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Abstract— This work focuses on the observation of envi-
ronmental phenomena that occur as spatial distributions in
two and three dimensions, using sensor-enabled mobile vehi-
cles(ground,air or undersea). Algorithms to guide an adaptive
exploration of a given region through systematic choice of
sampling locations under the constraints imposed by vehicles
are presented. Variation sensitive multiresolution sample dis-
tributions are achieved through an iterative variation sensitive
estimation of the unknown process.

I. INTRODUCTION

Mobile robots are increasingly employed in the observa-

tion and monitoring of complex processes on the ground, in

the air, and undersea [3], [7], [8], [11], [13]. An example

is the observation and mapping of harmful algal blooms in

order to predict occurrence and trends that impact biological

processes and human health [2].

Advances in sensor technologies and Autonomous Under-

water Vehicles (AUVs), have been incorporated in distributed

sensor networks enabling pervasive in-situ observation of

such processes in a wide range of spatial and temporal sam-

pling resolutions [8]. Effective deployment such resources

requires integration of the sampling objectives with con-

straints such as the fixed number of vehicles available, and

the limited energy available for sensing.

The objective of environmental observation is to extract

the synoptic structures (space-time snap shots) of the phe-

nomena of interest in order to make effective predictive and

analytical characterizations about it [12]. Section II presents

a formulation the objective and discusses the issues involved

in its realization.

Introduction of sensor nodes on AUVs enables adaptive

choice of sensing tasks and dynamic redeployment of moni-

toring resources in response to new observations and predic-

tions. This requires a field model to integrate intermediate

measurements into an estimate of the underlying function

and guide the selection of subsequent measurements. For

complex oceanographic processes, typically there are no

known models. Even when such models are available, the

large computational costs associated with them, prohibit their

use for online decision making on a mobile platform. Instead,

surrogate models must be employed to drive adaptivity. A

principle contribution of this paper is the introduction of
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multiscale surrogate models for use in such applications.

These are based on a model that implements a hierarchical

decomposition of the error space (Section III). Following

this, the MSAS algorithm, which implements the correspond-

ing sequential decomposition and achieves variation sensitive

sampling distribution through variation sensitive modeling, is

presented in Section IV.

The use of mobile sensor platforms for observation of

spatio-temporal environmental processes involves a decision

making process that trades-off the amount of information

gathered with vehicle and process constraints. These are

presented in Section V.

II. RECOVERY OF SYNOPTIC FEATURES

The principle objective of this work is the recovery of

synoptic features of an environmental process f(x, t), x ∈ Ω,

t ∈ [0, T ] from its space-time point samples in a domain Ω of

area A , |Ω|, over T days. The goal is to obtain samples at a

spatial resolution that allows extraction of a series of spatial

snapshots over Ω at a rate appropriate to the variation of

the process in time. Towards this, nominal values for spatial

resolution, ∆x > 0, and temporal resolution, ∆t > 0, are

assumed.

In each interval ∆t the goal is to collect the best possible

data {f(Xs), Xs;Xs = {xi}k
i=1, xi ∈ Ω} given the dynamic

and energy constraints of the vehicles. The vehicles have

a maximum speed of V , are subject to non-holonomic

constraints and have a limited energy E. Within each interval

∆t, the quality of the data can be measured by:

I(Xs) =
∑

x∈Ω

∣

∣

∣
f(x) − f̂ (x;Xs, f(Xs))

∣

∣

∣

2

(1)

where the dependence of measurements on time t, has been

suppressed for ease of notation.

A principal factor in the optimization of this objective is

the choice of the approximating model f̂ . If the model is well

validated and represents the primary variable of interest, then

sample distribution may be designed in the classical design of

experiments framework [5]. Depending on the chosen metric,

such sample designs are distributed so as to exercise the

variability in the model parameters, their predictions [4], or

perhaps the models themselves [9]. If the models are linear

in their parameters then the sample design is independent of

the measurements f(Xs), and the design can be selected a-

priori so as to exercise the variability in the respective metric.

In such cases, the observed synoptic feature itself derives

entirely from the model rather than the sample distribution.

