
  

  

Abstract— In this paper, a Brain limbic system (BLS) based 
control algorithm is used to address the problem of target 
tracking in mobile robotics. The mathematical description of 
this approach in the form of BELBIC (Brain Emotional 
Learning Based Intelligent Control; also referred to as BLS) is 
presented and used to generate appropriate velocity profile for 
the mobile robot to track its target. The overall performance of 
the system is enhanced via fuzzy clustering of the error and 
velocity pairs. 

I. INTRODUCTION 

In the area of automation, robots or automatic systems are 

mostly considered to work in known environments. However, 
complex tasks and special missions such as exploration of 
unknown environments require further evolution of existing 
methods. Among possible approaches to be used are method 
based on emotional signal processing in the brain. In 
cognitive science, emotional signal processing has been 
explored for a number of years. Mowrer [1] described a 
two-process model of learning through 
amygdalo-orbitofrontal system. Rolls [2] elucidated the 
mechanism of the emotion and its application to the neural 
basis of emotion. LeDoux [3] and Rolls [4] explained the 
function of Amygdala in the emotional process. Balkenius 
and Moren [7] computationally modeled the algorithm of 
generating emotions in the human brain and verified this 
model using basic simulations. 
 Later on, Lucas, et al. [8] introduced the application of 
Moren’s model, which they termed Brain Emotional 
Learning, or BEL, as an intelligent controller. Mehrabian and 
Lucas [9] designed a robust adaptive controller for stable 
uncertain nonlinear systems with BEL. Chandra and Langari 
[10] analyzed the BEL based approach, which they referred 
to as Brain Limbic System, or BLS, by using methods of 
nonlinear systems theory. Shahmirzadi, et al. [11] compared 
the BEL/BLS based control with sliding mode control. 
BEL/BLS has also been evaluated in systems ranging from 
washing machines (Lucas, et al. [12]), HVAC systems 
(Sheikholeslami, et al. [13]), to aerospace launch systems 
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(Mehrabian, [14]), micro-heat exchangers (Rouhani, et al. 
[15]), and path tracking (Jafarzadeh, et al. [20]), etc.  
 In this paper, we utilize the Brain Limbic System (BLS) 
based control in a mobile robot target tracking problem. By 
introducing BLS (also referred to as BEBLIC; Brain 
Emotional Learning Based Intelligent Control) the 
mechanism of decision making based on the brain limbic 
systems will be explained. The BLS/ BELBIC control is 
applied to a mobile robot with two different approaches, 
BELBIC along and BELBIC with fuzzy clustering. The 
performance of BELBIC is demonstrated using simulation 
results and future work will be discussed.   

II. BRAIN EMOTIONAL LEARNING 
 The main components of the human brain involved in 
processing emotions are shown in Fig. 1. As it is evident, the 
Amygdala and the Orbitofrontal Cortex (OFC) are mainly 
involved in generating human emotions. The Amygdala 
learns appropriate connections between neutral and 
emotionally charged stimuli while the OFC tries to inhibit 
inappropriate connections as the goal or the context changes. 

 
Fig. 1. A generic view of the human brain 

Moren and Balkenius [5], [7] developed a computational 
model of the so called brain emotional learning process as 
schematically depicted in Fig. 2. Eqns. (1) through (5) 
capture a simplified model of this process. Here the 
Amygdala and the OFC are modeled as simple gains 

 and 
i iA OCG G , with the sensory input signals denoted by SIi  

and the emotional reward signal by Rew.  Note 
that  and 

i iA OCG GΔ Δ  represent the incremental adjustments of 

each gain with respect to the sensory inputs and emotional 
reward. Also note that Ai is the output signal of the Amygdala 
while OCi is that of the OFC. The difference between these 
two signals, i.e., MO is the model output: 

Target Tracking Control of a Mobile Robot Using a                 
Brain Limbic System Based Control Strategy 

Changwon Kim and Reza Langari 

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5059



  

   
   i i

i i

MO A OC= −∑ ∑  (1) 

                 
ii A iA G SI= ⋅   (2) 

                  
ii OC iOC G SI= ⋅   (3) 

  max 0,
iA i i

i
G SI Rew Aα ⎛ ⎞Δ = ⋅ ⋅ −⎜ ⎟

⎝ ⎠
∑  (4) 

  
iOC i i i

i i
G SI A OC Rewβ ⎛ ⎞Δ = ⋅ ⋅ − −⎜ ⎟

⎝ ⎠
∑ ∑ , (5)  

where α, β are the learning rates. The Reward signal, Rew 
(also called the Emotional que Signal, or simply the 
Emotional Signal, ES) is internally generated (possibly by the 
pre-frontal cortex, which is not shown in the reference 
figure.) Note that in Fig. 2 the Thalamus functions as a 
communicator between the cortical and the other parts of the 
loop. The Sensory Cortex manipulates the sensed input to 
produce SI.  
 

