
An Efficient Approach to Bathymetric SLAM

Stephen Barkby, Stefan Williams, Oscar Pizarro, Michael Jakuba
ARC Center of Excellence for Autonomous Systems

School of Aerospace Mechanical and Mechatronic Engineering
University of Sydney, Sydney, NSW, 2006, Australia

s.barkby@acfr.usyd.edu.au

Abstract— In this paper we propose an approach to SLAM
suitable for bathymetric mapping by an Autonomous Underwa-
ter Vehicle (AUV). AUVs typically do not have access to GPS
while underway and the survey areas of interest are unlikely
to contain features that can easily be identified and tracked
using bathymetric sonar. We demonstrate how the uncertainty
in the vehicle state can be modeled using a particle filter
and an Extended Kalman Filter (EKF), where each particle
maintains a 2D depth map to model the seafloor. Efficient
methods for maintaining and resampling the joint maps and
particles using Distributed Particle Mapping are then described.
Our algorithm was tested using field data collected by an AUV
equipped with multibeam sonar. The results achieved by Bathy-
metric distributed Particle SLAM (BPSLAM) demonstrate how
observations of the seafloor structure improve the estimated
trajectory and resulting map when compared to dead reckoning
fused with USBL observations, the best navigation solution
during the trials. Furthermore, the computational run time
to deliver these results falls well below the total mission time,
providing the potential for the algorithm to be implemented in
real time.

I. INTRODUCTION

Bathymetric maps have proven to be an invaluable re-
source in marine applications such as seafloor monitoring,
pipeline surveys, marine habitat monitoring and salvage
missions [1]. Utilizing a multibeam depth profiler provides
the high resolution, high coverage bathymetry needed to map
out large areas of seafloor quickly and accurately, assuming
an accurate navigation solution is available [11]. On survey
ships and Autonomous Underwater Vehicles (AUVs) this
is most commonly achieved using a high precision Inertial
Navigation System (INS) coupled with an Attitude Heading
Reference System (AHRS), though this is often an expensive
option. While AUVs cannot receive GPS observations of
their location underwater, an Ultra Short Baseline (USBL)
acoustic positioning system can be used to yield range
and bearing measurements between the AUV and a support
vessel. By using the GPS/Inertial on the ship these obser-
vation can be georeferenced to provide an observation of
the vehicle’s position while it is underway. However, such
a setup provides position estimates less accurate than an
equivalent GPS fix and requires the support ship to actively
maintain the AUV within the USBL’s range for the duration
of the mission. This problem is further compounded in deep
water deployments where the distances between the ship and
the vehicle are large.

An alternative is to use the map being built to improve the

navigation solution by performing Simultaneous Localization
And Mapping (SLAM). This is commonly undertaken using
feature based techniques that rely on identifying distinct
landmarks whose uncertainty in position can be modeled and
parameterized accurately [12]. Unfortunately the unstruc-
tured nature of the underwater environment does not lend
itself well to feature-based modeling techniques. Features,
such as peaks and troughs in the seabed, are difficult to
identify and model reliably and are typically of low spatial
density.

With this in mind we present an algorithm that performs
bathymetric SLAM efficiently in an open underwater envi-
ronment without needing to explicitly identify features in the
seabed. Instead a more general gridded map representation
is implemented. The algorithm is capable of running in real
time and at high altitude, lending itself well to large scale
mapping efforts undertaken by AUVs where high precision
localization through GPS is unavailable.

The remainder of this paper is organized as follows.
Section II begins by outlining related work. Section III
then details the Bathymetric distributed Particle SLAM (BP-
SLAM) algorithm. Section IV goes on to present the results
of applying our algorithm to a real bathymetric survey.
Finally, Section V summarizes our findings.

II. RELATED WORK

Bathymetric maps are traditionally built using a gridded or
point cloud model of the seafloor with a deterministic model
of the vehicle pose estimate [1]. In this case it is sufficient
to generate the map by estimating the depth at any given
location with the mean of the depth observations there.

One approach to bathymetric SLAM that uses a point
cloud model divides the temporal sequence of bathymetry
into submaps, assumed to be error free [9]. Pairwise match-
ing of overlapping submaps further constrains the vehicle
trajectory and submap origins using a delayed state Kalman
filter. While this technique is effective, it is incapable of
addressing errors within individual submaps which limits the
overall accuracy of the final map. In addition, the tradeoffs
in complexity, accuracy and matching performance based on
the size and number of submaps have not been fully explored.

