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Abstract— This paper presents a low-cost, simple automated 

mobile platform for 3D environmental digitization. Compared 

with other customized 3D digitization platforms, all parts in our 

platform are commercial off-the-shelf. In order to build a 3D 

model of a salient target, we present a new viewpoint planning 

method for fast 3D digitization. Within a predefined accuracy, 

our method can determine the minimum overlap between two 

consecutive scanning images to speed up the digitization process. 

This guarantees the next scanning image can be merged to the 

previous one properly. The results from both simulation and 

experiments show the effectiveness of our viewpoint planning 

method. Our tests of this mobile robot system demonstrate the 

feasibility of 3D digitization based on a low-cost platform. 

Index Terms— LRF sensor, 3D digitization, mobile robot, 

ICP

1 INTRODUCTION

Obtaining environmental information is very important for 

robotic applications, such as search and rescue. 3D 

environmental modeling can help the robot navigate and 

avoid obstacles. On the other hand, automated 3D digitization 

can help blind people sense the surrounding obstacles. 

Compared with optical cameras, Laser Range Finder (LRF) 

sensors can be used in dark and smoky environments, 

therefore they are widely used in 3D digitization. 

Some existing 3D digitization platforms are equipped with 

expensive LRF sensors, computers and mobile robots. For 

example Nüchter et al. provide a heavy and complicated 

Ariadne robot for 3D scanning experiments [1].  Allen et al.

provide a mobile site modeling robot for 3D urban 

environments modeling [2]. AEST (Autonomous 

Environmental Sensor for Telepresence) is developed to 

reconstruct 3D interiors from reality [3]. Due to the 

complexity and cost, it is not very easy to duplicate their 

platforms. This prevents other researchers from improving 

the platforms and the algorithms for 3D digitization. 

Therefore it is necessary to provide a simple and low-cost 

platform for 3D digitization.  

This paper presents a solution to build a low-cost 

automated 3D digitization platform. Our platform consists of 

an iRobot [4] equipped with a URG-04LX 2D LRF sensor [5] 

and a compact computer eBox2300 [6]. It can find out a 

salient target, move to different viewpoints and create a 3D 

model of the target. 

Sijian Zhang, is with the College of Electrical Engineering, Zhejiang 

University, Hangzhou, Zhejiang 310027 China (e-mail: 

zsjzju@yahoo.com.cn). 

Gangfeng Yan, is with the College of Electrical Engineering, Zhejiang 

University, Hangzhou, Zhejiang 310027 China (e-mail: ygf@zju.edu.cn). 

Weihua Sheng, is with the School of Electrical and Computer 

Engineering ,Oklahoma State University, Stillwater, OK, 74078 USA 

(e-mail: weihua.sheng@okstate.edu).  

To digitize large targets, the platform should use multiple 

viewpoints and be able to decide where the next viewpoint is. 

A scanning image at one viewpoint can only cover one part of 

the whole model. In order to create a 3D model of large 

targets, scanning images from different viewpoints should be 

merged together. The Iterative Closest Point (ICP) algorithm 

[7, 8] is an effective method to register two images taken from 

two different viewpoints. However it may fail when there is 

insufficient overlap between the two images [9]. On the other 

hand, if the amount of overlap is too much, the digitization 

process will significantly slow down. A viewpoint planner 

should consider these two factors to finish 3D digitization 

within the predefined error tolerance as fast as possible. 

Therefore, in this paper, we also present a viewpoint planning 

algorithm that enables the platform to analyze the current 

scanning scene data, so that the proper overlapping area can 

be identified between the current scan and the next scan. 

The paper is organized as follows. Section 2 introduces 

some existing work related to 3D digitization. Section 3 

describes the hardware and software components of the 3D 

digitization platform. Section 4 presents the basic data 

processing for 3D digitization. Section 5 provides the 

viewpoint planning algorithm. The experimental results are 

shown in Section 6.  Section 7 concludes the paper and shows 

our future work. 

