use in recent decades [1]. The

missions involving large-scale searching, tracking, rescuing

in hostile environment require deploying dispensable yet

promising aerial vehicles in an accurate and time-to-situation

manner. Among other aerial robots, autonomous helicopters,

especially the hobby-class ones, provide a better low-altitude

maneuverability in terrain with obstacles, and safer recycle

procedures upon mission, therefore they are especially more

ideal for reconnaissance mission and narrow deployment

environment. Yet, it also imposes challenge to the control of

helicopters as the spatial buffer for correction of posture in

flight are relatively limited in cases of sensor and mechanical

failures, controller latency, and unmatched trimming values.

A. Prior Trimming

Normally helicopters and aircrafts are trimmed by expe-

rienced pilots before flight [2]. Some [3][4][5] attempted to

control helicopters with a prior condition that the vehicle

must be trimmed in advance. This equilibrium condition not

only provides a configuration for nonlinear models to be

linearized around certain values, it also leads to a convenient

assumption that inner loop tracking references can be con-

stant (Discussed in Section IV). However, due to the fact that

the configuration changes from time to time on the vehicle

(e.g. fuel consumption, wind gust, cargo deployment), the

trim error will lead to significant stability issue and is

often left to controllers to compensate [6]. Trimming and

control is often studied separately, the obvious reason is that

the aircraft can be trimmed by skilled pilots in advance,

This work was partially sponsored by the Hong Kong RGC un-
der the grants 414406 and 414707. T.K. Lau, Y.H. Liu and K.W.
Lin are with the Department of Mechanical and Automation En-
gineering, The Chinese University of Hong Kong, China. E-mail:
{tklau,yhliu,kwlin}@mae.cuhk.edu.hk

Fig. 1. The instrumented JR Voyager GSR 260 under the governance of the
proposed controller. The white bars below the landing gear were installed
to avoid flapping during touch-down.

leading to a condition that gives a trimmed control input, the

dynamics of the system converges to equilibrium. Other than

manual trimming, some automatic trimming methods are

proposed using interval analysis [7], ANN [8] and solving by

closed-form equation [9]. Except being offline and therefore

become inapplicable in certain circumstances, these methods,

however, obtain accurate and unique trim values only if the

system is thoroughly known. This paper proposes a method

that is to auto-vary the tracking reference in the inner control

loop, hence the helicopter can be controlled without a prior

trimming condition, such that the helicopter does not require

to be trimmed in advance for flight control.

B. Hingeless Helicopter

For the type of helicopter, the model-sized hingeless heli-

copter has a rigid rotor system that provides feathering but no

flapping [16], and hence it requires lesser components in the

rotor design. Its high power-to-weight ratio and convenient

availability enable this type of R/C helicopter to take up

more loads and can be transformed to high performance and

cost-efficient aerial robots. However, the simplicity of this

kind of hingeless rotor design also leads to an unintuitive

rotational dynamics through a series of servo motors and

linkages for its actuation. This paper derives this actuation

mechanism analytically to aid the controller design on this

kind of helicopter.

II. INPUT-OUTPUT MECHANISM OF HINGELESS

HELICOPTER

Hingeless helicopter is typically actuated through in total

of five servomechanisms. Three for the swashplate, one for

the engine’s oil-air-mixture, and one for the tail pitch angle.
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Fig. 2. The side-view of the rotor mechanism. The inputs from swashplate
directly and indirectly influence the cyclic pitch angle via flybar and
linkages. (Left) No inputs from swashplate; (Right) A flapping angle is
generated by pulling the swashplate down.

Fig. 3. The linkages from swashplate to paddle. (Left) The swashplate is
horizontal and the resultant cyclic pitch angle is uniform in a revolution.
(Right) Under the pitching backward command, the swashplate rotates and
results in a non-zero flybar input (a.k.a. indirect input, δfly).

We derive and show the analytical form for the cyclic pitch

angle, which is denoted as θcyc. It is heavily used in the next

section.

A. Rotor Mechanism

The swashplate is a disc in the rotor that its outer ring links

with three servomechanisms, namely elevator (front), aileron

(port side) and pitch (starboard), and its inner circle on the

upper side connects to a pair of four-bar-linkage mechanism.