The approach utilized in this paper is a gridded model
that maintains a single estimate of seabed depth in each
grid cell, along with an uncertainty. While this enforces
a maximum resolution on the map it also allows it to be

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 219

quickly updated with observations of varying uncertainty.
Provided that observations of seabed depth can be accurately
modeled as Gaussian, each estimate and uncertainty can be
quickly updated using a single state Extended Information
Filter (EIF) whenever a grid cell is given a new observation.

To account for uncertainty in navigation we implement
a particle filter. Particle resampling can then be performed
based on the self-consistency of each particle’s map, reducing
the uncertainty in the trajectory upon re-observing previously
explored terrain. One of the disadvantages of this approach
is that it requires entire maps to be copied and destroyed
each time a particle is resampled, therefore becoming com-
putationally expensive for large numbers of particles. Fortu-
nately a new map representation called Distributed Particle
Mapping [3] addresses this issue by efficiently maintaining
a joint distribution over maps and robot poses using a
single grid-like structure. The work of Eliazar et al. [4]
further describes techniques that can reduce the asymptotic
complexity of Distributed Particle SLAM (DPSLAM) to
constant/linear (amortized) time per iteration of the filter,
keeping it an efficient means of performing non-feature based
SLAM. Furthermore, to avoid the inefficiency associated
with sampling in high dimensions, states that possess a linear
substructure, subject to gaussian noise, can be marginalized
out and tracked instead with an EKF, a technique referred to
as Rao-Blackwellization [7].

Distributed Particle Mapping has already been adapted to
the problem of performing 3D SLAM in underwater tunnels
in real time [5]. Here 3D occupancy grids are used as
the map representation, efficiently managed with Deferred
Reference Counting Octrees. This method has proven to be
successful in generating a consistent 3D bathymetric map in
a closed cave environment, where the benefit of continuous
localization via measurement of the AUV’s proximity with
the surrounding cave walls is fully utilized. However, in
an open marine environment opportunities to localize are
often far more sparse. Furthermore, the algorithm relies
on additional bathymetry “looking back” along the path of
the vehicle being available, information that many AUV
platforms do not have access to.

Recently this approach was extended to mapping in a
deep sea environment [6]. While this new version was
successful in minimizing the navigation error accumulated
during descent, localization was only available after the map
building process had been carried out. This prohibited any
corrections in navigation during the map building process,
suggesting that there will be inconsistencies in the map that
will not be corrected by this technique.

Our technique adapts Distributed Particle Mapping to the
open underwater domain, utilizing an entirely different map
representation, observation model, weighting scheme and
final particle selection scheme to produce a self consistent
navigation solution and bathymetric map. These are the
principal contributions of this paper.

III. BPSLAM

A. AUV trajectory representation

The particle set St at timestep t is shown as follows:

St =

 x1t ... xNt

pID1 ... pIDN
i1t−1 ... iNt−1

 (1)

where xit = (xit , yit) is the hypothesized state vector for
particle i at time t, N is the number of particles used, pID
is the particle’s identification number and i is the particle’s
index into the particle set during the previous timestep (this
allows the extraction of all past poses predicted by any
given particle). Depth (zt), Euler angles (φt, θt, ψt), Velocity
(ẋt, ẏt, żt) and Euler angular rotation rates (φ̇t, θ̇t, ψ̇t) are
tracked using an EKF.

B. BPSLAM map representation

The key idea behind BPSLAM is to retain the original
particle’s map and have any new particles (children) that
are resampled from the original particle (parent) to point
to the parent’s map rather than copy the map themselves.
With this in mind the idea of extracting a particle’s map by
tracking the particle ancestry follows on naturally. Instead
of each particle adding/updating estimates in its own grid,
these estimates are first keyed with the particle’s ID and
then entered into a single global grid. Each cell in the global
grid thus contains an estimate for every particle or particle
ancestor that has observed that cell. The storage requirements
of this approach therefore rivals the simpler approach of
providing each particle with its own map. However the latter
requires the entire map to be copied whenever it is resampled.
For large numbers of particles and large maps this process
becomes inefficient, increasing the computational run time
exponentially (O(n2)) as more particles are used in the filter.

