
 

 

Abstract—Traditional industrial robots have been widely 
used in automotive manufacturing for nearly 30 years. 
However, there have been very few attempts to automate mobile 
robotic systems for final assembly operations, despite their 
potential for high flexibility and capability. This paper focuses 
on methods of tracking a dynamic moving vehicle that is similar 
to the vehicle body on a moving assembly line. We have 
investigated two tracking methods, one using a laser scanner 
and the other using a visual fiducial marker. We have also 
studied the tracking performance of a mobile base using the 
pure pursuit algorithm with low pass filtering. Experimental 
results are presented to illustrate the remaining main challenges 
in achieving robotic assembly on moving assembly lines. 

I. INTRODUCTION 
Automotive general assembly tasks have been performed 

by human operators on moving assembly lines since the early 
1930s. Typically, thousands of assembly operations are 
divided into hundreds of workstations along moving 
assembly lines. The operators follow the vehicle body 
movement within a workstation footprint to assemble a 
variety of parts onto the vehicle. In order to achieve robotic 
assembly on moving assembly lines, a line tracking system, 
in which the partially assembled vehicle’s movement is 
tracked to its highest possible fidelity, must be developed. If 
the robot can accurately track the assembly line movement, 
the assembly task can be performed as if there were no 
relative motion between the robot and the vehicle body.   

Line tracking by traditional industrial robots has been 
studied by DeSouza [1]. In collaboration with NIST, 
DeSouza’s line tracking performance has been explored in a 
preliminary study [2]. In addition, General Motors 
Corporation has recently investigated assembly conveyor 
dynamic motion [3] and evaluated the performance of 
current state-of-the-art commercial line tracking solutions by 
traditional industrial robots [4].  

Mobile manipulators, such as shown in Figure 1, offer 
high mobility and manipulability. An ideal utilization of the 
motion redundancy in the mobile manipulator is to perform 
assembly tasks on a moving vehicle body while tracking. The 
simplest partition is to separate the tracking and assembly 
motions, so that the two tasks can be performed by 
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independent control loops. In previous work, we have shown 
that a manipulator arm using force control can perform fine-
control assembly tasks (less than 2 mm error) in a static 
scenario [5].  

Two main approaches – integrated and decoupled – exist 
in coordinating mobility and manipulation in mobile 
manipulators. The integrated approach has been investigated 
by several researchers. Khatib [6] established a fundamental 
framework for dynamics-based end-effector task control and 
platform posture control. Tan and colleagues [7, 8] 
demonstrated the nonlinear control feedback advantages 
using unified dynamic models for mobile manipulators 
subject to nonholonomic constraints. Other coordinated 
control techniques include maintaining preferred 
configurations measured by manipulability [9] and 
formulating the differential motions that are feasible with 
respect to the nonholonomic constraints [10]. The decoupled 
approach is preferred when the locomotion is imprecise, as 
demonstrated by Shin [11]. Our approach, outlined in this 
paper, explores the decoupled approach where the platform 
control is used for the task of mobile tracking. If the mobile 
base could be proven to track a moving assembly line 
adequately, with small relative tracking error, assembly on 
moving assembly lines could be achieved by independently 
combining the mobile tracking and robot arm assembly 
manipulation. 

This paper presents the investigation and development of 
techniques for a mobile robot to dynamically track the 
movement of a moving task board that emulates a moving 
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Figure 1. Our mobile manipulator consists of a PowerBot mobile base 
with a 7-DOF WAM arm, a Bumblebee stereo camera mounted on a 
pan-tilt unit, and a SICK laser scanner.  Also shown is the task board 

with a visual fiducial marker used for pose estimation. 
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vehicle body on an assembly line. Two tracking methods are 
presented. The first one uses a visual fiducial marker on the 
moving task board. The second one uses a laser scanner 
mounted on the mobile robot. We also present a pure-pursuit 
algorithm that has been utilized to control the linear and 
angular velocities of the mobile base. Finally, we present 
experimental results for the mobile manipulator’s 
performance in a dynamic tracking scenario. The results 
clearly demonstrate the remaining challenges in order for the 
robot to perform assembly tasks on a moving task board. 