From the geometry shown in Fig. 2, we can readily obtain

the cyclic pitch angle at an azimuth angle in a function of

the direct input and flapping angle.

θcyc(ψR) = (1)

sin−1
[(

L2
L2+L3

)
(δcyc+δcyco+L11Sβ)

L1

]
+ θcyco

Where θcyc(φR) is the cyclic pitch angle at an azimuth

angle φR, δcyc is the direct input, β is the paddle flapping

angle. And δcyc0 , θcyc0 are the initial displacement and angle

at which the throttle command is at initial zero, L11 is an

auxiliary linkage length described in Fig. 2, and all other

auxiliary linkage lengths to be mentioned are specified in

figures without further inline descriptions. The influence of

direct input can be written as,

δcyc(ψR) = δφ cos ψR + δθ sin ψR + δthro
cyc (2)

Where δφ is the roll displacement input, δθ is the pitch dis-

placement input, and is the displacement input due to throttle

command. As mentioned, this displacement is equal to all

three servomechanisms under the same throttle command.

The flapping angle is characterized by the indirect input.

Using geometry shown in Fig. 2,

sin β = δfly/L6 (3)

Fig. 4. The helicopter is commanded to pitch forward then backward.
(Lower) The coupled dynamics is observed on the roll channel (dotted line).

Fig. 5. The frame assignments on the helicopter. The body frame is
attached on the fuselage, the rotor frame rotates with rotor and moves with
body frame. The body x,y,z-axis are represented as directional unit vectors,
namely iB , jB , kB

Similarly, the indirect input can be found in this relation,

−(L4 sin (−θr1) − δθ)/L4 = (L5 sin θr1 − δfly)/L5 (4)

Such that,

δfly = −L5δθ/L4 (5)

In a revolution, we therefore obtain,

δfly(ψR) = −L5 (δθ sinψR + δφ cos ψR)/L4 (6)

B. Numerical analysis of cyclic pitch angle

Substituting (2) and (6) into (1), we can relate the roll

and pitch inputs to the resultant cyclic pitch angle at an

azimuth angle. From numerical results, we find it reasonable

to approximate (1) by a Fourier series, such that,

θcyc(ψR) ≈ δφacyc cos ψR + δθbcyc sin ψR + ccyc (7)

Where a, b, ccyc are coefficients according to the instanta-

neous throttle command.

III. HELICOPTER DYNAMICS

The body frame of the helicopter is at the center of hub

plane, namely hub point, and is shown in Fig. 5 along with

other auxiliary frames.∑
I = {i, j, k} (8)∑

B = {iB , jB , kB} (9)∑
R = {iR, jR, kR} (10)

In general, the helicopter dynamics can be expressed by,∑
F = mv̇ + m (w × v) (11)
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And by transport theorem [10],∑
M = Ḣ + w × H (12)

The term
∑

F is the total external forces acting on the
fuselage at hub point and is expressed in body frame; the
velocity of the fuselage at hub point with respect to body
frame is v, w is the angular velocity of fuselage at hub point
with respect to inertial frame. For the rotational dynamics, H
is the angular momentum of the fuselage, w is the angular
velocity of the fuselage with respect to the inertial frame.
The thrust generated by main blades can be written as,

T = −

⎡
⎣ n

12π
ρcaΩ2 (BR)3

2π∫
0

θcycdψR

⎤
⎦ kB (13)

Where n is the number of blades, ρ is the air density, c
is the chord length, a is the lift curve slope, B is the

tiploss factor [11], R is the length of a main blade and

Ω is the spinning speed of main rotor, θcyc is the cyclic

pitch angle, φR is the azimuth angle. The total external

moments acting on the fuselage includes the moment due

to the reaction of gyroscopic effect from the spinning rotor

(MG), uneven incremental lift along main blades (ML), tail

rotor thrust (Mt), deadweight (MW ), motor torque (MM )

and aerodynamic drag (MD), such that,∑
M = MG + ML + Mt + MW + MM + MD (14)

The aerodynamic moments can be derived readily from blade

element theory in [12]. The aerodynamic drag,

MD =
n

3
ρcaΩ2(BR)3kB (15)

The incremental lift along main blades,

ML(ψR) =
ρcaΩ2 (BR)4

8π

⎛
⎜⎜⎝

−
2π∫
0

θcyc(ψR)SψRdψBiB

+
2π∫
0

θcyc(ψR)CψRdψRjB

⎞
⎟⎟⎠ (16)

Where φR is the azimuth angle, its direction is shown in Fig.