The list of estimates in the cell are referred to as an
estimate vector, where each entry in the estimate vector,
called an estimate node, contains the following items:
• Particle ID - The ID of the particle that owns the

estimate.
• Information - The Information Vector (ξ) and Informa-

tion Matrix (Ω) of the estimate.
• Timestamp - The time at which the estimate was last

updated.
The estimate at a given cell for a given particle is accessed
by searching through the estimate vector contained within
that cell for the last estimate that was made/updated by the
particle or its ancestors. BPSLAM thus requires that the
lineage of each particle be stored in an ancestry tree so
that the map for any current particle can be reconstructed
or modified at any time. The ancestry tree is represented
as a vector of ancestor particles, the N youngest of these
making up the particle set St. By recursively pruning our
ancestry tree of dead ancestor particles (those that produced
no children) and merging single children into their parents,
the number of ancestor particles is guaranteed never to
exceed 2N−1 [3]. By also recycling the IDs of dead particles

220

Fig. 1. An example of the map structure and ancestry tree used to store
estimates from different particles with a particle cloud size of N = 3.
Tracing chronologically backwards through any given particle’s ancestry
allows extraction of the most recent estimate belonging to it’s map, as shown
by the starred estimates that make up the map for particle 2. Particle 2 then
makes a new observation in cell (2,1), finding ancestor particle 0 holding
the most recent update for its map. Using an EIF this estimate is fused with
the new observation and added to the estimate vector in that cell, along with
the time the estimate was made and the ID of the particle that made it. The
ancestry tree is also updated with the new estimate.

when new particles are generated the ID of each particle can
be used as a direct pointer into this vector while keeping the
size of the ancestry tree fixed. Each ancestor particle retains
the following information:
• Parent ID - The ID of the parent that the particle was

resampled from.
• Child List - A list of all the particle’s children.
• Estimates - A list of all (x,y) locations where the

particle made an observation of seabed depth.
Figure 1 provides an example of the map representation and
associated ancestry tree used to maintain and extract the
maps when N = 3.

C. Particle propagation

The BPSLAM algorithm begins by initializing each par-
ticle with an estimate of x, y via GPS observations that are
available at the start of the mission. As the mission continues
the hypothesized state of each particle is propagated based
on the current state covariance matrix and the AUV vehicle
model. For this application constant velocity and rotation
rate models are used to approximate the vehicle dynamics.
Observations of velocity, depth and attitude are then used to
update the filter.

D. Particle weighting

When an observation is received, the particles are
weighted based on how well the observed swath
matches with their stored estimates of seabed depth
(E = [Ex, Ey, Ez]). Each observation of range, bearing
and along track angle z = (r, α, β) can be transformed into
an equivalent depth observation zD that is Gaussian, making
the probability distribution of the difference from prediction
also Gaussian. The particles can thus be weighted by the
likelihood that this difference is zero:

weight = P ((Ez − zD) = 0) =
e
− 1

2

(µEZ
−µzD)2

σ2
zD

+σ2
EZ√

2π(σ2
zD + σ2

EZ
)

(2)

Fig. 2. Relationship between observed Range (r), bearing (α), along track
angle (β) and the estimates of AUV state (xt) and location of the seabed
patch observed (E)

To achieve this, errors in the range, bearing and along
track angle observations are treated as Gaussian using the
Markovian observation model:

z =
(
r α β

)T = h(x,E) + w (3)

where w is noise associated with the measurements and is
assumed to be independent and Gaussian with covariance:

R = diag(σ2
r , σ

2
α, σ

2
β) (4)

and h is the measurement function. Note that the uncertainty
in bearing and along track angle are often quite small, arising
from the beamwidth of the sonar aperture. Figure 2 shows
the relationship between an observation z, the corresponding
along track (b), across track (a) and depth (d) observation
(with respect to the body frame), and the coordinate set of
the patch of seabed being observed (E).

From these relationships the measurement function h is
given as:

h =
(√

b2 + a2 + d2 tan−1(ad) tan−1(bd)
)T

(5)

The estimated observation, b, a and d can be calculated using
the global to body frame Directional Cosine Matrix Cbg with
the current estimates of roll (φ̂), pitch (θ̂) and heading (ψ̂)
for that particle. b

a
d

 = Cbg

 Ex − xt
Ey − yt
Ez − zt

 (6)

The mean of the depth observation µzD can be calculated for
a given observation z and vehicle state xt by inverting h to
take the observation z as input. σzD is a backwards transport
[8] of the covariance R through h and is calculated using:

σzD
2 = (HTR−1H)−1 (7)

221

where H is the jacobian of the measurement function. This
effectively approximates zD as Gaussian by linearizing about
the mean µzD .