However, typical sampling missions are exploratory in

nature and are planned to develop an observation base of a
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(a) Uniform Sampling
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(b) Variation Sensitive Sampling

Fig. 1: Coverage and Resolution of Sample Distributions

process (for e.g., biological) for which no prior information

exists. In such cases, a sample design is expected to be

the observational basis that provides empirical evidence for

features that exist in the domain. Towards this, sample

distributions must facilitate extraction of synoptic features

both through the coverage of the domain and resolution of

the features at appropriate scales. The coverage of a sample

distribution Xs may be defined as the area of its convex

hull A = |Xs|. As A→ |Ω|, errors due to extrapolation are

minimized.

In such problems, the standard design for AUV platforms

is uniform grid sampling (Fig 1a). Willcox [14] has presented

guidelines for the design of uniform sample distributions

under process and resource constraints. The key design

variables in such cases are the length of the transects and

the separation between them. The typical condition of such

sample designs, is that while regions void of features are

over sampled, feature regions are under sampled. Allen et

al., [1] cite that the coarse spatial resolutions of uniform

sampling rivals the size of the features rather the variations

in it. Further, coverage can only be achieved at the cost

of resolution in such designs. Literature in oceanography

reports 40−50% errors due to extrapolation [12] that results

from lack of coverage. In addition, if the measurement costs

per sample are not negligible, as is typically the case in

oceanographic sampling, then uniform sampling represents

an inefficient sampling regime.

In order achieve a balance between these conflicting

requirements, this work proposes the use of variation sen-

sitive sampling (Fig 1b) that attempt to balance the above

mentioned requirements. Since, the underlying function is

unknown, mechanisms which generate such sample designs,

must incorporate incremental knowledge available through

measurements. The principle focus of this work is an iterative

solution for the estimation of the unknown process that is

needed for this purpose.

III. HIERARCHICAL RADIAL BASIS FUNCTIONS

Hierarchical Radial Basis Functions (HRBF) implement a

multilayered hierarchy of Radial Basis Function Networks

(RBFN) of different scales to generate a coarse to fine

representation of a given function through a hierarchical mul-

tiscale decomposition of the approximation error space [6].

Such decompositions are then employed towards the sequen-

tial coarse to fine modeling of an unknown function and

adaptive coarse to fine sample distribution.

A. Hierarchical Decomposition

An M -level hierarchical decomposition of a function

f : Ω → ℜ, Ω ∈ ℜD may be represented in terms of

approximations: ek = êk + ek+1, k = {1 · · ·M}, where

e1 = f and êk is the kth layer approximation to the error, ek,

in the previous layer, and ek+1 = ek−êk is the corresponding

approximation error of the current layer. Alternately, the

decomposition may be written as:

f =

M
∑

k=1

êk + eM+1 , f̂M + eM+1

where f̂M is defined as the M -level approximation to func-

tion f , and eM+1 = f − f̂M is the error due to the M -level

approximation, f̂M . In general, ek is the approximation error

due to the (k−1) level hierarchical approximation of f : ek =
f − f̂k−1 = f −

∑k−1
j=1 êj . Thus each layer, k, approximates

the error space due the (k − 1)level approximation of the

function, f at scale k.

In HRBF, at the kth level of hierarchy, the er-

ror at point x ∈ Ω, ek(x), is approximated by an

RBFN of Nk basis functions φk,j(x) = φ(‖x − ck,j‖;σk)
of scale σk > 0, which are centered at locations

Ck = {ck,j ∈ Ω, j = 1, 2, . . .Nk}:

êk(x) =

Nk
∑

j=1

wk,jφk,j(x) = Φk(x)wk

where, Φk(x) is the interpolation matrix whose Nk columns

span the subspace represented by the kth layer and wk is the

corresponding vector (Nk × 1) of approximation parameters.

The M -level multiscale approximation may be written as:

f̂M (x) =

M
∑

k=1

Φk(x)wk = Φ(x)w (2)

Equation (2) represents a multi-scale approximation model

that allows for synthesis of f in terms of a chosen basis set.

In regularization theory such multiscale hierarchical models

derive from the choice of stabilizer, which also yields the

form of the radial bases [10]. In this work, Gaussian bases,

which have a quasi-local support are assumed.