2 RELATED WORK

Many researchers have worked on 3D environment 

modeling. Nüchter et al. [1] develop the Ariadne robot 

equipped with the AIS 3D LRF sensor.  There are three laser 

scanners, two computers and a 250 kg robot in this platform. 

It is powerful, but also expensive and heavy. In order to 

reduce the cost, a few groups try to replace the 3D scanner 

with a 2D scanner. Nüchter et al. [10] use a standard 2D 

scanner and a servo motor to form a 3D LRF sensor. When 

the sensor conducts yawing scanning, it results in the 

maximal possible field of view. Ueda et al. [11] provide the 

similar mechanical setup but use a smaller and lighter LRF 

sensor. These platforms are not built from commercial 

off-the-shelf parts.  Therefore it is not easy to duplicate them. 

In order to build a 3D model of a real object, scanning 
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images from various views need to be aligned. A few groups 

use invariant features for ICP registration, which can increase 

the chance of success [12]. Surmann et al. [13] use a scan 

matching algorithm based on the ICP algorithm to register the 

3D scans in a common coordinate system and localize the 

robot. Some groups extract the invariant feature from 

different sensed views to ensure that the ICP algorithm can 

find out the correspondent point-pairs. For example Besl et al. 

compute curvatures in range images [14]. Sadjadi et al. detect 

moment invariants in three dimensions [15]. Burel et al.

propose a framework for deriving 3D rotational invariant 

features [16]. However, the algorithm for invariants is 

complicated. Different kinds of invariant features need 

different extraction algorithms. This requires powerful 

computation sources. Furthermore not all objects have the 

same kind of invariant features. The scanning system should 

select the proper type of invariant features before deriving 

invariants. 

Automated 3D digitization not only needs to register 

different images taken from different viewpoints but also 

needs to solve the Next Best View (NBV) problem [17]. 

Roberts et al. provide a method that aims to minimize the 

number of viewpoints while ensuring that the selected 

viewpoints be close to the best viewpoints [18]. There is a 

tradeoff between digitization accuracy and speed. Overlap 

constraint must be satisfied during viewpoint planning. Pito 

applies a simple non-linear function to decide how much of 

the object’s surface would be resampled from the current 

position [17]. However the choice of the threshold for this 

function is dependent on the features of the object. An 

effective method should be used to describe the complexity of 

the object surface, so that the scanner can reduce the 

rescanning area and minimize the number of viewpoints. 

Fig. 1.  The 3D scanning robot                  Fig. 2.  The functional  

3 HARDWARE AND SOFTWARE OF THE 3D DIGITIZATION 

PLATFORM

We developed a low-cost mobile robot using commercial 

off-the-shelf (COTS) parts for 3D scanning. As shown in 

Fig.1, the robot consists of a URG-04LX 2D LRF sensor, an 

eBox2300 compact computer, an iRobot and a rechargeable 

battery. The total cost of this robot is around 2,500 US 

dollars. 

The URG-04LX is a small and light LRF sensor. Its high 

accuracy, high resolution and wide angle provide a good 

solution for 3D scanning. Its maximum detection distance is 

4000 mm and its scanning angle is 240 degrees. The iRobot 

provides a platform for easy integration and creation of new 

robot applications. There are two RS-232 serial ports on the 

eBox2300: one is used to communicate with the LRF sensor, 

the other is used to control the iRobot. As shown in Fig.2, the 

eBox2300 controller acquires 2D distance information from 

the LRF sensor and controls the motion of the iRobot. The 

robot can continuously operate for about 2 hours with one 

fully charged nickel hydride battery.  

The LRF sensor is mounted on the top of the eBox2300. As 

shown in Fig.3, the scanning plane of the sensor is vertical. 

