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Abstract—For an autonomous vehicle navigating in a static
environment for which an a priori map is inaccurate, we propose
a hybrid receding horizon control method to determine optimal
routes when new obstacles are detected. The hybrid method uses
the level sets of the solution to either a global or local Eikonal
equation in the formulation of the receding horizon control
problem. Whenever an obstacle is detected along the path of the
autonomous vehicle, a solution to a local Eikonal equation is used
to determine whether a new, global Eikonal equation must be
solved for use in the receding horizon optimization problem. The
decision to select a new level set solution is made based on certain
matching conditions that guarantee the optimality of the path.
The selection of a global or local solution to the Eikonal equation
induces a hybrid system structure in the control formulation. We
rigorously prove sufficient conditions that guarantees that the
vehicle will converge to the goal as long as the goal is accessible.
In the end, simulation results are discussed.

I. INTRODUCTION

We consider an autonomous vehicle navigating in a two
dimensional static environment for which an a priori map
is inaccurate. The inconsistency between the a priori map
and the actual environment may invalidate predefined paths.
A fast and effective path replanning method is then required.
In this paper, we propose a hybrid receding horizon control
strategy that plans minimal risk paths based upon the detection
of new obstacles. The proposed method does not account
for vehicle dynamics or otherwise addresses issues associated
with tracking a particular path. Thus our approach is suited
to vehicles that can follow arbitrary paths at potentially slow
speeds. This includes certain classes of autonomous surface
vehicles, but also includes classes of ground vehicles and
ground hovercrafts. We only consider the case that the actual
environment has more obstacles compared to the a priori map.

The success of the proposed method hinges on the careful
and judicious selection of terminal costs in a receding horizon
formulation. The terminal cost in this paper is always based on
the level sets of a solution to certain Eikonal equations. Recall
that if the domain is completely known, it is possible to express
the minimum risk path from any point to a target point in
terms of the solution to an Eikonal equation [7]. The essence
of the approach taken in this paper is that as we encounter
new obstacles, previous solutions of Eikonal equations made
no provision for the newly discovered obstacles. It is possible
to re-calculate a solution to the Eikonal equation over the
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entire domain whenever a new obstacle is identified, but
this can be costly. This paper derives and defines matching
conditions between local and old global solutions of related
Eikonal equations that guarantee that an optimal path can be
found without a new global solution. In order to reduce the
computational expense, the proposed method first searches for
a minimal risk path locally when the environment changes.
If such a path violates these matching conditions, a new
solution to the Eikonal equation over the global domain is
calculated and used as the terminal cost in a receding horizon
formulation.

Our primary contribution in this paper is to formulate a
solution to the problem of navigation in a partially known en-
vironment in terms of a receding horizon control (RHC) policy
such that several challenges in using RHC for autonomous
navigation are addressed. Among these challenges, a major
one is that the stability of the receding horizon control (see,
e.g. [4], [5], [6] and [10]) incorporating a final cost associated
with the solutions of Eikonal equations has not yet been well
addressed for path planning problems [8]. In addition, the
feasible set of states for the vehicle changes as new obstacles
are detected. This change of topology often causes the so-
called trapping problems such that the vehicle cannot make
progress toward the desired endpoint due to the choice of
cost functions or a limited planning horizon. Examples of this
pathology can be found in papers [12] and [15]. To address
the trapping problem, in [1], a cost function generated by a
visibility graph that is constructed with respect to the goal is
proposed such that the vehicle minimizes the distance to a
node in the visibility graph. In [13], a safe bound is added
to the vehicle such that the vehicle will not enter any trap
smaller than this safe bound. Another challenge is that most
current RHC methods for autonomous navigation assume that
obstacle geometry is simple and can be modeled as polygons
as well as spheres. Closed expressions for obstacle geometry
are required in some RHC methods, for example, [1], [13]
and [15]. In practice, these assumptions are difficult to justify,
particularly for outdoor environments.

This paper addresses the above discussed problems. For
the stability issue and trapping problem, we prove, in the
framework of [10], that when the map is completely known,
the planned trajectory is asymptotically stable in the sense of
reaching the goal. For the case that we have an incomplete
a priori map, we show a sufficient condition that guarantees
the vehicle to converge to the goal so long as there exists
a feasible path in the updated map. The proposed method
is devised in the framework of the fast marching method
([11] and [14]). The fast marching method presumes that the
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environment is represented by a two dimensional uniform-
sized occupancy grid map. In the presence of obstacles, it
marks the corresponding grids to be occupied. Thus, the
proposed method does not need to assume that obstacles are
polygons.

