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Abstract— The core step of video stabilization is to estimate
global motion from locally extracted motion clues. Outlier mo-
tion clues are generated from moving objects in image sequence,
which cause incorrect global motion estimates. Random Sample
Consensus (RANSAC) is popularly used to solve such outlier
problem. RANSAC needs to tune parameters with respect to the
given motion clues, so it sometimes fail when outlier clues are
increased than before. Adaptive RANSAC is proposed to solve
this problem, which is based on Maximum Likelihood Sample
Consensus (MLESAC). It estimates the ratio of outliers through
expectation maximization (EM), which entails the necessary
number of iteration for each frame. The adaptation sustains
high accuracy in varying ratio of outliers and faster than
RANSAC when fewer iteration is enough. Performance of
adaptive RANSAC is verified in experiments using four images
sequences.

I. INTRODUCTION

Video stabilization is the process to generate a compen-
sated video without undesired motion. It gains more attention
due to popularization of video devices. It is applied to
enhance quality of video captured by shaking hand-held
camera. Apple iMovie ’09 already included this function.
Cameras on robots suffer similar vibration due to their
mobility. The stabilization is also useful for outdoor vehicles
on rough terrain and visual surveillance systems.

Video stabilization generally follows four steps: motion
estimation, motion filtering, image warping, and image en-
hancement. Motion estimation is to extract camera motion
from images. Three viewpoints are useful to pursue previous
works: motion model, (local) motion clues, and (global) mo-
tion calculation. Table I shows motion estimation of recent
stabilization researches. 2D motion model, especially affine,
is favored because adjacent images have small amount of
motion. 2D motion in image coordinate approximates camera
motion in 3D world coordinate. However, it is difficult to
approximate 3D motion in complex situation, where images
have large depth variation and motion of multiple planes.
Lee et al. [2] utilized 3D model incorporated with stereo
vision. Pan et al. [8] and Zhu et al. [9] tackled 2.5D motion
model, which uses fore-/background motion segmentation
and multiple 2D motion models, respectively. Motion clues
are used as data to estimate paramters of the assigned
motion model. Two different approaches have been utilized,
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which are pixel-based and feature-based approaches [10].
Pixel-based approaches use intensity of each pixel directly.
Motion between two images is determined to minimize
difference measure in spatial domain, which needs complex
optimization techniques [11]. Phase correlation, performed
in frequency domain, also used to estimate translation of
two images [12]. Pixel-based motion estimation needs long
computation time and falls in local optima, so it is not pop-
ular recently. The other approaches use local features such
as KLT tracker and SIFT (Table I). Global motion between
two images is calculated using corresponding features, which
are decided by tracking and matching. Tracking such as
optical flow has small computation time, but it is difficult
to track big amount of motion. In contrast, matching is
good at big motion, but it needs more computation time.
Outlier motion is generated by moving objects or wrongly
corresponded features, which degrades accuracy of global
motion estimates. Therefore, almost all feature-based tech-
niques incorporated with a robust estimator such as Hough
transform, least median squares (LMedS), and RANSAC.

Motion filtering is to separates intended motion and
undesired motion. Undesired motion is generally regarded as
high frequency motion such as vibration, so motion filtering
is called motion smoothing. Low-pass filtering is achieved
by FIR, IIR, Kalman [11], [8], [2], and particle filter [7].
Motion vector integration (MVI) is the first order IIR filter
[4]. Gaussian kernel smoothing is weighted average of past
k and future k motions [5], [3], so it is not appropriate
for on-line application. Pilu [13] proposed Viterbi method,
which is the theoretically most stable, but it is not on-line
method. Image warping removes unwanted motion, which is
inverse transform of unwanted motion. Image enhancement
includes video completion and image deblurring. Video
completion fills missing parts of the compensated image [11],
[5], [3], and image deblurring restores blur by camera motion
[5].