Fig.4 shows the top view of the platform. With autogyration 

of the iRobot, a servo motor for rotating the LRF sensor is not 

necessary. The sensed view of the platform is B degree 

vertical and C degree horizontal. The maximum scanning 

angle B can be up to 240 degree and the maximum scanning 

angle C can be up to 360 degree. There are some vibrations of 

the LRF sensor when the robot is rotating. We assume that the 

resulted drift distance and vibration are small and can be 

ignored. 

Fig.5 shows the software flow chart of 3D digitization. The 

controller configures the LRF sensor (e.g. baud rate, scanning 

area) in the initialization. After receiving all data in one scan, 

the controller checks if there is any data loss during the 

communication. With the distance data from the LRF sensor 

and orientation data from the iRobot, the controller can build 

the 3D image at one viewpoint and register the image with the 

Fig. 4.  The top view of the scanning area 

Fig. 3.  The left view of the scanning area 

                                                                      blocks for the robot 
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previous scanning images. The current scanning image is 

analyzed by the controller to find out the overlapping area and 

plan the next scanning position and robot orientation (  ,, yx ). 

Then the controller commands the robot to move to the 

planned viewpoint. When the robot completes the 3D 

digitization, a 3D model of the target is created. 
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Fig. 7  Extracting salient targets 

4 DATA PROCESSING FOR 3D DIGITIZATION

This section describes how to process the raw data. 

4.1 Gap Filling 

Raw data should be processed to improve the quality of the 

3D model. The measured distance from the LRF sensor is 

generally greater than the minimum detection distance (20 

mm). However, as shown in Fig.6a, there are some gaps in the 

raw image. The data read from the LRF sensor is zero in these 

directions. These zero points are caused by shiny curved 

surfaces. The laser light emitted by the LRF sensor is 

reflected to certain unknown directions. Therefore the LRF 

sensor can not receive any light in these areas and then treats 

the distance as zero.  

Curve fitting such as linear interpolation is applied to fill 

these gaps. The result is shown in Fig.6b, which clearly fits 

the bad points and removes the gaps. 

4.2 Target Extraction 

In many applications, only salient targets rather than the 

surrounding environment are of interest. Therefore, 

algorithms such as edge detection are applied to remove the 

background information and some spare error points. After 

this processing the salient target is extracted. Fig.7 illustrates 

the idea of background removing. In the 240 degree detection 

area of the LRF sensor, only 75 degree scanning area is taken 

into account. 

Fig. 5 The software flow chart for 3D digitization. 

5 VIEWPOINT PLANNING

As an automated 3D digitization robot, it should have the 

capability to plan the next viewpoint. In general, the problem 

of viewpoint planning is to make a tradeoff between two 

goals: minimizing the amount of overlapping area to speed up 

the digitization process and maintaining the accuracy of 

registration. There is overlap constraint between two 

consecutive scans. If this constraint cannot be satisfied, the 

next image may fail to register with the current scanning 

image. In general, large overlapping areas contain more 

features than their corresponding subsets. Therefore large 

overlapping areas can increase the probability of successful 

registration. However, in order to speed up the digitization, 

the next scanning image should cover as little overlapping 

area as possible. Additionally, less overlapping areas makes 

the ICP algorithm run faster. 

This paper provides a new algorithm for viewpoint 

planning. First, it generates a set of candidate viewpoints 

based on the selected overlapping areas in the current 

scanning image and virtual scanning images are generated for 

these viewpoints. Then the regular ICP algorithm is applied to 

simulate the registration between the current scanning image 

and the virtual scanning image. The performance of the 

registration will be evaluated, which determines the goodness 

of the corresponding viewpoint. We call this algorithm the 

Simulated ICP (SiICP) based viewpoint planning algorithm.  
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Given two independently acquired sets of 3D points, M

(model set) and D (data set), the ICP algorithm works to find 

a rotation R and a translation  which minimizes the 

following mean square error (MSE): 

T

         Fig. 6 a) The raw image.                  Fig. 6 b) The processed image 
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 Generally, when the overlapping area between two 
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scanning images to be merged is more characteristic, the 

MSE in the merged overlapping area will be less. Therefore 

the MSE can be treated as a performance index of the 

candidate viewpoint. Therefore, our problem is to find out the 

viewpoint from which the LRF sensor can cover the 

maximum unscanned area while the evaluated MSE in this 

viewpoint is within the predefined error tolerance. 