5, and θcyc is the cyclic pitch angle of main blade. Similarly,

the tail rotor thrust and its moment,

Tt = −
(nt

6
ρctatΩ2

t θtail(BRt)3
)

jB (17)

Mt =B rt × Tt =

⎡
⎣ rB

tz

6 ρctatΩ2
t θtail(BRt)3

0
− rB

tx

6 ρctatΩ2
t θtail(BRt)3

⎤
⎦ (18)

Where Brt is the position vector of the tail hub point with
respect to body frame, θtail is the pitch angle of tail blade,
Rt is the radius of tail blade, ct is the chord length, at is
the lift curve slope, and Ωt is the spinning speed of the tail
which can be obtained using gear ratio. The deadweight and
the moment due to deadweight can be derived,

BW = mg [− sin θ sin φ cos θ cos φ cos θ ] (19)

Mw = Brcg × BW =

[
mgCθ(

Bry
cgCφ − Brz

cgSφ)
mg(−Brz

cgSθ − Brx
cgCφCθ)

mg(Brx
cgSφCθ + Bry

cgSθ)

]
(20)

Where BW is the deadweight acting on the fuselage with

respect to body frame, Brcg is the position vector of the

center of mass with respect to body frame, m is the mass

of the helicopter, g is the gravity, [φ θ ψ ]T are attitude

angles, namely roll, pitch and yaw.
As the high-speed spinning rotor is the dominating factor

over the rotational dynamics of helicopter, we can express
the rotational dynamics of the rotor by transport theorem
[10],

RMG = ḢR + ωR × HR (21)

Where RMG is the moment acting on the rotor with respect
to inertial frame and is expressed in the moving frame,

∑
R;

HR is the angular momentum of the rotor, wR is the angular
velocity of the rotor with respect to inertial frame. And using
frame transformation, we have,

wR = ψ̇RkR + ψ̇k + θ̇j1 + φ̇i2
(22)

=

[
ψ̇

(
−Cψ

R
Sθ + SψRSφCθ

)
+ θ̇SψRCφ + φ̇CψR

ψ̇ (SψRSθ + CψRSφCθ) + θ̇CψRCφ − φ̇SψR

ψ̇R + ψ̇CφCθ − θ̇Sφ

]

Where φ̇R is the rate of azimuth angle, [ φ̇ θ̇ ψ̇ ]T are
rate of attitude angles, kR is the z-axis of the frame

∑
R

attached on the spinning rotor; j1 is the y-axis after rotation
about z-axis of inertial frame by yaw, i2 is the x-axis after
rotation about y-axis of the first transition frame by pitch.
Expanding (21) by substituting (22), we obtain the analytical
form of the moment acting on the rotor. As the spinning
rotor experiences a change of angular momentum due to
the external moments such as lifting moment and moment
of deadweight, by conservation of angular momentum [17],
a moment is induced to counter-act this change. By a
transformation using the azimuth angle, the induced moment
acting on the fuselage can then be formed,

MG = −
[

CψR SψR 0
−SψR CψR 0

0 0 1

]
RMG (23)

Where MG is the gyroscopically induced moment acting on

the fuselage by the rotor. Using MATLAB Simulink R©, we

model the system using (12), (16), (20) and (23), the response

of the overall dynamics due to a lifting moment is obtained

and shown in Fig. 4. It is therefore reasonable to simplify the

induced moment by relating it to the lifting moment and form

an approximated but more intuitive expression. Combing the

roll and pitch inputs derived in (7), (23), and the numerical

results obtained in Fig. 4, we re-write the sum of lifting

moment and the gyroscopically induced moment as,

ML + MG = [ KL1δφ KL2δθ 0 ]T (24)

Where KL1,2 are coefficients that can be obtained in exper-

iments.