Video stabilization includes many research topics, and
this paper focuses on robust motion estimation in varying
ratio of outlier motion. Motion estimation is the essential
step to accomplish high performance in the stabilization.
Hough transform needs huge amounts of memory to keep
the parameter space, and LMedS fails when outliers are
more than half. RANSAC [14] had been regarded simple
but powerful method for the outlier problem in the computer
vision. Battiato et al. [1] also employed their variant of
RANSAC for outlier rejection. RANSAC needs to adjust the
number of iteration, which is highly related with accuracy
of estimation. Adaptive RANSAC, called as uMLESAC, is
proposed in Section II, which is improvement of authors’
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Authors Motion Model (Local) Motion Clues (Global) Motion Calculation
Battiato et al. 2008 [1] Similarity (2D, 4DOF) Feature Matching (Block) Least Squares + Pre-/Memory Filter + RANSAC
Lee et al. 2008 [2] Euclidean (3D, 6DOF) Feature Tracking (KLT Optical Flow) Least Squares + X84 Outlier Rejection
Hu et al. 2007 [3] Affine (2D, 6DOF) Feature Matching (SIFT) Least Squares + Hough Transform
Battiato et al. 2007 [4] Similarity (2D, 4DOF) Feature Matching (SIFT) Least Squares + Thresholding
Matsushita et al. 2006 [5] Affine (2D, 6DOF) Feature Tracking (KLT Optical Flow) Shum and Szeliski’ Image Alignment
Chang et al. 2006 [6] Simplified Affine (2D, 4DOF) Feature Tracking (Optical Flow) Trimmed Least Squares
Yang et al. 2006 [7] Affine (2D, 6DOF) Feature Matching (SIFT) Least Squares + (Particle Filter)

TABLE I
RECENT THREE-YEAR WORKS ON VIDEO STABILIZATION

previous work [15]. uMLESAC uses an error model, which
has two parameters, the ratio of inliers and the magnitude
of inlier noise, where inliers are data with small noise
compared with outliers. This paper explains difficulty of
simultaneous estimation of two parameters of the error
model. The improvement in estimating the parameters and
its discussion is presented in Section II.A. Robust video
stabilization is described in Section III, which employs uM-
LESAC for motion estimation. Other parts follow commonly
used techniques: 2D affine motion model, KLT optical flow,
and Kalman filter. Experiments using four image sequences
verified performance of uMLESAC compared with other two
robust estimators, which is presented in Section IV. Three
robust estimators were tuned at three image sequences to
have the best performance. Three estimators were applied
to the other image sequence, which has worse situation,
to observe performance without extra tuning. Experimental
results showed that uMLESAC sustain similar performance
in the new image sequence. Conclusion includes summary
and further works in Section V.

II. UMLESAC, ADAPTIVE RANSAC

uMLESAC is a robust estimator, which strengthens exist-
ing estimators (e.g. least squares) to cope with outliers. It
is based on MLESAC [16], R-RANSAC [17], and authors’
previous work [15]. Formal problem definition is described
in [15].

A. Error Model and Its Estimation

uMLESAC uses Torr and Zisserman’ error pdf [16]. It
models inlier error pdf as unbiased Gaussian distribution
and outlier error pdf as uniform distribution as follows:

p(e|M) = γ
1√

2πσ2
exp

(
− e2

2σ2

)
+ (1− γ) 1

ν
, (1)

where M is the model to estimate (e.g. affine motion) and ν
is the size of error space. The model has two parameters γ
and σ2, where γ is prior probability of being an inlier and
σ2 is variance of Gaussian noise. The parameter γ means the
ratio of inliers to whole data and σ2 means the magnitude
of noise which contaminate inliers. The error model assumes
that every datum has the same inlier prior probability. It leads
posterior probability of being an inlier as follows:
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(a) γ = 0.9 and σ = 0.3 (b) γ = 0.3 and σ = 2.0

Fig. 1. Expected Value of Log Likelihood (N = 1000)

(a) γ = 0.7 and σ = 2.5 (b) γ = 0.4 and σ = 0.5

Fig. 2. Two Sets of Data from A Line (N = 100)

EM gives iterative solution of two parameters γ and σ2

with respect to the given data as follows:

γ =
1
N

N∑
i=1

πi and σ2 =
∑N
i=1 πie

2
i∑N

i=1 πi
, (3)

where N is the number of data. The authors’ previous work
[15] used both equations to estimate γ and σ2 simultane-
ously. However, the estimation often failed in case of low
inlier ratio or much more complex noise than the error model
(1). Figure 1 presents expectation of log likelihood in two
different data sets. Data with low inlier ratio has two maxima
near (γ < 0.2, σ < 2) and (γ > 0.8, σ > 3). It means that
low inlier ratio distribution can be estimated as higher inlier
ratio with bigger noise. Figure 1 also shows ambiguity of two
parameters, which has two similar data distribution in spite
of significantly different γ and σ. uMLESAC estimates only
γ using EM and remains σ2 as a configuration parameter to
resolve ambiguity of γ and σ2. EM procedure is described
in Figure 3 in detail.

B. Model Evaluation

uMLESAC uses maximum likelihood (ML) criterion to
select the best model among many estimated models which
are generated each iteration. Under Naı̈ve assumption, the
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likelihood becomes

p(E|M) =
n∏
i=1

p(ei|M) . (4)

uMLESAC uses negative log likelihood as follows:

NLL(M) = − log
n∏
i=1

p(ei|M) = −
n∑
i=1

log p(ei|M) , (5)

which makes a small likelihood value numerically possible in
the digital computer. The estimation problem is formulated
as an optimization problem as follows:

M̂ = arg min
M

NLL(M) . (6)

uMLESAC adopts preliminary evaluation to reject incor-
rect models before EM iteration and model evaluation. It
can reduce computation time because two expensive steps
are skipped. Td,d test [17] is utilized, which is passed when
an estimated model is consistent with randomly selected d
data. The computation time is formulated as

J = T (tM + ÑtE) , (7)

where T is the number of iteration, tM is time to estimate the
model, tE is time for EM iteration and evaluation procedures
per one datum, and Ñ is the average number of data used in
EM and evaluation. The number of test data, d, is selected
to minimize the computation time as follows [17]:

d∗ =
log
( (tR+1) log γ
N(logδ−logγ)

)
log δ

, (8)

where tR is the ratio of time, tM/tE , and δ is probability that
an outlier is consistent with the model, 1.96σ/ν. Preliminary
evaluation is described in Figure 3 in detail.

C. Adaptive Termination

uMLESAC calculates the necessary number of iteration,
T , with respect to the given data distribution. The number
of iteration should be enough to satisfy two conditions: 1)
m sampled data to estimate a model are all inliers and 2) d
sampled data for preliminary evaluation are passed in Td,d
test. Two conditions entail the number of iteration as

T =
log(1− Ps)

log(1− γm+d)
, (9)

where m is the necessary number of data to estimate a model
and Ps is probability to satisfy the two condition. uMLESAC
can control trade-off between accuracy and computation time
using Ps. Overall procedure of uMLESAC is described in
Figure 3, where D is the given N data.

III. ROBUST VIDEO STABILIZATION

uMLESAC is utilized to estimate 2D affine motion from
KLT tracker. Kalman filter separates low frequency motion
from the estimated motion. Stabilization is performed by
removing high frequency motion. Figure 5 presents the
stabilization procedure.

CONFIGURATION VARIABLES of uMLESAC
Ps : Success probability (0.99 is used in this paper)
σ : The standard deviation of inlier noise
Tmax : The maximum number of iteration (600 is used in this paper)
δem : Tolerance of γ in EM iteration (0.05 is used in this paper)
PROCEDURE of uMLESAC
d← 0

T ← Tmax
NLLmin ←∞
iteration← 0

WHILE UNTIL iteration < T

iteration← iteration+ 1

1. Sample data randomly.
S ← random samples of D (N(S) = m)

2. Estimate M from sampled data.
M ← EstimateModel(S)

3. Evaluate M using Td,d Test
S′ ← random samples of D (N(S′) = d)

FOR EACH dd OF S′
IF |CalculateError(dd;M)| > 1.96σ GOTO STEP 1

ENDFOR
4. Calculate E with respect to M
E ← CalculateError(D;M)

5. Estimate γ using EM.
γ ← 0.5

DO
γprev = γ

γ ← 1
N

PN
i=1 πi

WHILE UNTIL |γ − γprev| < δem

6. Evaluate M using ML.
IF NLL(M) < NLLmin THEN

NLLmin ← NLL(M)