 
Fig. 2. A computational model of BEL 

In reference to (4), the Amygdala output increases up to such 
time as when it reaches the level of Rew. However, in the 
OFC the gain 

iOCG can increase or decrease based on the 

values of Rew and the model output. As a result the OFC 
inhibits the emotional outputs for inappropriate associations 
or reinforces the appropriate ones. Note that the once the 
system reaches its target value, the parameters referenced 
above no longer vary. In other words, the relevant parameters 
converge to their final values.   

III. APPLICATION TO A MOBILE ROBOT 
 In this section, the application of the aforementioned 
approach to a mobile robot is considered. The kinematic 
model of wheeled mobile robot is described as follows: 
  cosx v θ=&   (6) 
  siny v θ=&   (7) 

  wθ =& ,  (8) 
where v  and ω  are the translational and the angular 
velocities of the robot respectively. A two-wheeled robot is 
controlled by changing the speed of each of its two motors. 
These in turn change with translational and angular velocities 

of the robot. To explain the robot coordinate, ego-centric 
(robot centric) coordinates are introduced [21]. 
 

RO

( ),t tx y

( ),x y

 
Fig.3. Mobile robot coordination 

In ego-centric view, the robot does account for the relative 
position of the target with respect to itself. Therefore the 
position of the agent is always the origin RO  when a new 
target or mission is given. However, the robot keeps the final 
direction of its previous task as the initial robot direction as it 
sets to execute a new mission.  
 We have used the potential field methodology in this 
problem. The robot is attracted to the goal and this attraction 
force is represented as a vector form whose magnitude is the 
distance error between the robot position ( ),x y and the 

target position ( ),t tx y   (defined as sensory input SI) while 
its direction is the direction (defined as φ θ+ ) is oriented 
towards the target. The Rewards function (Rew) is chosen as 
the summation of the weighted SI and Pu , the control input to 
the plant, i.e. robot velocity. As explained in the previous 
section, the model output converges to a constant as it 
accomplishes its task. In this specific case of target tracking, 
robot velocity might not reach zero as the robot reaches the 
target. As a result, the robot may fail to reach the target. To 
prevent this problem, we modify the translational velocity by 
multiplying SI and the output MO, as follows  
  Pu SI MO= × .  (9) 
This method guides a rational velocity profile, which is 
initially accelerating at first period and decelerating as it 
approaches to the target as shown in Fig. 4. Accordingly, SI 
and Rew are given by 

  ( ) ( )2 2
t tSI x x y y= − + −   (10)   

 Rew PSI uγ δ= + ,   (11)  

where max

max

v
e

γ = , MO is the model output. The positive 

constant δ  is defined by the user. 
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Fig. 4. Translational velocity of the robot 

By substituting (10)-(11) into (4) and (5) we have 
 ( ){ } 2max 0, 1A A OCG SI G G SI SIα γ δ δ= + − −&  (12) 

 ( ) ( ){ } 21 1OC A OCG SI G SI G SIβ δ δ γ= − + − −& . (13) 

From Fig. 3., we defined φ  as the difference between the 
angle to the target from robot position and the robot’s 
direction 

  1tan dy
dx

φ θ− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

. (14)  

The idea is to generate the angular velocity according to the 
magnitude of the angelφ : 
  ω ε φ=   (15) 
where ε  is  a proportional gain. Therefore, the control inputs, 
translational velocity and angular velocity, of the mobile 
robot are given by 

   Pv uδ
ω ε φ

=
=

  (16) 

IV. TARGET TRACKING VIA BELBIC 
 The schematic model of a mobile robot with the BLS 
control system is given in Fig. 5. Distance/ Angle error block 
calculates the errors to produce SI and Rew as inputs to the 
BLS controller. The dotted line represents the mission 
completion signal flow. We defined a reasonably small 
neighborhood (a ball) centered at the target position for the 
robot to determine whether the task is accomplished. Once 
the robot completed its mission, the target generator receives  

u

 
Fig. 5. Schematic model of target tracking mobile robot 

 

a command to assign a new mission. This process lets the 
robot execute the multiple missions in sequence. Fig. 6. 
shows Matlab simulation results to demonstrate the 
performance of a mobile robot with single and multi targets. 
The multiple targets missions are accomplished in sequence. 
In the multi target results figure, A, B, C, and D implies the 
sequence of the mission accomplished.  
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(a) Robot Trajectory x vs. y 
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(b) Robot direction 
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(c) Change of Amygdala and OFC gains 
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(d) Multi target tracking trajectory of a mobile robot 