IV. CONTROLLER DESIGN AND STABILITY

ANALYSIS

Typical control of autonomous helicopter is to cascade

the control into architecture with dual loop [1]. The inner

loop stabilizes the attitude, the outer loop receives command

for trajectory following. As a result, trim errors in the inner

loop can lead to degraded performance of overall flight

qualities. Many previous works [3][4][5] rely heavily on the

prior trimming condition either by experienced pilots, or by

prior trimming techniques [7][9]. Some treat the trim error
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TABLE I

PARAMETERS FOR THE STABILITY ANALYSIS

Par. Value Unit Par. Value Unit

m 11.2 kg P Kvx,y 12.19,11.18

Ixx 2.10 kgm2 P Kφ,θ 48.37,51.80

Ixy 0.96 kgm2 DKφ,θ 11.08,11.85
Ixz 1.07 kgm2 KL1.2 1.14,1.98
Iyx 0.96 kgm2 avx,y 0.0057

Iyy 3.68 kgm2 Brcg [13 21 217.6] mm
Iyz 2.83 kgm2 L1,2,3 31,17,16 mm
Izx 1.07 kgm2 L4,5 13.68,22.8 mm
Izy 2.83 kgm2 L4,7,8 19,38,19.4 mm
Izz 4.02 kgm2 L9,11 34.6,50 mm

Fig. 6. (From left, 1) To consider the attitude along, the deadweight is not
vertically under the hub point and it produces a moment with the position
vector of center of gravity. (2) The moment due to deadweight rotates the
vehicle and; (3) a feedback moment is generated as the state residual is not
zero. As long as the gains of the control loop are large enough, the vehicle
can be bought upright again such that the attitude is at desired state, [0 0]’.
(4) However, as the residual is zero again, the net moment is unbalanced
by the moment due to deadweight.

as uncertainty and control the helicopter by learning [13],

adaptive control [6], and dynamic programming [14].

A. Design considerations

For hingeless helicopter, as shown in Section II, as long

as the rotor is rigid, the direction of thrust is fixed and

is always perpendicular to the hub plane, thus when the

center of gravity of the vehicle is not directly below the

spinning shaft, it leads to unstable performance and very

often left to the outer loop to compensate (Fig. 6). A quick

engineering fix is to carefully calibrate cargo and on-board

equipment position in order to achieve a perfect configuration

for the center of gravity, or to manually trim the vehicle

before flight, or even avoid flights that need to change the

loading during missions. In view of not limiting possible

flight missions and lengthening pre-flight calibrations, and

being able to flawlessly enhance the typical control scheme

Fig. 7. The proposed controller.

Fig. 8. (Left) The phase portrait on the roll channel of the vehicle under the
governance of the proposed controller. (Right) From φ-vy plane, it shows
more clearly that the spiral node converges even at a largely biased initial
attitude (up to about 10o), such that the proposed controller can still stabilize
the attitude and hence the horizontal motion by using inner loop alone.

on helicopter, the proposed controller hierarchically varies

the tracking reference in typical inner attitude control loop

in order to stabilize the dynamics.

B. Controller design

The complete model is described by,

f (x, u, Θ) = ẋ (25)

Where x is the state, u is the control input, and Θ is the trim

condition. Using state-space representation,

ẋ = Ax + Bu (26)

y = Cx

Where A, B, C are typical state matrixes. Solving the trim

condition is equivalent to solving the nonlinear equation in

(25). Our consideration in this control problem is that the

helicopter is not trimmed in advance. Therefore we write,

f (xe, ue, 0) �= 0 (27)

Where ue is the control input with prior trim conditions. Our

objective is to design a controller for hingeless helicopter

and achieve an asymptotically stability without trimming the

helicopter,

∀δ > 0, lim
t→0

x(t) = 0 with ‖x(t0)‖ < δx ∈n (28)

Where δ is the perturbation. The feedback is written as the

conventional negative state feedback,

u = −Kx (29)

C. Hierarchy of the varying tracking reference

We propose a controller that varies the tracking reference

in order to stabilize the attitude of the hingeless helicopter.