II. PRELIMINARIES

In this section, we introduce the vehicle model, background
for the level sets method as well as the measurement process
used to detect new obstacles as they are encountered.

A. Vehicle Model

Consider an autonomous vehicle navigating in Ω ⊂ R2,
where Ω is a connected and bounded open set in R2. The
vehicle will be regarded as a point mass since it is small
relative to Ω. The task for the vehicle is to travel along an
obstacle free path such that the vehicle can reach a predefined
goal z ∈ Ω. Letting the vehicle position at any time t be
x(t) ∈ R2, we model the motion of an autonomous vehicle
according to the equation that

ẋ(t) = u(t), x(t0) = x0 ∈Ω (1)

where x(t) is the state of the vehicle and u(t) is the input. We
assume that the vehicle moves on a relatively low speed, such
that it can turn without forward motion and make a sudden
stop. The assumption is reasonable since we are concerned
with altering the heading of the vehicle such that it does not
move toward obstacles. Then, we can model the admissible
input as u(t) ∈ U, where

U=
{

u ∈R2 : ‖u‖ ≤ vmax
}

(2)

and vmax is a scaler corresponding to the maximum speed of
the vehicle.

B. Optimal Trajectories For Known Geometry and The
Eikonal Equation

We review some of the well-known characterizations of op-
timal trajectories when the environment is completely known.
For each point ξξξ in Ω, we associate a risk for the vehicle to
traverse ξξξ by a cost function g ∈C1(Ω;R), which is positive
everywhere except at the goal z, for which g(z) = 0. For any
ξξξ ∈ Ω, we define a function Q(ξξξ ) to be minimal cumulative
cost to travel from ξξξ to z as follows

Q(ξξξ ) = min
c

∫ 1

0
g(c(p))

∥∥c′(p)
∥∥d p (3)

where c ∈ Lip([0,1];Ω) is a Lipschitz continuous parameter-
ized path with c(0) = ξξξ being a current starting point, and
c(1) = z being the goal (see e.g. [9] pp. 116). It is well-known
(see, e.g. [7]) that the solution of this optimization problem is
characterized by the solution of the Eikonal equation

‖∇Q(ξξξ )‖= g(ξξξ ), Q(z) = 0. (4)

The optimal paths are along the gradient of level sets. For
example, Fig. 1(a) and 1(b) show an example of an a priori

map, its corresponding contours of level sets and a typical
path.

(a) (b)

Fig. 1. (a) An a priori map Ω. (b) The level sets contours and the optimal
path for the a priori map.

C. Unmarked Obstacle Detection and New Eikonal Equation

As noted, there are unmarked obstacles due to the inconsis-
tency between the a priori map and the actual environment.
Denote the actual environment Ω and the initial a priori map
Ω(0) that is a bounded open set in R2. We assume that
Ω⊆Ω(0). This is consistent with the requirement that actual
environment has unexpected obstacles compared to the initial
a priori map. We denote the set of unmarked obstacle by the
closure of an open set O in R2 which satisfies O = Ω(0)\Ω.

Let the detection range of an onboard sensor be r, and
suppose that measurements are made at a period of h. Letting

tk = t0 + kh,∀k = 1,2,3, . . . , (5)

we denote Ω(k) the updated map at tk. The new geometry
Ω(k + 1) depends on the obstacles that the vehicle detects
during the time [tk, tk +h] and satisfies

Ω(k +1) = Ω(k)\ (∪t∈[tk,tk+h]Br(x(t))∩O) (6)

where Br(x(t)) is an open ball with radius r and center x(t).
Throughout this paper, we assume that at any time tk, Ω(k) is
connected and z ∈Ω(k).

As noted in Section II-B, when the observation process
picks out obstacles in the path of the vehicle, it is possible to
define a new Eikonal equation over a strictly smaller domain.
For ξξξ ∈Ω(k), the Eikonal equation for Qk(ξξξ ) becomes

‖∇Qk(ξξξ )‖= g(ξξξ )|Ω(k), Qk(z) = 0. (7)

where ξξξ ∈ Ω(k), g ∈ C1(Ω(0);R) and g(ξξξ )|Ω(k) denotes the
restriction of g to Ω(k). We notice that in contrast to (4), the
solution of the above Eikonal calculates the minimal cost to
travel from ξξξ to z in the set Ω(k).