II. VISUAL POSE ESTIMATION ALGORITHM FOR TRACKING 
A visual pose estimation algorithm, utilizing an ARTag 

fiducial [15], produces a six dimensional relative transform 
between the mobile robot and the fiducial marker attached to 
the task board (see Figure 1). In order to track a moving 
vehicle body that moves at 30mm/sec with a peak 
acceleration that could cause instantaneous  speed change of 
30mm/sec within one second, the visual pose estimation 
algorithm must  produce pose outputs at a minimum rate of 
10Hz. As with many vision-based pose estimation 
algorithms, the primary bottleneck in our pose estimation 
process is the fiducial detection step. To improve the pose 
update rate from less than 3Hz to more than 10Hz, we chose 
to reduce the amount of data that the closed-source ARTag 
library needs to process. Using wide field of view 
Bumblebee [16] cameras and operating at typical distances 
of more than 1m, only a small subset of each image contains 
useful fiducial data. An initial estimation of which portion of 
the image contains the fiducial object of interest can be used 
to crop the image at the right location.  From initial system 
start up, until a fiducial is first detected, the system must 
perform full image processing. However, on subsequent 
iterations, the previous position of the fiducial, in image 
space, is used to crop the full image to a smaller sub-image.   

Due to a constraint of the ARTag software, processing 
continuously variable sub-image sizes is not feasible.  
Therefore, we chose to use a fixed set of three sub-image 
sizes. The full image size of the Bumblebee camera used on 
the mobile robot is 1024 X 768 pixels and the sub-image 
window size options chosen were 1/3, 1/5, and 1/7 in each 
dimension. Thus, 1/9, 1/25, and 1/49 of the full image area 
(342 x 256, 205 x 152, 146 x 110 pixels) are processed by 
the fiducial detection step (Figure 2, left). Experiments have 
demonstrated that the three sub-image sizes are sufficient for 

entire working range of the mobile robot. The 10mm square 
fiducial object occupies less than 1/50 of the full image at 2 
meters and less than 1/9 of the full image at the closest 
assembly distance of 0.5 meters. Thus the 1/7 size option is 
sufficiently large for long distance, while the 1/3 size option 
is useful for the closest working distance.    

Choosing which of these three sub-window options to use 
during each iteration of processing is a dynamic process 
based on the size of the fiducial in the previous image. The 
fiducial corners, in image space, are stored from the previous 
iteration; therefore, the area of the previously found fiducial 
can be computed. To accommodate any change in the 
fiducial position between two subsequent iterations, the area 
is multiplied by a factor of 1.5, chosen empirically, and then 
compared with the 1/3, 1/5 and 1/7 sub-image sizes. The 
sub-image size that completely encompasses the expanded 
fiducial size is selected and centered at the fiducial centroid 
position from the previous iteration. 

If the motion between two subsequent iterations is large 
enough to cause the fiducial to move outside the selected 
sub-image area, or the fiducial is occluded, the fiducial 
detection step will fail. In this case, the next larger sub-image 
is selected and the fiducial detection step is repeated with the 
next sub-image. This process is repeated until a valid fiducial 
is detected or the full image has been processed. The 
maximum number of repeats at the fiducial detection step is 
four, in which case about 120% of the full image pixels will 
be processed. The pose estimation outputs will be slowed 
down to 3Hz in this worst case scenario.  

When multiple fiducials are detected at the previous 
iteration, the fiducial detection step is performed for each of 
the found fiducials with its own sub-image area. It is possible 
that multiple fiducials occur within one sub-image area. It is 
also possible that one fiducial appears in multiple sub-image 
areas (Figure 2, right). Therefore it is necessary to track 
which fiducials have already been found during a given 
iteration, to eliminate the problem of redundant detection of 
fiducials.  The overall effect of this speedup process is an 
increase of speed up to the grab frequency of the cameras, 
which is 20Hz. 