This proposed controller focuses on enhancing the stability

of the inner loop of typical dual loop autopilot, therefore we

use a PI controller to stabilize the yaw channel, and only the

throttle is manually controlled. For the feedback gain matrix

in (29),

K =
[

0 P Kvy
DKφ 0 P Kφ 0 −P Kφ 0

−P Kvx 0 0 DKθ 0 P Kθ 0 −P Kθ

]
(30)

The state vector is now written as

[ vx vy wx wy φ θ φd θd ]T .
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The proportional (P) control inside the inner loop and

the tuning of its tracking reference forms a hierarchy that

the controller can adapt to the state variations due to the

untrimmed conditions. In general, the vehicle drifts to the

direction in which the tracking reference is not biased to.

Therefore, the rate of change of the tracking reference is

negatively proportional to the tendency of motion of the

vehicle, that is equivalent to its geometrical velocity in the

body frame,
d

dt

[
φd

θd

]
∝

[−vy

vx

]
(31)

Substituting (29) into (26), the stability can be analyzed by

solving this differential equation,

ẋ = (A − BK) x (32)

Substituting (15), (18), (20), (24) into (14) from the previous

sections, we have the rotational dynamic model of the

hingeless helicopter,

MG + ML + Mt + MW + MM + MD = Ḣ + w ×H (33)

As mentioned, the rotational dynamics is controlled by a PI

controller, therefore, we can explicitly set the sum of tail,

motor and drag moments to zero. Using first order Taylor

expansion, we can linearize the model at certain operating

state xo,⎡
⎣ δẋ1

...

δẋn

⎤
⎦ =

⎡
⎢⎣

∂f1(xo,uo)
∂x1

· · · ∂f1(xo,uo)
∂xn

...
. . .

...
∂fn(xo,uo)

∂x1
· · · ∂fn(xo,uo)

∂xn

⎤
⎥⎦

⎡
⎣ δx1

...

δxn

⎤
⎦ (34)

Where uo is the control input without trim condition. The

solution to the differential equation in (32) can then be

written in this form,

δxi = ci
1V

i
1 eλi

1t+ci
2V

i
2 eλi

1t+· · ·+ci
nV i

neλi
1t, i ∈ [1, n] (35)

Where c, V, λ are constants, eigenvectors and eigenvalues of

solutions to the differential equation in (25), and n is the

number of states. As mentioned, the interest at the moment

is to control horizontal motion by considering rotational

dynamics, and the yaw channel is well-controlled by a PI

controller, we can let alone the yaw channel, and diminish

the states into [u v p q φ θ φd θd ]T only. This

state representation includes the trim states in (31). We can

perform partial derivative on (11), (26), (33) in (34) with

respect to each state, and obtain the model in state-space

representation,⎡
⎢⎢⎢⎢⎣

u̇
v̇
ṗ
q̇
φ̇
θ̇

φ̇d

θ̇d

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 r0 0 −w0 0
−r0 0 w0 0 g cos φ0 cos θ0
0 0 B1 B3 B5
0 0 B2 B4 B6
0 0 1

sin θ0 sin φ0
cos θ0

B7

0 0 0 cos φ0 −q0 (sin φ0)
avy 0 0 0 0
0 avx 0 0 0

(36)

−g cos θ0 0 0
−g sin φ0 sin θ0 0 0

B8 0 0
B9 0 0
B10 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
v
p
q
φ
θ

φd

θd

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0

KL1
Ix

0

0
KL2

Iy
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦

[
δφ

δθ

]

Fig. 9. Experimental results of a typical inner loop PID controller which
failed even after several trials of tuning. The units in each axis are meters.
Duration: (Left) 19.2s, (Right) 22.6s. This controller activated at the circled
point. It first stopped the vehicle from moving but it drifted over time. It
failed to stabilize the vehicle. (Refer to the enclosed video clip, part 1)

B1 = −Izxq0+Iyxr0
Ix

B2 = Izyq0−(Ix−Iz)r0+2Izxp0
Iy

B3 = −Izxp0−(Iz−Iy)r0−2Izyq0
Ix

B4 = −Ixyr0+Izyp0
Iy

B5 = mg cos θ0(−ry sin φ0−rz cos φ0)
Ix

B6 = mg(rx sin φ0 cos θ0)
Iy

B7 = (sin θ0 cos φ0/cos θ0) q0

B8 = −mg sin θ0(ry cos φ0−rz sin φ0)
Ix

B9 = mg(−rz cos θ0+rx cos φ0 sin θ0)
Iy

B10 = q0

(
sin φ0 sec2 θ0

)

D. Asymptotical stability and robustness

From (35) and (36), we can evaluate the stability by

examining whether all its real parts are negative. Using the

model parameters in Table I, we can readily find that all the

eigenvalues have negative real parts.