During the planning stage, the platform does not move to 

the candidate viewpoints to obtain the scanning images. 

Instead, virtual scanning images are created and registered, 

which gives the name of Simulated ICP. Hence, there are two 

problems to solve. One is how to decide the candidate 

viewpoints and the other is how to generate a virtual scanning 

image from each of the candidate viewpoints. 

As shown in Fig.8, let ),,( 111  yx  represent the position 

and orientation of the LRF sensor at the current viewpoint 

and

1O

),,( 222  yx  represent the position and orientation of the 

LRF sensor at the next viewpoint . Given 2O ),,( 111  yx

), 22

 and 

the LRF sensor scanning segment , when the overlapping 

segment  at viewpoint  is fixed, the position and 

orientation of the next viewpoint 

1S

1O2S

,( 2  yx can be 

calculated based on the geometry of the current scanning 

image. Therefore the remaining problem is to generate a 

virtual scanning image which contains the same overlapping 

area as the current image. 

The virtual scanning image can be generated from the 

overlapping subset of the current image. As shown in Fig.9, 

let P represent the current image, Q  represent the virtual 

overlapping subset. Then, 

},,,{ 21 nlllP  ! , where  is one scanning line, n is the 

total number of scanning lines in the current scanning image. 

il

},,,{ 21 nQlllQ  ! , , where  is the number of 

simulated overlapping scanning lines 

nnQ " Qn

Assume that two images to be aligned have been roughly 

preregistered, so that the relative rotation R  and translation 

 between these images depend on the motion error of the 

mobile platform. We only present one dimension of rotating, 

because the robot obtains 3D images in yawing pattern. Let 

 represent the virtual scanning image Therefore,  
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From our experience the uncertainty in translation 

is random and proportional to the distance D

between the current viewpoint and the next viewpoint. 

Similarly assume that the uncertainty in rotation angle 

),( uu yx

u  is  

         Fig.8 The top view of two  viewpoints of the robot. 

                

random and proportional to the orientation difference 

between 

         Fig. 9 The scanning image consists of n scanning lines. 

               

),,( uuu yx1  and 2 ,  can be written as follow: 

))(,0( 2xNxu ,- . 21 xxx )!,

))(,0( 2yNyu ,- . 21 yyy )!,

))(,0( 2 / ,- Nu 21

, where 

, where 

, where    )!,

.  and where / are constants. The regular ICP is applied 

between the current image Q  and the virtual scanning image 
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If the performance index E is greater than the predefined 

accuracy, we increase the number of the overlapping 

scanning lines . Otherwise we decrease .

Overall, the essential idea for the SiICP is to find out the 

minimum  that the correspondent MSE 1 2E , where 2 is

the predefined accuracy. 
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In real registration between two images, the sizes of the 

overlapping area from two images can not be exactly the 

same. Therefore  is rewritten as 

, where                     (5)

                                                    (6) ! + *'" *
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The worst scenario is that the scanned surface is featureless, 

so that the minimum E is larger than the predefined accuracy. 

As a default method, our algorithm will set the overlapping 

segment to be 80% of the scanning segment 12 8.0 SS   to 

make the robot move to .2O

The pseudo code of our viewpoint planning algorithm is as 

follows. 

Viewpoint Planning Algorithm

1. For nnQ ! " , "  is from 0.2 to 0.8. 

a. Select a subset  from Q P as a model. 