Mbest ←M

d← max
“
0, arg mindd∗e,bd∗c J(d)

”
T ← min

“
log(1−Ps)

log(1−γm+d)
, Tmax

”
ENDIF

ENDWHILE
RETURN Mbest

Fig. 3. Pseudo Code of uMLESAC

A. Motion Estimation

KLT tracker [18] is utilized to extract local motion,
which generates corresponding points of adjacent images.
KLT tracker finds motion of two images to minimized the
dissimilarity as follows:

ε =
∫ ∫

W

[
It+1(Ax)− It(x)

]2
w(x)dx , (10)

where W is the given window, w(x) is a weight function,
and A is 3×3 affine matrix. The proposed stabilization uses
OpenCV implementation of KLT, whose windows size is
adjusted 20 and the weight function is simply w(x) = 1.

uMLESAC is used to estimate global motion from locally
extracted motion by KLT tracker. The model M is 2D affine
motion model as follows:

M =

 m11 m12 m13

m21 m22 m23

0 0 1

 . (11)

It is estimated through commonly used least squares using
three corresponding points (m = 3), whose implementation
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Fig. 4. Accumulated Motion (The LightChange Sequence)

Fig. 5. Flow Chart of Video Stabilization

is EstimateModel(S) function. Error between the model M
and the corresponding points, d = (xt, xt+1), is calculated
as

e =
∣∣Mxt − xt+1

∣∣ , (12)

whose implementation is CalculateError(d;M) function.

B. Motion Filtering and Image Warping

Kalman filter is employed for motion filtering, which
relieves high frequency motion. Constant velocity model is
used under assumption that each parameter is independent
[11]. State-space and observation equations becomes[

mij

ṁij

]
t+1

=
[

1 1
0 1

] [
mij

ṁij

]
t

+ wt+1 (13)

[
mij

]
t+1

=
[

1 0
] [ mij

ṁij

]
t

+ vt+1 , (14)

where process and measurement noise, wt+1 and vt+1, are
N(0, Qij) and N(0, Rij), respectively.

Motion needs to be accumulated to compensate motion
from the initial as follows:

T t+1
0 = T t0 Mt+1 and T̃ t+1

0 = T̃ t0 M̃t+1 , (15)

where T t0 and T̃ t0 are raw and filtered accumulated motion
and M̃t is filtered motion of Mt via Kalman filter. Figure 4
presents an examples of T t0 and T̃ t0 . The stabilized image Ĩt
is generated from the original image It through

Ĩt = T̃ t0(T t0)−1 It . (16)

(a) LightChange (b) MovingMouse

(c) IndoorNavigation (d) Traffic

Fig. 6. Four Image Sequences with KLT Trackers

IV. EXPERIMENTS

A. Configuration

Four data sets were used to evaluate robustness of
RANSAC, MLESAC, and uMLESAC. Each first image with
KLT trackers is presented in Figure 6. LightChange, Mov-
ingMouse, and IndoorNavigation are from Battiato et al. [1].
LightChange has small zoom motion in varying illumination,
MovingMouse contains varying outlier motion by moving
mouse, and IndoorNavigation has shaking forward motion in
an office environment. Traffic is from CMU PIA Consortium
homepage [19], which has highly varying ratio of outlier
motion by moving cars.

Performance of video stabilization is quantified by tempo-
ral smoothness and computing time. Interframe transform fi-
delity (ITF) is widely used to measure temporal smoothness.
It is peak signal-to-noise ratio (PSNR) between adjacent
images, which defined as follows:

ITF(It, It+1) = 10 log
2552

MSE(It, It+1)
, (17)

where MSE is mean squared error of two images. Computing
time is measured using QueryPerformanceCounter function
in Win32 API, whose resolution is upto nano second.