With the form of the radial bases fixed, the quality of

approximation in (2) depends on the choice of the approx-

imation parameters, and the structural parameters. In this

work, the structural parameters are set so as to form a pre-

defined partition of the input domain and the approximation

parameters are set so as to optimize a chosen approximation

metric. This setting of the structural parameters according to

the geometry of the problem domain and independent of the

approximation parameters yields a scale-space characteriza-

tion of the function.
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1) HRBF Structural Parameters and the Analysis Grid:

In this work the structural parameters of HRBF are set

according to an ordering imposed by a hierarchical analysis

grid defined on the problem domain, Ω. Each layer of

the analysis grid corresponds to a layer in the HRBF. The

number and position of nodes at the corresponding layer in

the grid determine the number of basis functions, and the

locations of the centers in each HRBF layer. Further, the

scale parameter is set according to the density of the nodes

in that layer.

Each layer of the analysis grid is a dyadic partition of the

previous layer and the nodes correspond to the intersections

of the. An example of an analysis grid defined over a domain

Ω = [a, b] ∈ ℜ is shown in Figure 2. The construction of

the grid begins with the setting of N1, the number of nodes

in layer 1, including two on the domain boundary. Nodes

in subsequent layers are generated according to a refinement

procedure that allows for a kth level node ck,j to be expanded

in terms of its child nodes, C
(k,j)
k+1 in level k + 1:

C
(k,j)
k+1 =







{ck+1,2j−1, ck+1,2j} j = 1
{ck+1,2j−2, ck+1,2j−1, ck+1,2j} 1 < j < 2k + 1
{ck+1,2j−2, ck+1,2j−1} j = 2k + 1

(3)

where, location of the left child, ck+1,2j−2 = 1
2 (ck,j +

ck,j−1), middle child, ck+1,2j−1 = ck,j and right child,

ck+1,2j = 1
2 (ck,j+1 + ck,j). Also, ρk+1 = 1

2ρk. Since each

higher layer is obtained through partition of the previous

layer, C1 ⊆ C2 ⊆ · · · CM−1 ⊆ CM . As is discussed

in subsequent sections, such a grid allows for inter-layer

continuity in scale that is useful in sequential selection of

critical bases of reconstruction.

Each level k, consists of Nk = 2k+1 centers, Ck = {ck,·},

including two on the boundary of the domain. Further, each

node in the kth layer is separated from its neighbour by

ρk = ρ1/2
k−1 and located at ck,j = a + ρk(j − 1),

j = 1, 2, · · · , 2k + 1. The ck,. bases in HRBF are cen-

tered at the location of the ck,. node on the grid, with a

scale: σk = α ∗ ρk. α > 0, is a parameter that provides

for a degree of freedom in the adjustment of scale. Thus,

σk progressively decreases as k increases. This ordering on

σk facilitates a coarse-to-fine decomposition of the function

such that coarse scale trends in f are modeled in the initial

layers and fine scale features are modeled in successive

layers of the model. Extensions to higher dimensions follow

directly. If the domain of interest is [a, b]D, then starting

with N1 = 3 in each dimension, each layer of the analysis

grid contains Nk = (2k +1)D centers, Ck = {ck,·}. Further,

each node in the kth layer is separated from its neighbour

by ρk = (b− a)/2k.

IV. MULTI SCALE ADAPTIVE SAMPLING

The Multi-Scale Adaptive Sampling (MSAS) algorithms

presented in this section traverse the scale-space grid and

arrive at a sparse representation of an a-priori unknown

function through sequential discovery of significant bases in

the grid.

c1,1 c1,j c1,3

c2,2j−2 c2,2j−1 c2,2j

c4,2i

c3,i c3,i+1

k

1

2

3

4

ρ1

ρ2

ρ3

ρ4

a b
a+b
2

ρ

Fig. 2: Analysis Grid

The algorithm starts with an initial coarse sample distri-

bution and an initial model consisting of bases at a coarse

scale. It then implements an iterative feedback procedure

to systematically select nodes on the grid for subsequent

sample refinement and model update. By linking sampling

resolution and localization to basis scale and location, MSAS

achieves sequential variation sensitive sample distribution via

sequential variation sensitive modeling.

In each iteration, the selection of a node for refinement

and modeling is based on criteria that use information

contained in residues, which represent a sampling of the

true approximation error in the current function estimate.