The weighting factor described above can only be used
to govern whether the particle is resampled or not if a prior
estimate exists. If one does not exist we assume that the
particle is just as likely to be a good or bad estimate of the
true state, and thus do not include it in the resampling phase.

However, each particle has an entire swath of observations
that can be used to weight the particle. Furthermore, each
particle will often have a differing number of observations
that can be matched with an existing prior estimate. With
this in mind we use the rule that for a swath with B obser-
vations a particle should only be included in the resampling
phase if it has more than Bthresh observations for which
a prior estimate can be found. Bthresh is dynamically set
to equal the percentage of cells within the observation’s
swath window that get updated in that ping multiplied by
the number of observations in that ping. This ensures that
resampling will occur only when the observation’s swath
fully overlaps with an area previously explored. Decreasing
Bthresh will include more particles in the resampling phase
(e.g. those with swaths that only partially overlap previously
explored terrain) but comes with the tradeoff of using a less
informative likelihood to weight each particle against. This
reduced threshold can be chosen based on the amount of
overlap/loop closures expected during the mission.

E. Limitations on Mapping Resolution

A data association problem should be highlighted at this
stage as, although each state vector xt is treated as truth,
the uncertainty in range and bearing causes uncertainty in
the observation’s x, y location, more so at large grazing
angles and depths. This can result in matching an observation
to a neighboring incorrect grid cell and thus incorrect E
coordinate set if the observation is associated to the cell at
its mean x, y location. Several Data Association techniques
were investigated [2] to try and take into account the un-
certainty in the x, y plane but each were found to be too
computationally expensive for real time operation with large
numbers of particles.

Without handling this uncertainty in the x, y location, the
resolution of the bathymetric maps that can be generated is
limited. For any given observation we have a 95% confidence
that the error in r, α and β do not exceed 2σr, 2σα and
2σβ respectively. For a mission with expected maximum
range, bearing and along track angle rmax, αmax, βmax this
corresponds to across and along track error bounds of:(

aebound
bebound

)
= 2[rmaxcos

(
αmax
βmax

)
sin

(
2σα
2σβ

)
+2σrsin

(
αmax
βmax

)
cos

(
2σα
2σβ

)
]

(8)
Assuming the stability of our platform provides minimal
disturbances in roll and pitch, we can approximate the error
bound in the x, y location of the observation with aebound
or bebound, whichever is largest. This quantity can thus be

used to indicate the best resolution possible for mapping
before errors in our data association technique begin to
cause problems. Fortunately this maximum resolution is
more than adequate for the large mapping missions we wish
to undertake, as shown in section IV.

F. Particle resampling

Once the likelihood of each particle having the correct
pose has been calculated they are grouped together and nor-
malized. To avoid particle depletion, resampling is prevented
if the effective particle size is too large [7]. Particles that are
not resampled are removed from the ancestry tree along with
their estimates from the map structure. Each ancestor particle
maintains a list of the observations it has made, facilitating
their removal without needing to query each cell. The particle
removal and merging process is also done recursively, as
often a parent particle may have only one or no children left
after resampling, and thus requiring itself to be merged or
removed respectively.

G. Updating the map

After resampling, the surviving particles use their obser-
vations to update their respective maps1. Assuming a static
environment, where the seafloor does not change with time
over the period of a single survey, the update equations for
the EIF filter simplify to:

Ez(t−1) = Ω−1
t−1ξt−1 (9)

Ωt = Ωt−1 +HT
t R

−1
t Ht (10)

ξt = ξt−1 +HT
t R

−1
t [z− h(xt,Et−1) +HtEz(t−1)] (11)

H. Extracting the trajectory and map

The map for any given particle can be retrieved at any time
during the mission by extracting the estimates in each map
cell made by that particle. If no estimate is available then the
cell is iteratively checked for estimates made by the particle’s
ancestors, most recent first. The trajectory of each particle
can also be retrieved by backtracing through the past poses
of the particle’s ancestors, using the pointers stored within
St. At the end of the mission the best map and associated
trajectory is chosen by analyzing each remaining particle
and identifying the one which has the most self consistent
map [10]. Naively this error metric would bias those maps
with less overlap. However, by restricting analysis of map
self consistency to only the overlapping regions common to
all maps, this bias is removed.