If a new fiducial moves into the view of the cameras, it 
will not necessarily be detected in any of the subimages. To 
assist discovery of new fiducials, a full image processing is 
needed. Every 40 iterations (approximately every 2 seconds), 
a full image search is performed. The complete algorithm is 
illustrated in Figure 3. 

III. POSE ESTIMATION WITH LASER MEASUREMENT DATA 
Tracking with a laser scanner requires a physical object 

that can be modeled easily and detected by the scanner. A 
“laser fence” was added to the task board at the height of the 
laser scanner (a Sick S300 [17]) that is mounted on the front 
of the mobile base (Figure 1). The fence is linear with a 
distinctive, protruding post at each end, and is modeled with 
a set of points spaced 5 mm apart as outlined by the blue 

  

Figure 2.  Left: Three sub-image sizes, 1/3, 1/5, 1/7,  are chosen 
Right: Found fiducials are shown within a sub-image 
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point set in Figure 6.  
Given the laser measurement data and the object model, a 

three dimensional relative pose can be estimated. The raw 
laser data is collected as a series of range measurements. The 
laser scanner has a 270 degree field of view, consisting of 
540 individual measurements, and can detect objects at up to 
30 meters away.  Using the known minimum and maximum 
angles of the scan range and the angular offset between each 
individual range measurement, the raw range data are 
converted into point data in the Cartesian coordinate frame 
that is attached to the mobile robot base.   
The Iterative Closest Point (ICP) [13] algorithm, commonly 
used for matching two point clouds, is used to match the 
laser measurement data and the linear model.  Initial tests 
revealed that it has severe limitations.  First, depending on 
the initial pose values, ICP can find a local minimum of the 
root mean square (RMS) error, leading to incorrect results. 
In particular, the initial pose values have to be within 10 
degree and 50mm linear distance from the true pose for ICP 
to converge reliably to the actual pose.  Second, the full 
range of data cannot be used to match with the model, since 
this would introduce many more local minima.  Only the 
points corresponding to the laser fence itself should be used, 
and all other points should be segmented out of the entire 
point cloud.  To overcome the above problems, effective 
initial preprocessing of the laser measurement data, prior to 
using ICP, is required. 

The goal of preprocessing is to identify the laser 
measurement points that correspond to the laser fence and 
get an initial, pre-ICP, estimate of its pose.  A two step 
process is used to identify and group the laser measurement 
data into independent clusters (segmentation step). The 
algorithm takes advantage of the linearity of the laser fence 
on the task board.  The first step is to use the Random 
Sample Consensus (RANSAC) algorithm [14] to identify the 

strongest linear feature in the data (we assume that there are 
no walls or linear features in the data that would have a 
stronger response than the laser fence). Data points are 
searched sequentially, starting with the point corresponding 
to the counterclockwise-most scan.  Taking this point and a 
second point, generated from the range measurement N 
(chosen to be 40) angular segments ahead in the clockwise 
direction, a line is generated.  Next, the perpendicular 
distance of all remaining points to this line is computed. If 
this distance is within a prescribed threshold (currently 
150mm), the point is counted as a hit on that line.  By 
sequentially stepping through the laser data by increments of 
M (5) scans, a series of lines are generated. The line that 
receives the most hits is considered to be a line roughly 
aligned with the task board.    Figure 4 shows two examples 
of RANSAC fitting results. The point data around the line C 
is a better candidate for the model matching. 