Hence, the MSAS algorithm is an adaptive procedure for

the refinement of existing sample distribution based on

a-posteriori estimates of an adaptivity measure.

A. Mechanics of the MSAS algorithm

A procedural outline of the algorithm is presented below:

1. select node from the set of allowable candidate nodes

2. sample function at child nodes of the selected node

3. add the basis of the selected node to the model

4. add children of the modeled node to the set of allow-

able candidate nodes

5. repeat till some termination criteria is met

Procedurally, steps 1, 2 and 3 of the MSAS outline im-

plement a select-refine-model cycle. The mechanics of the

sequential MSAS algorithm which controls its trajectory

through the scale space grid is governed by two key ideas:

1. In each iteration, the set of allowable candidate nodes,

CA, consists of all the un-modeled children of previously

modeled nodes. This set represents the bases, φA, that are

allowed to enter the model in the next iteration. From this set

of allowable candidate nodes a subset of nodes is selected,

according to the selection criteria described in section IV-D,

for subsequent modeling.

2. A selected node is refined by sampling at its child node

locations before it is modeled.

These ideas are illustrated in Figure 3. In Fig 3a, nodes

C1 correspond to previously modeled nodes, φ1 which cor-

respond to f̂1 = Φ1w1. Nodes C2, which form the set of all

un-modeled children of the previously modeled nodes, form

the set of allowable candidate nodes for the next iteration.

Suppose node c2,2 is selected for modeling in the next iter-

ation. The selected node c2,2 is first refined by taking mea-

surements at the locations of the child nodes {c3,2, c3,3, c3,4},
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(a) Iteration 1
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c3,2c3,3c3,4

(b) Iteration 2

Fig. 3: Mechanics of the MSAS Algorithm

and is then introduced into the model: f̂2 = f̂1 + Φ2,2w2,2.

Modeling of the selected node c2,2 introduces the child nodes

into the set of allowable nodes for the next iteration. Thus,

as seen in Fig 3b, the set of allowable candidate nodes is

{C1 \ c2,2} ∪ {c3,2, c3,3, c3,4}.

From the modeling perspective, the above mechanics has

two important consequences:

1. Allowing only un-modeled children of previously mod-

eled nodes to enter the model ensures that each basis enters

the model only once. This ensures that the iterative algorithm

does not get stuck in a recursive loop in searching through

the scale-space.

2. Since new bases can only enter the pool of allowable

candidate nodes through refinement of parent nodes, no child

node is added to the model before at least one of its parent

nodes is modeled. This imposes inter-generational continuity

(in both scale and space) on the bases and thus ensures that

the model descends scale space grid in order.

The location of the un-modeled children of previously

modeled nodes corresponds to all the previously sampled

locations. Thus, in each iteration, all previously sampled lo-

cations are eligible for refinement. However the resolution of

sample refinement is limited by the corresponding the scale

of allowable bases. As a consequence of inter-generational

continuity of bases, a region in the domain is sampled at a

given resolution ρk, only after its neighbourhood has been

sampled at resolution ρk−1.

As a consequence of the grid based regime, if a child

node of a selected node is already modeled or sampled, it is

not sampled again. Also, if a node is selected after both its

neighboring nodes c·,j−1 and c·,j+1 have been selected, then

no new samples need be taken. In such an iteration only a

basis need be introduced into the model and only the basis

corresponding to the middle child is newly added to the set

of allowable nodes, since the other child nodes would have

already been introduced by the neighboring nodes.

B. Maximum Sampling Resolution and Sample Budget

The mechanism described above allows for traversal of

the scale space grid down to an arbitrary grid depth with

arbitrarily high sampling resolution via refinement. However

in practice, the maximum number of samples allowed and

the maximum sampling resolution are limited due to cost of

sampling and limitations of the sampling platform. Also, in

environmental applications, high sensor costs typically limit

the available sample budget and hence the maximum number

of samples allowed is fixed prior to mission design.

Without loss of generality, the maximum allowable sam-

pling rate is assumed to correspond to the highest resolution

of the grid and the maximum sample size, Nmax, is assumed

to be lesser than 2M , where M is the highest grid level. Also,

the M th level nodes are modeled without further refinement

and therefore do not spawn new child nodes.