III. ASYMPTOTIC STABILITY OF RHC: KNOWN
GEOMETRY

In this section, we show readers that if the map is accurately
known, we can apply the methodology proposed in [10] and
[6] to prove the asymptotical stability of the trajectory.

We assume that the a priori map is accurate, so that the a
priori map Ω(0) is equal to the actual environment Ω. We let
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the implementation horizon to be h which is identical to the
sensor’s sampling period although there are no new obstacles
to be detected in this case. We choose H as the planning
horizon where H ≥ h. We aim to minimize the risk for traversal
during the horizon H as well as the expected minimal risk for
traversal from the terminal state x(tk +H) toward the goal. The
receding horizon formulation is then to find the local optimal
control and state pair on [tk, tk +H] that solve the minimization
problem

Jk(x(·)) = min
u(·)∈U

∫ tk+H

tk
g(x(τ))|Ω‖ẋ(τ)‖dτ +Q(x(tk +H))

(8)

subject to 



ẋ(t) = u(t),
x(t0) = x0,

x(tk) = x(tk−1 +h),

x(t) ∈Ω(k),

(9)

for k = 0,1,2, . . . ,∞, where in this case Ω(k)≡Ω. The overall
planned trajectory and control on [t0,∞) are spliced together
from the locally optimal trajectory in the usual way (see, e.g.
[4]).

Proposition 1: Assume that the viscosity solution of Q ∈
C1(Ω;R). Define the value function

V (x(tk)) = Jk(x(·)). (10)

If V (x(tk)) is continuously differentiable, the goal z is asymp-
totically stable.

Proof of Proposition 1: Following the procedure in
[10] and [6], we denote by u f (t) the admissible feedback
controller that ensures the vehicle to be asymptotically stable
with respect to z. Given the level set values Q, let the controller
u f satisfy

u f (t) =−γ(t)vmax
∇Q(x(t))
‖∇Q(x(t))‖ , if x(t) 6= z, (11)

for all t ∈ [t0,∞), where γ(t) ∈ (0,1]. Thus, we infer that

Q̇(x(t)) = ∇Q(x(t)) ·u f (t) =−g(x(t))‖u f (t)‖. (12)

and Q(x(t)) is a control Lyapunov function. Denote the
optimal controller that minimizes Jk by u∗(t) for t ∈ [tk, tk +H].
Since tk+1 = tk + h and since h ≤ H, we can define the
admissible controller u+(t) satisfying

u+(t) =

{
u∗(t), ∀t ∈ [tk+1, tk+1 +H−h],
u f (t), ∀t ∈ [tk+1 +H−h, tk+1 +H].

(13)

Given the initial state x(tk+1) at tk+1, we define
J (x(tk+1),u+(·)) the cost function that is evaluated by
u+(·) satisfying

J (x(tk+1),u+(·))
:=

∫ tk+1+H

tk+1

g(x(τ))‖u+(τ)‖dτ +Q(x(tk+1 +H))
(14)

Since Jk+1(x(·)) is the minimal cost, we obtain the following
inequality

Jk+1(x(·))≤J (x(tk+1),u+(·))

=Jk(x(·))−
∫ tk+h

tk
g(x(τ))‖u∗(τ)‖dτ−Q(x(tk +H))

+
∫ tk+h+H

tk+H
g(x(τ))‖u f (τ)‖dτ +Q(x(tk +H +h))

(15)

Since u f (t) satisfies (12), together with the inequality (15),
we infer that

Jk+1(x(·))− Jk(x(·))≤−
∫ tk+h

tk
g(x(τ))‖u∗(τ)‖dτ (16)

Note that V (z) = 0 and for any x 6= z, V (x) > 0. According
to the assumption, V (x) is continuously differentiable with
respect to x. From (10) and (16), the following inequality holds

lim
h→0

V (x(tk+1))−V (x(tk))
h

≤−g(x(tk))‖u∗(tk)‖< 0 (17)

which completes the proof for asymptotical stability according
to [6].
Note that in the above proof, the closed form of the optimal
controller u∗ is not required. The stability is proved by using
the optimality property of the cost function Jk(x(·)).

IV. A RECEDING HORIZON CONTROL APPROACH WITH AN
INCOMPLETE a priori MAP

In this section, we show the receding horizon control when
the a priori map is not accurate. Suppose at time tk ≥ t0, we
have computed Qk(x) corresponding to the newly updated map
Ω(k). A new receding horizon problem seeks to find the state
and control pair on the time interval [tk, tk +H] that minimizes
the functional

Jk(x(·)) = min
u(·)∈U

∫ tk+H

tk
g(x(τ))|Ω(k)‖ẋ(τ)‖dτ +Qk(x(tk +H))

(18)

subject to (9). Just as in equations (8), the above cost func-
tion aims to minimize both the risk of traversal during the
horizon H and the expected minimal risk for traversal from
the terminal state x(tk + H) toward the goal. The following
proposition characterizes the trajectory that minimizes the
above cost function.