Fig. 10 The  simulated 3D model (top view). b. Select a subset  from  (eq. (5)). 'Q Q

c. Calculate the position of the next virtual 

viewpoint based on the selected model Q .

d. Generate a random rotation matrix R  and a 

translation vector T  (eq. (2)). 

e. Generate a virtual scanning image  from 

 (eq. (6)). 

"Q

'Q

f. Run the ICP between  and  to calculate 

the minimum mean square error  (eq. (3)). 

Q "Q

E

g. If  is less than the predefined accuracyE # ,

then exit. 

2. Move to the next viewpoint. 

6 EXPERIMENTAL RESULT

To demonstrate the usefulness of the low-cost mobile robot 

and the effectiveness of our algorithm for viewpoint planning, 

we present test results from a simulated 3D digitization in 

Matlab and from a real 3D digitization experiment. 

6.1 3D Digitization Simulation 

Fig. 10 is the top view of the outline of simulated 3D model. 

The dimension of the model is about 40 cm and there 

are totally 60,000 points. This model consists of some typical 

surfaces (e.g. sine surface and flat surface). Since flat surfaces 

do not contain much constraint, it allows two surfaces to slide 

against each other when they are merged together. Vertexes 

and gaps have more constraint, so that they contain more 

features. 

5030$$

Fig. 11 is the top view of the result of the 3D digitization. 

Fig. 12 (a) shows the 3D view of the model and Figure.12 (b) 

shows the digitization result. The star points show the 

position of all viewpoints.  From Fig.11 we can see that if the 

surface is characteristic enough (e.g. with large curvatures or 

gaps), the next viewpoint is far from the current viewpoint. 

Otherwise the distance between the current and the next 

viewpoint is closer. The predefined accuracy in this test is 

1cm, and every registration error (MSE) is under this 

predefined accuracy. 

6.2 Real 3D Digitization 

The proposed method has also been tested on real targets. 

Fig.13 shows the photo of the scene. The target to be scanned 

consists of three boxes. In this experiment, the mobile robot 

only scans the front side. 

Fig. 12 a) The simulated 3D model          Fig. 12 b) The simulation result

                  (3D view) .                                                 (3D view). 

Fig. 13 The real scene for 3D digitization 

Fig.11 The simulation result of the 3D digitization (top view). 
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Fig. 14 is the top view of the result of the 3D digitization 

while Fig. 15 shows the result in another view angle. The 

predefined accuracy in this experiment is 10mm, which is the 

same as the accuracy of the LRF sensor. As shown in Fig. 14, 

there are totally 7 viewpoints in this experiment which are 

represented by star points. The dashed lines show the 

scanning area of viewpoint  and , respectively. Since 

the surfaces acquired in viewpoint and  are very 

smooth, they do not contain sufficient features. The distance 

from  to  is obviously longer than the distance between 

and . This is because the LRF sensor in  can cover 

the edge of the small box, which causes the robot to move 

more distance.  

1O 3O

O1 2O

3O

3O

2O

4O

1O

7 CONCLUSION AND FUTURE WORK

This paper presents a low-cost automated mobile platform 

for digitizing 3D targets. The system consists of an iRobot, a 

small and light 2D LRF sensor and a compact computer 

eBox2300. Our platform is cheap and compact. Compared 

with other existing platforms, all parts in our platform are 

commercial off-the-shelf. There is no customized part, so that 

it is easy to duplicate our platform.  

To address the viewpoint planning problem, an algorithm 

based on Simulated ICP is presented as well. Based on the 

scanned image from the current viewpoint, the algorithm can 

find out the minimum overlapping area while ensuring the 

image acquired from the next viewpoint can be registered 

within the predefined accuracy. 

The aim of future work is to improve the accuracy of the 

3D digitization algorithm. Furthermore, based on the scanned 

image the algorithm can predict the shape of the surface to be 

scanned. This can speed up the 3D digitization process. 

O1 O2 O3 O4 O5 O6 O7
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