C. Modeling

In MSAS, since the refinement of a selected node precedes

its modeling, the number of samples (N ) is always more than

the number of modeled nodes (n) and the resulting linear

system represents an approximation rather than interpolation:

Ψ∗
i (Xi)w

∗
i = f(Xi) − f̂i−1(Xi) = ei(Xi)

where, Xi = Xi−1 ∪ CR is the set of all the N = |Xi|
sampled points including nodes CR obtained from

refinement of the selected nodes C∗
i . n = |φ∗| is the number

of new bases φ∗i selected to be added to the model in

the ith iteration. In order to bootstrap the algorithm, the

MSAS is initalized by selecting all layer 1 nodes, C1.

Thus C∗
1 = C1. Refinement of these nodes in samples

f(X1), at the location of all the layer 2 nodes, C2.

Thus X1 = C2. The MSAS algorithm is presented below:

1) i → 1
2) setNmax

3) initialize: ei → f , f̂i−1 → 0, Xi−1 → ∅
4) bootstrap: CA → C1, C∗

i → C1

5) CR → REFINE(C∗

i )
6) Xi → Xi−1 ∪ CR

7) analysis: Ψ∗(Xi)w
∗

i = ei(Xi)
8) synthesis: êi → Φ∗

i w∗

i , f̂i → f̂i−1+êi, ei+1 → f−f̂i

9) if |Xi| ≥ Nmax terminate.
10) CA → (CA \ C∗

i ) ∪ CR

11) C∗

i+1 → SELECT(CA, ei+1(CA))
12) i → i + 1
13) goto 5

D. Selection Criteria

As a consequence of the bootstrapping procedure de-

scribed in the previous section, in each iteration, information

about the error in the ith- level approximation f̂i is available

as residues ei+1(Xi) = f(Xi)− f̂i(Xi) at all the previously

sampled locations, Xi. These correspond to the location

of all nodes in the set of allowable candidate nodes AC .

In MSAS algorithm, the information contained in these

residues is directly employed in each iteration to select a

node, c∗i+1 from the set AC such that, the resulting error

in approximation is systematically reduced. Two selection

criteria are presented: 1) greatest residue and 2) greatest error

correlation:
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1) MSAS-GR: In MSAS algorithm based on greatest

residue(MSAS-GR), the node corresponding to the greatest

residue is selected from the set of allowable candidate nodes

for modeling in the next iteration:

selected node, c∗i+1 = arg max
cλ∈AC

(|ei+1(cλ)|)

2) MSAS-GC: Let ẽ (cλ, Xi) = {φλ(Xi)w̃λ :
ψλ(Xi)w̃λ = ei+1(Xi), cλ ∈ AC} be the a-priori synthesis

of a basis, φλ ∈ AC , based on measurements at existing

sample locations, Xi. Defining ‖f̂i(Xi) − f̃i+1(cλ, Xi)‖ =
‖ẽ (cλ, Xi)]‖ as a measure of expected reduction in approxi-

mation error due to the a-priori introduction of basis φλ, the

selection criterion for MSAS algorithm based on greatest a-

priori error correlation (MSAS-GC) is:

selected node, c∗i+1 = arg max
cλ∈AC

{‖ẽλ (cλ, Xi)‖}.

As is discussed in the next section, MSAS-GR simulates a

depth first trajectory through the scale-space whereas MSAS-

GC simulates a breadth-first trajectory.

E. MSAS Illustration

Some properties of MSAS algorithms are illustrated using

the following test functions:

f(x) = −1 + (1 − x+ 19x2)e−x2

+ 2 sin(6πx)e−(x−0.73)2

f(x, y) = 2e−1.25(x−1.2)2−10y2

+ erf (x− .3) + erf

f(x, y, z) = x2 + y2 + e−z2

.

1) Sample Distribution: To illustrate the sample distri-

bution generated by MSAS, adaptive sampling of the 1D

test function is considered. A maximum sampling resolution

of (b − a)/27 is assumed. Thus M=7 and the maximum

number of samples is 27 + 1. The basis trees generated

after 50 iterations of MSAS-GR and MSAS-GC are shown

in Figures 4a and 4b, respectively. For both algorithms, the

total number of modeled nodes is 53, including three in the

bootstrap iteration.
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Fig. 6: Consistency of Sample Distribution (1D)

Figures 4a and 4b illustrate correspondence between the

basis distribution and variation in the underlying function.