Experiments were performed to observe robustness of
RANSAC, MLESAC, and uMLESAC in varying situation as
follows. At first, parameters of three methods are adjusted
to sustain high ITF with minimum computing time in three
image sequences, LightChange, MovingMouse, and Indoor-
Navigation. Second, three methods are applied to the Traffic
sequence without tuning again. ITF and computing time were
recorded in each frame of image sequence. The experiments
focussed on observing performance variation in the Traffic
sequence. The number of iteration of RANSAC and MLE-
SAC were adjusted to 30 after the first step. The threshold
of RANSAC and standard deviation of MLESAC/uMLESAC
were tuned as 1.96× 0.3 and 0.3 respectively.
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(a) ITF (b) The Number of Iteration (c) Estimated Inlier Ratio (γ)

Fig. 7. Experiment Results in the MovingMouse Sequence

B. Results and Discussion

1) Three Image Sequences: RANSAC, MLESAC, and
uMLESAC sustained ITF more than 33 in the LightChange
and MovingMouse sequence. Figure 7(a) shows ITF of the
MovingMouse sequence. Three methods had similar ITF,
but higher than the original sequence. They stabilized the
IndoorNavigation sequence in the beginning, but they failed
after 100 frames. Stabilization using 2D projective model
(plannar homography) also failed. The sequence has three 2D
planes (a floor, ceil, and front) and 3D complex sides (Figure
6(c)). 2D motion model can not describe them together,
small amount of error was generated at each frame. Its
accumulation (15) became huge after 100 frames.

uMLESAC was 3 times faster than RANSAC and 30
times faster than MLESAC on average in LightChange and
MovingMouse sequence. uMLESAC had similar computing
time with RANSAC and 10 times faster than MLESAC
on average in IndoorNavigation sequence. RANSAC and
MLESAC use the constant number of iteration all the time,
so they should always consider the worst situation. However,
adaptive termination of uMLESAC controled the number of
iteration with respect to the estimated inlier ratio, γ. uMLE-
SAC iterated few times in most of time and it iterated more
in worse situation. Figure 7(b) and 7(c) present the number
of iteration and estimated inlier ratio in MovingMouse.

uMLESAC with Td,d test had simliar computing time with
uMLESAC without it. In other words, preliminary evaluation
using Td,d test did not accelerate the algorithm. Td,d test can
reduce computing time if J(0) > J(d) is valid [17], which
entails

N > (tr + 1)
1− γd

γd − δd
. (18)

All three sequences satisfied the condition, but acceleration
was not significant because most of each frame needs the
small number of iteration.

2) The Traffic Image Sequence: uMLESAC sustained ITF
more than 34 dB, but RANSAC and MLESAC had lower
ITF near 120 frame (Figure 8(a)). The traffic sequence
had many moving cars near 120 frame, which generated
outlier motion much more than before. It caused inaccurate
global motion estimate and big drift error as shown Figure
9(a). The estimated inlier ratio by MLESAC and uMLESAC
represented the degree of difficulty in this situation, whose

value was near 0.2 (Figure 8(c)). RANSAC and MLESAC
had similar ITF with uMLESAC after tuning their iteration
to 80, but it increased computing time 2.5 times more.

uMLESAC was 2 times faster than RANSAC and 20 times
faster than MLESAC on average. It was much slower than
both near 120 frame, and 6 times slower than RANSAC near
550 and 900 frames.

V. CONCLUSION

uMLESAC is adaptive extension of MLESAC [16]. It uses
the mixture of Gaussian and uniform distribution to model
probability density of inlier and outlier. EM gives iterative
solution to two parameters of the distribution, γ and σ,
with respect to the given data. This paper showed ambiguity
between two parameters and claimed difficulty of finding
their true values simultaneously. uMLESAC estimates only
γ using EM and calculates the necessary number of iteration
for the given distribution.

Experiments verified performance of uMLESAC for video
stabilization on varying ratio of outlier motion. uMLESAC
sustained high ITF in spite of the new image sequence.
The adaptive termination accelerated the alogrithm when few
iteration was enough to estimation motion near the truth.

Many meaningful works have been performed on video
stabilization, but the video stabilization needs to be investi-
gated more. KLT tracker and Kalman filter are required to be
self-adjusted for advanced adaptation. A motion model needs
to be examined more. The experiment using IndoorNavi-
gation sequences presented limitation of 2D motion model.
Accumulated error through (15) should be solved for long-
term surveillance system.
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