The second step is to cluster all the laser measurement 
data that belong to the task board. Based on the previous 
step, a rough line through the task board has been identified 
that is the best candidate among all generated lines.  A 
middle point can be found that is half way between the two 
points that were used to generate the candidate line. Starting 
from the middle point, in each direction, subsequent points 
are checked if they are within a distance threshold of the 
previous point (currently 100mm). If a point does not meet 
this threshold, at least two additional points past the first out-
of-threshold point are checked to ensure that all task board 
points are found so that one bad measurement point would 
not cause the clustering process to stop. After three 
consecutive points that are outside the defined threshold, the 
clustering algorithm stops and assumes that all points that 
correspond to the task board are found in both directions.  In 
practice, this clustering algorithm is robust because of the 
properly selected threshold. Figure 5 shows an example of 
clustering results that have identified all laser measurement 
data for the task board among nearby objects.  

After the laser data associated with the fence have been 
identified, the next step is to roughly align the cluster with 

 
Figure 3. Visual fiducial pose estimation algorithm for tracking  

   

 

Figure 4. A) Raw laser data of the task board.  B) and C) two examples of 
RANSAC fitting.  Line C has more hits than line B, and so it is more likely 

associated with the task board’s laser fence. 

A. B. C. 

2491



 

the model so that ICP can be effectively applied. A line is 
fitted to the points of the data cluster. Using this line and the 
centroid of the cluster, the data points are translated and 
rotated for a rough fit with the model. 
Finally, ICP is performed to match the roughly aligned 
cluster to the model of the laser fence.  Figure 6 shows an 
example of the data and model alignment before and after 
ICP is performed. Even though the data is defined to be 
planar in the x-y plane, ICP occasionally introduces a 180 
degree roll about the x-axis because of the symmetry in the 
line model.  This flip can cause problems when used to 
compute tracking motion commands.  Therefore, the current 
algorithm is enhanced to detect this flip and correct it. 

Several additional checks are put in place to reduce the 
possibility of determining an invalid pose, which could cause 
the controller to react unpredictably.  First, when the number 
of data points in the cluster is too small (less than 50), a pose 
is not computed because the clustering algorithm may have 
selected the wrong cluster of data.  Second, the average 
distance between each point in the cluster and the closest 
point in the model is computed.  This average distance 
quantifies the fitting error between the model and the data. 
When the fitting error is greater than a threshold (10mm), a 
pose is not computed due to a poor fit between the data 
cluster and the model. 

  Although this pose estimation algorithm has proven to be 
successful when the laser measurement data are well 
behaved, at least two problems were discovered that can 
cause poor pose results.  The first problem is due to 
misalignment of the laser scanner.  The laser fence is 
approximately 100mm high. When the laser scanner is 
further than 1.5 meters from the laser fence, the alignment of 
the laser scanner and levelness of the floor can easily cause 
the laser beam to miss the fence, and strike the base of the 
task board instead (see Figure 7, top). A simple solution is to 
build a taller laser fence so that the laser beam can be 
ensured to scan the fence area as far as 3 meters away. 

The second problem is due to noise and bias in the laser 
data.  At distances closer than about 1m, the range 
measurements are very noisy and the range values are biased 
towards the laser.  This causes an observable “bowing” in the 
data (see Figure 7, bottom).  This “bowing” effect causes the 

model fitting to yield a fitting error that is often large enough 
to fail the final fit check.  Currently, we have found no 
effective solution to this problem, although it is possible to 
cover the fence with less reflective material to reduce the 
“bowing” problem, since it helps to reduce the intensity of 
the laser returns. However, this may not enable the fence to 
be seen at the required distance of 3 meters. 

 
IV. MOBILE ROBOTIC TRACKING  

 As discussed in the introduction, only the mobile base is 
used to follow the moving task board.  A servo behavior 
takes as input the pose estimates of the task board relative to 
the robot, either from laser or visual tracking, and outputs 
pose commands to the robot, with the goal of moving the 
robot to a waypoint relative to the task board. We use the 
pure pursuit algorithm [12] to convert base goal positions 
into velocity commands. This algorithm controls the base’s 
angular velocity to attract to the goal position and heading. 
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Where:  
Vt is the translational velocity being commanded;  
Dx is the translational distance to the goal point;  
�  is the angular velocity being commanded; 

is the difference between the vehicle’s angle 

 

Figure 5.  An example of clustering that has identified all laser data 
that belong to the fence, from among other nearby objects. 