Since the locations of un-modeled children (leaf nodes in the

tree) of previously modeled nodes are the sample locations,

the correspondence of bases distribution to variation extends

to sample distribution. The sample distribution is shown in

Figure 5 against the function. The two top rows corresponds

to the sample distributions of MSAS-GR and MSAS-GC

respectively. The bottom two rows represent ideal sample

distributions generated using full knowledge of the underly-

ing function apriori. Thus, MSAS achieves variation sensitive

sample distribution through variation sensitive modeling of

the underlying function.

MSAS-GC behaves as a breadth first algorithm and em-

ploys fewer level 7 bases than MSAS-GR. The differences

in scale localization between the two MSAS basis trees arise

because, in MSAS, variation in the underlying function is not

explicitly characterized but derives only as a consequence

of hierarchical error decomposition. Since the hierarchical

decomposition of the error results in a model progresses

from coarse scale basis to finer scale basis, in each iteration

the residual error corresponds to variation in the underlying

function. The scales at which a function is characterized is

the scale at which the algorithm chooses to approximate the

residual error at any intermediate iteration.

In MSAS, coarse-to-fine modeling is itself achieved by

requiring only un-modeled children of previously modeled

basis to enter the prospective basis pool. This ensures inter-

generational continuity since a fine scale basis may only be

added after either one of its parent bases at higher scale has

been added to the model.

However, as a consequence of directly employing the

sampling of the true approximation error rather than its

estimate, MSAS achieves spatial localization of bases since

regions of fine scale in the latter models are accounted for by
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fine scale bases, even if at an apparent scale. The similarity

in spatial localization of bases between the two algorithms is

noted. For MSAS-GR, refinement of the 53 nodes yields 50

unmodeled child nodes. For MSAS-GC the corresponding

number is 72.

2) Consistency: The spatial location of sample distribu-

tion may be characterized by considering the effect of trans-

lation and dilation of the underlying test function. The 1D

test function f(x) is independently subjected to translation

and dilation through f(2dx− t), where d ∈ R is the dilation

parameter and t ∈ Ω is the translation parameter. Figure 6

shows the consistency in sample distribution across various

translations and dilations.

3) Stability: Since the internal hierarchical model, f̂k,

employed by the algorithm represents a mechanism with

which information content in sample distribution may be

extracted, approximation error ek+1 = f − f̂k may be

used to characterize the relevance of a sample distribution.

Since the approximation is based on localized sampling,

the approximation error quantifies the appropriateness of the

sample distribution.

In figure 7, average reconstruction error over various

dilations and translations, and the variance in respective error

averages are shown for all the test functions. Also shown

is the reconstruction error due to MSAS Random Selec-

tion (MSAS-RS) algorithm. In each iteration of the MSAS

algorithm, one basis is selected from the set of allowable

candidate nodes with equal probability. The MSAS-RS error

vs iteration curve shown is an average over 100 independent

runs of the MSAS-RS algorithm for the test function.

As is seen in that figure, MSAS achieves a systematic

reduction in the error through sequential addition of localized

bases with local sampling. Further, the worst case perfor-

mances of MSAS is atleast comparable to the best case

performance of RS. Also, their average and the best case

performance is significantly better than RS. Thus through

sequential search and modeling, a sampling distribution that

is representative of the underlying function is achieved.

4) Higher Dimensions: The sample distribution generated

after k = 50 iterations of the MSAS-GR and MSAS-

GC is shown overlayed on the test function in Figures 8a

and 8b, respectively. The voronoi paritition generated by the

sample distribution is also shown to help visualize the spatial

localization of the sample distribution. The sensitivity of the

sample distribution to the variation in the underlying function

is noted. In both algorithms, the number of bases introduced

is 59, including 9 in the initial layer. The number of samples

in MSAS-GR is 295, while the number of samples in MSAS-

GC is 358. This indicates that, as in 1D, MSAS-GR behaves

as a depth first algorithm and tends to select the middle child

of a modeled node before either the left and right child.