Proposition 2: The optimal trajectory to minimize the cost
function (18) satisfies, for t ∈ [tk, tk +H]

u(t) =

{
−vmax

∇Qk(x(t))
‖∇Qk(x(t))‖ , if x(t) 6= z,

0, otherwise
(19)

Moreover, Jk(x(·)) = Qk(x(tk)).
Proof of Proposition 2: The proof is a direct consequence

of the conclusions in [7] and [9]. Substituting (19) into the cost
function (18), we conclude that Jk(x(·)) = Q(x(tk)).
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V. HYBRID RECEDING HORIZON CONTROL METHOD

The RHC method proposed in Section IV requires the com-
putation of Qk whenever an unexpected obstacle is detected.
This process can be computationally expensive. Seeking to
minimize the frequency to update Qk, we propose a variant of
the above mentioned RHC in which Qk will be computed less
frequently.

A. Preliminaries

In the hybrid RHC method, instead of updating the level
sets as soon as the geometry changes, we sometimes continue
to use level sets values of the past as the terminal cost in
Jk even though the domain has been observed to change. By
doing this, we can reduce the frequency with which we must
solve an Eikonal equation on the whole domain. For example,
at time instant tk, we may use the level sets Q j for the time
t j where t j ≤ tk. In order to indicate which level sets are used
at time tk, we introduce a new index n(k) satisfying n(k)≤ k.

Our approach to reduce the computational cost associated
with solving Qk for each step replaces this problem with a
smaller, local problem. Recall that Qk(ξξξ ) encodes the cost of
traveling from point ξξξ to the goal z. We define Q∗

k(ξξξ ) to be
the solution of the Eikonal equation

‖∇Q∗
k(ξξξ )‖= g(ξξξ )|Ω(k), Q∗

k(x(tk)) = 0. (20)

where Ω(k) is the updated map at tk and x(tk) is the cor-
responding vehicle’s location. In contrast to Qk(ξξξ ), Q∗

k(ξξξ )
encodes the cost to travel from ξξξ to the current location x(tk).

B. Steps for the Hybrid Receding Horizon Control

The procedure for the hybrid RHC is summarized in the
following steps:

Initialization: Calculate Q0. Let n(1) = 0.
Step 1: At time tk, we seek the vehicle state and control on

[tk, tk +H] which minimizes

Jk(x(·)) = min
u(·)∈U

∫ tk+H

tk
g(x(τ))|Ω(k)‖u(τ)‖dτ +Qn(k)(x(tk +H))

(21)

subject to (9).
Step 2: If there is no obstacle along the path generated by

the controller satisfying

u∗(t) =

{
−vmax

∇Qn(k)(x(t))
‖∇Qn(k)(x(t))‖ , if x(t) 6= z,

0, otherwise
(22)

for t ∈ [tk, tk + H], we let u(t) = u∗(t) for t ∈ [tk, tk + h].
Then, we let n(k + 1) = n(k) and go to Step 1 for the next
optimization interval [tk+1, tk+1 + H]. We will show that (22)
is the optimal controller later in Theorem 1.

Step 3: If there are obstacles along the path generated by
u∗ in (22), we solve the Eikonal equation (20) over the set of
all points accessible from x(tk) during the planning horizon
[tk, tk + H]. Since the maximum speed of the vehicle is vmax,

the domain that is reachable for the vehicle over the planning
horizon is BvmaxH(x(tk)), where BvmaxH(x(tk)) is an open ball
with radius vmaxH and center x(tk). Therefore, Q∗

k is computed
over the local domain BvmaxH(x(tk))∩Ω(k).

Step 4: For each trajectory that satisfies

u∗(t) =

{
vmax

∇Q∗k(x((t)))
‖∇Q∗k(x((t)))‖ , if x(t) 6= z

0, otherwise,
(23)

we check if the following two matching conditions hold for
u∗(t),

Condition 1 (Convergence Condition):

1
vmax

u∗(t) ·∇Qn(k)(x(t))≤−γ‖∇Qn(k)(x(t))‖, ∀τ ∈ [tk, tk +h]

(24)

where γ ∈ (0,1] is a predefined constant.
Condition 2 (Optimality Condition):

∇Q∗
k(x(tk +H)) =−∇Qn(k)(x(tk +H)). (25)

If there exists a u∗(t) such that both conditions hold, we let
u(t) = u∗(t) and implement u(t) for t ∈ [tk, tk + h]. We let
n(k +1) = n(k) and go to Step 1, indicating that we continue
to use the old Qn(k) value for the next receding horizon control
(21) for [tk+1, tk+1 +H].