 
 

Figure 7.  Top: Laser misalignment can cause the laser scan            
to miss the laser fence and strike the task board itself.                   

Bottom:“Bowed” laser data, due to noise and bias. 

 

Figure 6.  Top: Rough alignment of model before ICP                
Bottom: Model match after ICP. 
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and the goal angle;  
Dy is the perpendicular distance to the goal; 
Kx, Ky, and Kθ are proportional gains 

Figure 8 illustrates the terms used in the pure pursuit 
algorithm. The translational velocity in (1a) is proportional 
to the X distance from the goal point. The angular velocity in 
(1b) is composed of two terms. The first term is proportional 
to the heading difference. The second term attracts the 
vehicle to a line extending from the goal angle: as the vehicle 
gets closer to the line, the sine term goes to zero, and then 
the goal angle attraction term dominates.   

Dy

Dx

 
Figure 8. Terms used in the pure pursuit algorithm 

To remove the effect of noisy pose estimation, we apply 
low-pass filters that dampen high-frequency signals by 
averaging over prior values on the signal.  For a new data rt 
and a smoothing factor k, the filtered r’t is defined as: 

  (2) 
We apply the low pass filter to the outputs of the pose 
estimation algorithms as well as to the outputs of the pure 
pursuit algorithm. 

V. EXPERIMENTAL RESULTS 

A. Static Pose Estimation Results 
First, we compare visual and laser pose estimation in the 

static case. Figures 9 and 10 compare two pose outputs with 
the robot stationary at one and two meters from the task 
board. As described in Sections II and III, the visual pose 
estimation can produce pose outputs at up to 20 Hz, while 
the laser system outputs at approximately 5 Hz.  A total of 30 
seconds worth of readings are shown in each case.  

Relative pose estimates using visual fiducials have tighter 
clusters (one standard deviation is (3, 1, 2) mms in (x, y, z) 
respectively) compared with the laser scanner (one standard 
deviation is (1, 4) mms in (x, y) respectively), however 
multiple distinct clusters exist. In addition, it was discovered 
that the visual pose outputs jump from one cluster to another 
only once. The cause and condition for multiple pose clusters 
are unknown at this point.  From these results, we expect the 
laser tracking system to perform slightly better, in that it will 
not produce jumps in between cluster readings. 

 (a) 

(b) 
Figure 9.  Comparison of visual (a) and laser pose estimation (b) with the 
base fixed 1 meter away from the motionless task board. Each case shows 

30 seconds worth of readings.  The visual pose estimation system has 
tighter clusters, but multiple distinct clusters.  The laser system precisely 

locates in the X direction, but varies by more than 2 cm in the Y direction. 

 (a) 

 (b) 

Figure 10.  Comparison of visual (a) and laser pose estimation (b) with the 
base fixed roughly 2 meters away from the motionless task board.  Each 
case shows 30 seconds worth of readings.  The visual system again has 

multiple clusters.  The laser system tracks more precisely than it did at 1 
meter, due to increased laser range accuracy from this distance.   
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B. Dynamic Tracking Results 
Our task board (see Figure 11a) is the partially-complete 

back end of an automobile, at a stage when small electrical 
and mechanical components would be inserted.  To simulate 
the moving assembly line, it is pulled at a constant rate of 3 
cm/s by an ATRV-Jr robot. Our mobile manipulator (Figure 
11b) is a Barrett WAM arm mounted on a MobileRobots 
Inc. PowerBot. The base is commanded to track a waypoint 
1 meter from the task board using the pure pursuit algorithm.  
To demonstrate the feasibility of fine-control assembly tasks, 
the robot arm is simultaneously commanded to maintain 
constant contact with the task board using a force controller. 
If the force is too little, the arm controller pushes towards the 
task board; if the force is too great, it pulls away. 