λφ = −1.9996 ± 5.0531i, − 1.9802, − 0.0250 (37)

λθ = −1.8799 ± 4.5688i, − 2.5695, − 0.0461

The phase portrait in Fig. 8 shows how this controller can

guarantee a stable spiral node for a small perturbation away

from equilibrium, such that the states converge. Using linear

stability analysis, as all eigenvalues have negative real parts,

the solutions to the differential equation in (35) converge, and

hence an asymptotical stability is proved [15]. The robustness

of the proposed controller is evaluated in terms of phase

margin. It is the difference between −180o and the phase at

the frequency in which the magnitude of the transfer function

of the system crosses 0dB. The guaranteed bound of phase

margin is obtained by method of balancing the sensitivity

function of the transfer matrix (Implemented as a function

embedded in MATLAB Robust Control ToolboxTM). This

controller exhibits a remarkable phase margin of ±82o.

V. EXPERIMENTS

The controller is extensively tested on the JR Voyager

GSR260 hobby-class helicopter which is of hingeless type.
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Fig. 10. Experimental results of the proposed controller. The units on
each axis are meters. The durations: (a) 19.71s (b) 16.40s (c) 13.91s, and
(d) 25.01s. The mean absolute displacements (in meters): [0.41 0.51], [0.52
0.43], [0.68 0.88], and [0.43 0.45]. The proposed controller constrains the
movement within a bounded area of about 1m2 (Refer to the enclosed video
clip, part 2)

Its weight is 11.2kg, length 1.48m and height 0.67m. We use

XSens IMU to measure the angular velocity and attitude.

The geometric data are collected from NovAtel RT2 GPS

card, the accuracy is up to ±2cm at 20Hz sampling rate

as long as the satellite coverage is sufficient. The vehicle

carries a mini-pc during the flight, and the processor is

of Intel AtomTM1.6GHz. All processing are completed on-

board. No data fusion algorithm such as Kalman filter is

implemented in order to maintain a low-computational cost

for future migration to low-performance processing units.

First, a typical inner loop PID attitude controller was tested

on the platform. After several trials on different gains, it

still could not stabilize the dynamics; it acted virtually as a

PD controller such that the severe horizontal drifting demon-

strates that this controller cannot stabilize the helicopter of

hingeless type in which the thrust is always perpendicular

to the hub plane. The untrimmed conditions (for example,

due to biased center of gravity,
∥∥∥rcg × [ 0 0 mg ]T

∥∥∥ > 0
) leads to unstable hovering of the vehicle. In principle PID

controller can stabilize the vehicle, but in practice we found

that it is more difficult to have it properly tuned than our

proposed controller. The proposed controller was then tested

on the same platform. The results shown in Fig. 10 are

coherent with the expectation, and it successfully constrains

the horizontal movement of the untrimmed vehicle within a

bounded area of about 1m2.

VI. CONCLUSION

The purpose of this study is to show that it is possible

to utilize a simple hierarchical PD controller on a hingeless

helicopter for the horizontal movement control. We prove

the asymptotical stability of this control scheme using linear

stability analysis, and validate in field using an instrumented

JR Voyager GSR helicopter. The advantage of this simple

controller is that this control scheme is remarkably robust

in terms of phase margin, and can be more easily tuned

compared with typical PID controller for untrimmed heli-

copters. More, it requires neither optimal state estimation

filters, nor prior trimming conditions of the helicopter. The

experiments further demonstrate that the proposed controller

can constrain the horizontal movement of an untrimmed

helicopter in a bounded area of about a meter square under

a windy condition.
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