Step 5: If there is no such trajectory generated by (23)
that satisfies both Condition 1 and 2, we recompute Qk
corresponding to the entire domain Ω(k) and seek u(t) such
that the cost function (18) is minimized. Then, we set u to
be (19). We let n(k +1) = k and go to Step 1 which indicates
that we use Qk for the next receding horizon control (21) for
[tk+1, tk+1 +H].

We stop the process when the vehicle reaches the goal.
We now justify the proposed hybrid receding horizon con-

trol algorithm.
Theorem 1: Consider the hybrid receding horizon control

algorithm summarized in Step 1 through Step 5. We have the
following:

(a) Assume there exists a finite time tN ≥ t0 such that

Qn(k)(ξξξ ) = QN(ξξξ ), ∀ξξξ ∈Ω(N) (26)

for all tk ≥ tN . Assume that QN(ξξξ ) is continuously differen-
tiable with respect to ξξξ . Then, x(t)→ z as t → ∞.

(b) For Step 2, if there is no obstacle along the trajectory
generated by the control u∗ in (22), u∗ is the control input
that minimizes the cost function (21).

(c) For Step 4, if Condition 2 holds, the control input that
necessarily minimizes the cost function (21) is (23).

Remark 1: Such finite time tN required in the assumption
of Theorem 1(a) exists in reality. Since an on-board sensor
does not appreciate an obstacle that is infinitely small, the
newly detected obstacles can be assumed to be bigger than a
certain size. Thus, there are finite number of obstacles in the
bounded domain Ω(0). Since Step 2 indicates that the global
level sets Qk does not need to be recomputed unless there is
an obstacle on trajectory (22), the global level sets will only
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be updated finite times. Thus, the time tN exists and level sets
are not updated after tN .

Proof of Theorem 1: We first show (a). Given the
assumption that the global level sets Qk are not updated
after the time tN , we infer that the vehicle travels along the
trajectories generated either by (22) or (23). First, if the vehicle
is moving along (22) for some tk ≥ tN , we can derive the
following inequality

1
vmax

u(t) ·∇QN(x(t)) =−‖∇QN(x(t))‖ ≤ −γ‖∇QN(x(t))‖.
(27)

Second, if vehicle’s optimal controller is (23), we can infer that
for some time tk ≥ tN , there are some obstacles detected but
Condition 1 is not violated for all t ∈ [tk, tk + h]. Both cases
indicate that for all t ≥ tN the following inequality holds in
either cases

1
vmax

u(t) ·∇QN(x(t))≤−γ‖∇QN(x(t))‖. (28)

We take QN(x(t)) as a Lyapunov function. Given (28), for all
x(t) 6= z, the following inequality holds

Q̇N(x(t)) = u(t) ·∇QN(x(t))≤−vmaxγ‖∇QN(x(t))‖< 0.
(29)

Thus, we infer that for any initial condition x(t0)∈Ω, x(t)→ z
as t → ∞.

We now show (b). From the result of Proposition 2, the cost
function (21) satisfies

Jk ≥ Qn(k)(x(tk)). (30)

The assumption of (b) indicates that the trajectory generated
by (22) is obstacle-free. Thus, substituting (22) into (21), we
obtain Jk(x(·)) = Qn(k)(x(tk)), which completes the proof.

The last step is to show (c). We first discuss the case when
x(t) 6= z. We adjoin the system differential equation (1) to
Jk(x(·)) with multiplier λλλ (t) ∈R2 (see e.g. [2], pp. 48):

Jk(x(·))
= min

u(·)∈U
(
∫ tk+H

tk
g(x(τ))‖u(τ)‖+λλλ T (τ)(u(τ)− ẋ(τ))dτ

+Qn(k)(x(tk +H)))

(31)

Denoting the Hamiltonian by

H (x(t),u(t)) = g(x(t))‖u(t)‖+λλλ T (t)u(t), (32)

we obtain the necessary condition for the optimality that
requires the following Euler-Lagrange equations to hold:

λλλ (tk +H) =
∂QT

n(k)