We performed tests of the dynamic tracking system using 
both the visual and laser pose-estimation systems. Figure 12 
compares the linear and angular velocity commands that 
were sent to the mobile base from the pure pursuit algorithm 
after low pass filtering. The linear velocity commands were 
similar in both visual and laser cases. A few larger spikes are 
observed in the visual tracking. This is consistent with the 
visual pose data in the static case, as shown in Figures 9(a) 
and 10(a), in which the visual system shows a large jump in 
the x-direction, forward from the base.  This direction is 
controlled by speed commands per Equation (1a). 

 

(a) 

 (b) 
Figure 12.  (a) Linear velocity and (b) angular velocity commands sent to 

the mobile base. Blue commands are using the laser pose estimation system 
and red commands are using the visual pose estimation system. Both 

systems send similar commands in translational velocity. The laser tracking 
system, though, results in highly fluctuating angular velocity commands. 

 

Figure 13. Spikes in angular velocity command are correlated to gaps of up 
to two seconds between pose estimates from the laser system. During these 
gaps the base drifts off course, causing a large correction when a new target 

position is finally received. 

The dynamic tracking system proved successful using 
visual pose estimation. The base control was smooth and the 
arm was able to keep constant contact with the task board in 
all tracking tests, as shown in Figure 11(b).  The arm’s 
gripper tip slid across the task board surface, but never lost 
contact with the task board while tracking. This is promising 
for performing   assembly tasks while tracking.  

However, base control when using the laser pose 
estimation was not smooth.  The arm’s gripper frequently 
lost contact with the task board. As shown in Figure 12(b), 
the angular velocity commands vary greatly, exhibiting large 
spikes. This suggests that Dy and  estimation by the laser 

  (a) 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                     (b)                    (b) 
 

Figure 11.  (a) An ATRV-Jr. robot is commanded to move the task board 
at a constant speed. (b) The WAM arm end-effecter keeps contact while 

the mobile base is tracking the task board movement using a pure pursuit 
algorithm with a low pass filter.  
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tracking system varies quite a bit, since a large jump in the 
left-right direction will result in a large angular velocity 
command per Equation (1b).  We have determined that 
infrequent pose updates are the source of this problem. The 
laser scanner is producing raw measurement data at 10 Hz, 
but the laser pose estimation system produces a pose output 
only when it can ensure the validity of pose estimate, as 
described in Section 3. Although the normal rate of laser 
pose estimation is around 5Hz, there were frequent, large 
time lapses between subsequent valid pose outputs, as shown 
in Figure 13. During these lapses the base may drift away 
from its target pose.  When a new valid pose is received, the 
system must send a large command to the mobile base in 
order to catch up with the moving task board. The time 
lapses between valid laser pose estimates could be caused by 
a combination of factors such as the size of laser fence, 
imperfections in the floor, as well as pitching of the mobile 
base during motion. 

VI. CONCLUSIONS AND FUTURE WORK 
For robots to find use on moving assembly lines, a key 

challenge is to achieve robust tracking with a reliable, 
accurate, and fast pose estimation system. We have 
demonstrated visual and laser pose-estimation systems that 
meet these criteria.  We have developed a model for mobile 
manipulator control in which a mobile base alone tracks a 
target using these systems, freeing the manipulator arm for 
finer control tasks. The experiments to date show promising 
results that could serve as a foundation for a mobile robot to 
perform assembly tasks on a moving task board.  Future 
work includes utilizing force control and motion control on a 
robot arm in these dynamic situations. The ultimate goal is 
for the mobile robot to perform assembly tasks on a moving 
task board autonomously, robustly, and reliably.  
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