IV. RESULTS

To test our algorithm on a real mission scenario, bathy-
metric and navigation logs from a survey undertaken by
our research class AUV Sirius were utilized [13]. The
survey was taken off the coast of Tasmania and contains
several pockmarks 30 metres in diameter and 3 metres deep

1The advantage of using an EIF over an EKF here is the ability to specify
zero information at initialisation, as opposed to infinite uncertainty. The EIF
is also computationally superior in this scenario as information is additive
and, as the depths are assumed stationary, there is no prediction used in the
filter.

222

Fig. 3. Tracklines produced by Dead Reckoning (red) and the BPSLAM
Filter (blue) using 400 particles. The evolution of the particle cloud is also
shown, changing from dark blue to dark red as the mission progresses.
The run times for this mission are also shown when different numbers of
particles are used in the filter.

(on average). Two orthogonal grid transects were carried
out underwater at an altitude of 20m. USBL observations
were also available and relayed to the AUV throughout the
mission. These observations are not used by the BPSLAM
filter but are reproduced here as a baseline to demonstrate
the best possible map that we can currently produce, and
how BPSLAM can significantly improve our results.

The maximum resolution that we can correctly map is
approximated by Eq. 8. Substituting in the mission parame-
ters limits the mapping resolution to no smaller than 0.53m.
However based on the size of the survey (335m by 350m),
the quality of our navigation sensors and the length of the
mission (113 minutes), a grid resolution of 1m is sufficient
for the BPSLAM filter to demonstrate its performance. Addi-
tionally, as this survey mission does several complete passes
over previously explored terrain, the parameter Bthresh can
be set to require full overlap over previously explored seabed
for resampling.

Sirius possesses an AHRS that provides the AUV with
observations of roll, pitch and heading. Depth observations
are obtained through a high precision pressure depth sensor
whereas along track, across track and depth velocity obser-
vations are provided by a Doppler Velocity Log (DVL). This
coupled with the design of Sirius, which promotes passive
stability in pitch and roll, justifies the inclusion of x, y states
into the particle filter, as they are the most prone to drift,
while leaving the remaining states to be tracked by the EKF.

Figure 3 demonstrates the BPSLAM filter performance
during the mission, as well as its computational performance
when different numbers of particles are used. Resampling is
able to remove pose solutions that cause inconsistency in
their maps while allowing those that agree to be propagate
and multiply. The uncertainty in the pose solution reduces
and the point cloud converges to a self-consistent solution.

This is particularly evident in Figure 3 near the East corner
of the map where the first resampling event occurs after the
vehicle has traveled nearly 2km. Here the particle cloud is
in the process of collapsing down (shown in light orange)
into a smaller set of more likely state hypotheses. Figure 4
presents the results of our filter running on our mission with
400 particles. Ground truthing for an AUV in an underwater
environment requires costly infrastructure, such as a Long
Base Line (LBL) acoustic transponder net, which we do
not have at our disposal. Instead the map self consistency
metric as described in section III-H is the error metric we
use to compare the map quality generated by the BPSLAM
filter to those generated with dead reckoning or USBL fused
navigation solutions.

From Figure 4(a) the pockmarks discovered during this
mission can be seen. However, the use of dead reckoning
as a navigation method has resulted in some blur. Errors
produced by bad sonar returns can appear anywhere in
the map and will not be consistent with nearby swaths.
However, inspection of Figure 4(d), which plots the standard
deviation in the observations used to create this map, reveals
that the inconsistencies are localized around the pockmarks
where sudden changes in depth occur. This suggests that
the blur is most likely caused by navigation error creating a
misalignment between successive surveys of each pockmark
i.e. ghosting. Figures 4(b) and 4(e) show how fusing of
USBL observations helped reduce ghosting in the map by
improving the navigation solution. However, map blur is still
evident, particularly along the northeast border.

Figures 4(c) and 4(f) demonstrate the power of the BP-
SLAM filter. The ghosting in the map has been reduced
significantly. As expected the BPSLAM filter has identified a
navigation solution that aligns all the pockmarks discovered
in the mission, without the need for specifying loop clo-
sure techniques or feature detection algorithms. The average
binned standard deviation of overlapping areas common to all
maps is 0.132m, 0.119m and 0.087m using dead reckoning,
USBL observations and the BPSLAM filter respectively,
further validating the BPSLAM filter’s superior performance.

Finally, the run times in Figure 3 verify that the algorithm
retained an asymptotic complexity of constant/linear (amor-
tized) time per iteration. Additionally only 7.62 minutes were
needed to process a mission 113 minutes long, validating its
potential use in real time applications.