∂x
(tk +H), (33)

λ̇λλ (t) =−∂H T

∂x
(t) =−∂gT

∂x
(t)‖u(t)‖, (34)

and
∂H T

∂u
(t) =

g(x(t))u(t)√
uT (t)u(t)

+λλλ (t) = 0. (35)

Substituting (20) and (23) into (34) yields

λ̇λλ (t) =−∂gT (x(t))
∂x

(t)‖u(t)‖=−∂‖∇Q∗
k(x(t))‖

∂x(t)
vmax

=−∂ 2Q∗
k

∂x2
vmax∇Q∗

k(x(t))
‖∇Q∗

k(x(t))‖ =−∂ 2Q∗
k

∂x2 u(t).
(36)

Given the boundary condition (33) and given Condition 2,
integrating the above equation with respect to t yields for t ∈
[tk, tk +H]

λλλ (t) =−∂Q∗
k

T

∂x
(t). (37)

Substituting (37) and (23) into the left side of (35) yields

g(x(t))u(t)√
uT (t)u(t)

+λλλ (t) =
vmaxg(x(t))∇Q∗

k(x(t))
vmax‖∇Q∗

k(x(t))‖ − ∂Q∗
k

T

∂x
(t)

=
∂Q∗

k
T

∂x
(t)− ∂Q∗

k
T

∂x
(t) = 0.

(38)

Therefore, we can conclude that the equality of (35) holds.
If z is on the trajectory (23), since u(t) is discontinuous,

we treat z as a corner (see e.g. [2] pp. 125 and [3] pp. 61).
Assume that x reaches z at time tk +c, where c≤H. We adjoin
the system differential equation (1) to Jk(x(·)) with multiplier
λλλ (t) ∈R2:

Jk(x(·))
= min

u(·)∈U

∫ tk+c−0

tk
g(x(τ))‖u(τ)‖+λλλ T (τ)(u(τ)− ẋ(τ))dτ

(39)

Following the standard calculus of variations approach, we
infer that the necessary condition for the optimality is

λλλ |tk+c−0 = 0,
∂H T

∂x
(t)+ λ̇λλ (t) = 0

(H −λλλ T ẋ)|tk+c−0 = 0,
∂H T

∂u
(t) = 0.

(40)

Similar to our previous argument for the case when z is not
on the trajectory (23), we can conclude that each equation in
(40) holds. Thus, we complete our proof.

VI. SIMULATION

To illustrate the principal conclusions in this paper, we study
an example of an autonomous surface vehicle (ASV) navigat-
ing in a riverine environment. Fig. 1(a) and 2 respectively
represent the a priori map and actual environment both of
which span an area of 800m×600m. To ensure that an ASV
can move freely between empty nodes, the map is discretized
with grids size of 3m×3m, which is about twice as large as
the specific ASV (3m× 1.5m). The vehicle’s detection range
is r = 30m. We set the fixed parameters that characterize the
problem to be h = 4 sec, H = 6 sec, vmax = 3 m/sec and
γ = 0.01. During the entire mission, there are a total number
of fourteen instances where new solutions of the RHC problem
were calculated. The location at which each RHC optimization
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problem is solved is marked by small circles, and they are
numbered in order as seen in Fig. 2. Among these calculations,
there are thirteen times for which the ASV manages to plan
trajectories by computing Q∗

k locally. The only global update
occurs at the 14th update when the ASV enters and detects a
U-shaped trap shown in the upper right corner of Fig. 2. In
the end, Fig. 2 shows that the vehicle eventually reaches the
goal.
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14

Fig. 2. The gray colored areas are some unexpect obstacles due to the
inaccuracy and incompleteness of the a priori map in Fig. 1(a). The red line
is the actualy course of the ASV.

To illustrate how the update of map information evolves and
how the corresponding trajectory changes, we show a sequence
of RHC calculations between the 7th to the last instances in
Fig. 3(a)-3(c). Between the 7th to the 13th updates shown in
Fig. 3(a) and 3(b), since the algorithm finds paths that satisfy
both the matching conditions, solutions to the global Eikonal
equations do not need to be updated as shown in Fig. 4(a). In
Fig. 3(c), since the vehicle detects the dead end, and since the
algorithm can not find a path that satisfies one of the matching
conditions (Condition 1), the level sets Qk is updated globally.
A closeup of the corresponding area is shown in Fig. 4(b).
Fig. 3(c) shows that after globally updating Qk, the vehicle
manages to find paths over the next several horizons such that
it escapes the dead end eventually.
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