Fig. 6. BELBIC mobile robot target tracking 

V. FUZZY CLUSTER USED TARGET TRACKING METHOD 
 In this section, we utilize BELBIC with fuzzy clustering 
method by mapping error and velocity pairs on a 2 
dimensional plane. As shown the Fig. 7, there are two regions 
in the error vs. velocity plot. We defined a desired velocity 
line which is diagonal in the middle of Fig. 7. 1Cd  and 2Cd  
represent the upside area of the line and downside of the line, 
respectively. For the robot to track the target, it has to 
generate the desired translational velocity given the present 
distance error. If the error is large the robot needs to speed up, 
however, as the robot comes closer to the target, it must be 
decelerated to avoid collision. Therefore when the agent 
locates 1Cd  the velocity has to be reduced and vise versa. 
 In reference to Fig. 7, let us define ae  as the distance 
error at robot location, ‘a’. For other locations, i.e. ‘b’, ‘c’, 
and ‘d’, be , ce , and de  are defined as well. Let Hv  be the 
robot velocity at locations ‘a’ and ‘b’, and Lv  be at ‘c’ and ‘d’ 
respectively. When they are compared, the velocity of the 
robot at location ‘a’ has to be changed to the desired velocity  

 

ae be ce de

Hv

Lv

 
Fig. 7. Error and velocity pair 

 (marked by the oblique line in Fig. 7) faster than that of ‘b’ 
because the distance from the desired location is larger. This 
concept is implemented through acceleration of v . For 
example, ‘a’ and ‘d’ should have larger absolute value 
acceleration than ‘b’ and ‘c’. From this notion, we use fuzzy 
rules to as described below. 
 To cluster each velocity and error pair, 121 fuzzy rules 
are defined as shown 

1 :R  If error is 0 and velocity is 0, then 1Cd  is 0 and 2Cd  is 0. 

2 :R  If error is 0 and velocity is 1, then 1Cd  is 1 and 2Cd  is 0. 

3 :R  If error is 0 and velocity is 2, then 1Cd  is 2 and 2Cd  is 0. 

M  
120 :R  If error is 10 and velocity is 9, then 1Cd  is 0 and 2Cd  is 1. 

121 :R  If error is 10 and velocity is 10, then 1Cd  is 0 and 2Cd  is 0. 

 
Fig. 8. shows the antecedent and consequent membership 
functions used to form fuzzy rules. The distance error and 
translational velocity are normalized to apply fuzzy 
membership functions (a) and (b), respectively. 
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(a) Error membership function 

 (b) Velocity membership function 
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(c) 1Cd  membership function 
 (d) 2Cd  membership function 

Fig. 8. Antecedent and consequent membership functions 

 

Now, the fuzzy output is manipulated to generate Reward  
 

Fig. 9. Schematic model of fuzzy cluster used target tracking method  
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function as an input to the BELBIC. Fig. 9. shows the flow of  
signals to implement this concept. Feedback distance error, as 
well as velocity are used to generate 1Cd  and 2Cd , which are 
in turn used to create Rew by the following rule  
  1 1 2 2Re w Cd Cd vμ μ= + + , (17) 
where 1μ  and 2μ  are constants.   
 Fig. 10. depicts the comparison of simulation results 
from BELBIC and fuzzy clustering BELBIC. When they are 
compared with the results of BELBIC alone, we can observe  
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(a) Robot Trajectory x vs. y 
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(b) Robot direction 
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(c) Change of Amygdala and OFC gain 
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(d) Multi target tracking trajectory of a mobile robot 

Fig. 10. Fuzzy cluster BELBIC mobile robot target tracking 

 

the task speed of cluster applied method is a little bit faster. 
Again, the multi target tracking result is given at the last 
figure and it shows that the trajectory of each method has few 
differences which occur at the beginning of targeting. 

 

VI. CONCLUSIONS 
 In this paper, the application of Brain Limbic System 
(BLS) or alternatively Brain Emotional Learning Based 
Intelligent Controller(BELBIC) to a mobile robot is 
considered. The main contribution and what we emphasize is 
the application of BELBIC to a mobile robot. The simulation 
results demonstrate the performance of BELBIC. Also when 
the fuzzy clustering method is combined with BELBIC, the 
performance is improved. In both methods, the robot could 
track the assigned target successfully.  
 The BELBIC consists of the Amygdala as a reactive 
layer and the OFC as somewhat deliberative layer. By this 
research, we recognized that the learning  that occurs in 
BEBLIC is not necessarily retained once the mission is 
changed. In other words, as the target changes the memory in 
BELBIC is reset. 
Therefore we conclude that BELBIC can be used as 
short-term intelligence model. As shown in the simulation  
 

 
Fig. 11. Schematic of an artificial intelligent mobile robot   
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results, BELBIC works very well at the lower, or reactive 
layer. However, to develop more intelligent agents that can 
plan and navigate under unknown environments 
autonomously, a long-term deliberative layer is necessary. 
Figure. 11. is a schematic of an artificial intelligent structure. 
BELBIC is utilized as a short-term intelligence model to task 
accomplishment and Approximate Dynamic Programming or 
equivalent method will be used as task planner and mapping 
tool. To verify the utility of BELBIC, the experiment with 
real mobile robot will be conducted. And as the next step of 
work, the development of the higher level intelligent structure 
will be planned. 
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