V. CONCLUSIONS

In this paper we have presented an algorithm that utilizes
the BPSLAM filter to improve the accuracy of maps and
trajectories generated during bathymetric mapping missions
without having to explicitly model seabed features. Results
showed an improvement in both the map and the trajectory
when compared to using state of the art fused navigation
and low cost sensors without SLAM. In addition our algo-
rithm maintains an asymptotic computational complexity that
scales linearly with the number of particles used. The run
time of the algorithm was 15 times faster than that of the
mission itself, offering potential to be implemented in real
time.

223

(a) Dead Reckoning Bathymetric Map (b) USBL Fused Bathymetric Map (c) BPSLAM Bathymetric Map

(d) Dead Reckoning Deviation Map (e) USBL Fused Deviation Map (f) BPSLAM Deviation Map

Fig. 4. Bathymetric maps generated using our three different navigation solutions. A corresponding map of the standard deviation in observed depth for
each grid cell is also provided. Comparison shows the BPSLAM filter significantly reducing the mapping errors, the most prominent circled in black and
also highlighted by a decrease in standard deviation, when compared to the maps produced by pure dead reckoning and USBL fused navigation solutions.

ACKNOWLEDGEMENTS

This work is supported by the ARC Center of Excellence
programme, funded by the Australian Research Council
(ARC) and the New South Wales State Government and
the Integrated Marine Observing System (IMOS) through
the DIISR National Collaborative Research Infrastructure
Scheme. The authors would like to thank the Tasmanian
Aquaculture and Fisheries Institute (TAFI) and the Captain
and crew of the R/V Challenger for facilitating the data
collection used to validate this work. We would also like
to acknowledge the help of the students and technical staff
of the ACFR who keep our AUV operational, including
Ian Mahon, Matthew Johnson-Roberson, Duncan Mercer,
George Powell, Ritesh Lal, Paul Rigby, Jeremy Randle and
Bruce Crundwell.

REFERENCES

[1] S. Blasco. Application of Multibeam Surveying to Resource Mapping.
FIG XXII International Congress, TS4.3 Hydrographic Surveying I,
2002.

[2] J. Dezert and Y. Bar-Shalom. Joint probabilistic data association
for autonomous navigation. Aerospace and Electronic Systems, IEEE
Transactions on, 29(4):1275–1286, Oct 1993.

[3] A.I. Eliazar and R. Parr. DP-SLAM 2.0. Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Conference
on, 2:1314–1320 Vol.2, 26-May 1, 2004.

[4] A.I. Eliazar and R. Parr. Hierarchical Linear/Constant Time SLAM
Using Particle Filters for Dense Maps. Neural Information Processing
Systems Conference, 2005.

[5] N. Fairfield, G.A. Kantor, and D. Wettergreen. Towards particle filter
SLAM with three dimensional evidence grids in a flooded subterranean
environment. Proceedings of IEEE International Conference on
Robotics and Automation, pages 3575 – 3580, 2006.

[6] Nathaniel Fairfield and David Wettergreen. Active localization on
the ocean floor with multibeam sonar. In Proceedings of MTS/IEEE
OCEANS, 2008.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques
for Grid Mapping With Rao-Blackwellized Particle Filters. Robotics,
IEEE Transactions on, 23(1):34–46, Feb. 2007.

[8] R. Hartley and A. Zisserman. Multiple View Geometry. Cambridge
University Press, 2003.

[9] C. Roman and H. Singh. Improved vehicle based multibeam
bathymetry using sub-maps and SLAM. Intelligent Robots and
Systems (IROS), pages 3662–3669, 2005.

[10] C. Roman and H. Singh. Consistency based error evaluation for
deep sea bathymetric mapping with robotic vehicles. Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 3568–3574, 15-19, 2006.

[11] H. Singh, L. Whitcomb, D. Yoerger, and O. Pizarro. Microbathymetric
Mapping from Underwater Vehicles in the Deep Ocean. Computer
Vision and Image Understanding, 79:143–161, 2000.

[12] S.B. Williams. Efficient Solutions to Autonomous Mapping and
Navigation Problems. PhD thesis, Australian Centre for Field Robotics
- The University of Sydney, 2001.

[13] S.B. Williams, O. Pizarro, I. Mahon, and M. Johnson-Roberson.
Simultaneous Localisation and Mapping and Dense Stereoscopic
Seafloor Reconstruction Using an AUV. Springer Tracts in Advaned
Robotics, 54:407–416, 2009.

224