In general, the characteristics of the MSAS algorithm in

1D are carried over to higher dimensions. The performance

of the algorithm is invariant to translations and dilations of

the underlying function, and the internal estimates of the

algorithm converge to the original function. The resulting

model is variation sensitive, as is the sample distribution.
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(a) Error Across Translations - 1D
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(b) Error Across Dilation - 1D

0 20 40 60 80 100 120

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of basis, n

‖f
−

f̂
k
‖ 2

MSAS-GR
MSAS-GC
MSAS-RS

(c) Error Across Translations - 2D
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Fig. 7: MSAS Stability (k = 50)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−2

−1

0

1

2

(a) MSAS-GR

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−2

−1

0

1

2

(b) MSAS-GC

Fig. 8: 2D Sample Distribution(k = 50)

Further, the relative performance of the algorithms is also

retained. MSAS-GR behaves as a depth first algorithm while

MSAS-GC behaves as a breadth first algorithm. However,

in higher dimensions, the effect of modeling and sampling

according to the structure of the grid becomes apparent.

Due to the rigidity of the grid, while the bases and the

sample distribution are sensitive to the variations of the

underlying function, they are not aligned to the geometry

of the underlying function. Instead, the sample distribution

occurs as blocks aligned to the axis of analysis. This rigidity

is active in 1D, however its effect is masked due to low

dimensionality.

5) Sampling Economy: Variation sensitive sampling pro-

vided by MSAS provide significant benefits over uniform

sampling. Figure 9 shows the ratio of the reconstruction
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Fig. 9: MSAS Vs. Uniform Sampling 3D

error due MSAS-GC to reconstruction error due to uniform

sampling as a function of sample rate for the 3D example.

For a given sample rate |XGC
i | = n of MSAS-GC, the

uniform sampling consists of the nearest square: |XUS
i | =

[
√
n ]. Since, in general XUS

i * XUS
i+1, the error due to

uniform sampling is not guaranteed decrease monotonically,

and the ratio curve is locally erratic. However, at each

sample rate, MSAS offers significant economy in number

of samples required for the same quality of reconstruction

when compared to uniform sampling.

V. RESOURCE CONSTRAINTS

A typical sampling protocol at a given sample site involves

sensor deployment, measurement and retrieval steps. With

τm > 0 as the time it takes to take a measurement at a sample

location, the total “mission” time, Ts, may be written as:

Ts = Ls/v+ kτm ≤ ∆t where Ls is the total distance trav-

elled by the vehicle in the mission, and v is the average speed

of the vehicle during the mission. If the number of vehicles is

fixed, then the process constraint Ts ≤ ∆t imposes a tradeoff

between coverage and spatial resolution. The vehicle speed

is bound by a physical constraint, v ≤ V . Further, the energy

is also limited: Es =
(

αv3 + β
)

Ts ≤ Emax, where α is a

constant describing the vehicle’s hydrodynamic properties,

and β is the hotel load.Thus the number of samples taken,

k, constrains Ts since it increases hotel load and reduces

energy available for transit, apart from taking up time τm.

Increasing spatial resolution of measurements increases the

time taken to sample a given area. In order to satisfy the

temporal resolution imposed by the process constraints, the

time taken to cover the area has to be reduced, which in

turn implies reduced spatial resolution. If both spatial and

temporal resolution have to be satisfied then the sample area

has to be reduced. This fundamental tradeoff governs the

decision about the appropriate time and space resolution and

area to be covered.

Energy constraints may be introduced into MSAS by

employing the augmented selection criteria: selected node

c∗ = argmaxcλ∈AC
(1−θ)I(Ac)+θe

−β‖cλ−c‖2

, where β >
0 is a distance penalty parameter. Average tour distances and

errors for MSAS-GR over random translations and dilations

of the 2D function are shown in Fig 10 as a function of the

θ. The tradeoffs are as expected. The key advantage is the

tradeoff of distance travelled against information gained.

The frontiers of these trade-offs may be improved if

multiple robots are employed. However, then issues such
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Fig. 10: MSAS Tradeoffs (2D)

as co-operative routing need be considered. One approach

to this problem is to seek clusters within the given sample

distribution. Vehicles may then be assigned to their nearest

cluster. A Hamiltonian path (Fig 1) may then be found within

each cluster. This is the scope of future extension of this

work.
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