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Abstract— An unmanned ground vehicle with the ability to
change directions without a significant loss in speed would
have superior mobility in confined spaces and tight corridors
compared to Ackerman-steered or skid-steered vehicles. Om-
nidirectional vehicles, which can move in any planar direction
regardless of their current kinematic pose, inherently have this
capability. However, most omnidirectional vehicle designs are
not practical for outdoor use because they are based on special-
ized wheels that can easily become clogged with dirt and debris.
This paper presents a dynamic model of an omnidirectional
UGYV designed to operate in outdoor, real-world environments
at speeds high enough to excite the dynamics of the vehicle. The
analysis includes derivation of vehicle’s equations of motion and
a control strategy using inverse dynamics. Simulation results are
shown to validate the model.

I. INTRODUCTION

Unmanned Ground Vehicles (UGVs) are being used ex-
tensively in a variety of applications including military use,
exploration, and disaster recovery [1], [2], [3]. In these
applications, it is important that the UGVs maintain a high
level of agility when operating in narrow passages, confined
spaces, or cluttered environments. Agility is defined here as
the ability to change direction without a significant loss in
speed. This would allow a UGV to travel at a higher average
speed, which will reduce its exposure to dangerous situations
and allow it to complete its task in less time. The UGV will
be better equipped to actively avoid hazards, especially those
that are detected at close range.

The majority of UGVs being utilized in the field are
either Ackermann or skid-steered [4], neither of which are
inherently agile. However, an omnidirectional UGV—defined
here as being capable of moving in any planar direction
regardless of its current pose—is intrinsically agile, at least
at low speeds. One of the goals of this project is to validate
this claim for higher speeds. Most omnidirectional vehicles
to date have been designed to operate on flat, clean, indoor
surfaces. These vehicles usually utilize specialized wheels
(e.g. [5], [6], [7]) that contain parts that can easily become
clogged with dirt and debris. This prevents the designs from
being implemented in outdoor environments.

This paper focuses on an omnidirectional vehicle design
based on the Active Split Offset Caster (ASOC), first de-
scribed in [8] (see Fig. 1). The ASOC is composed of two
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Fig. 1. Illustration of an Active Split Offset Caster (ASOC).

independently powered wheels that are “split” a distance
Lg from each other and “offset” a distance Lo from an
axis, «, that is free to rotate 360°. It can be shown that
omnidirectionality can be achieved by connecting two or
more ASOCs with rigid link at the «-axis [8], [9].

The design was chosen because it uses conventional
wheels, can easily be coupled with classical suspension
designs, has low scrubbing torque, and has a high kinematic
isotropy value [10], [11], [12]. Conventional wheels make
the UGV suitable for outdoor terrain and the suspension
system allows it to operate on rough terrain and more easily
traverse obstacles. Scrubbing torque is a measure of how
much torque is lost as the wheels slip laterally during a turn,
and the ASOC-based design has been shown to be superior
to other designs in this regard [9]. Kinematic isotropy is
defined as the condition in which a robot possesses a constant
input/output velocity ratio for all possible output velocity
directions [11]. It is essentially a measure of how close a
robot is to a singular configuration. Ideally an omnidirec-
tional robot should possess a kinematic isotropy measure of
1.0 for all joint configurations, which means that it would
not have a preferred direction of travel. An ASOC-based
omnidirectional UGV is more agile than other omnidirec-
tional vehicles that use conventional wheels [13], [14]. For
example, those robots are capable of moving sideways and
rotating; however, they must stop and reorient their wheels
before doing so, which means they have no inherent agility.
Note that a high level of kinematic isotropy infers a high-
level of agility, but the converse is not necessarily true—one
could imagine a highly agile UGV that takes advantage of
dynamic effects (e.g. controlled side slip) to gain agility.
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Fig. 2. CAD rendering and photograph of the prototype ASOC and the
omnidirectional UGV comprised of four ASOCs. The distance between two
opposing ASOCs is 84 cm.

The work presented here is based on the design of a
man-portable omnidirectional UGV weighing approximately
30kg and capable of reaching 1.4m/s (see Fig. 2). With
low vehicle mass and high speeds, vehicle control becomes
more important than with previous implementations of the
design. For example, a similar drive system was used on
an assistive device that helped elderly people walk. It was
assumed that the system was quasi-static, and thus only a
kinematic controller that calculated wheel velocities based
on the angular position of « was used [9], [15]. This paper
details the derivation of the dynamic equations of motion for
the system and compares an inverse dynamic controller with
the previously implemented kinematic controller.

In Section II the dynamic equations of motion for this
unique UGV are derived. Section III details the derivation of
the controller and compares the results with the previously
implemented kinematic controller.

II. VEHICLE DYNAMIC MODEL

In this section the dynamic equations of motion for an
omnidirectional UGV consisting of n ASOCs is presented.
Note that only two ASOC:s are required to achieve omnidirec-
tional motion (with the addition of passive caster to maintain
stability), but previous analysis has shown that three or four
ASOCs are optimal when operating on terrain of various
composition [11]. Fig. 3 shows a single ASOC in the inertial
reference frame, and the complete UGV using n ASOCs is
shown in Fig. 4. The nomenclature for the model is given in
Table I. Note that the external forces acting on the wheels
would need to be measured in real-time on an experimental
system. Although challenging, estimation of these forces is
not unprecedented [16], [17].

TABLE 1
NOMENCLATURE FOR THE DYNAMIC MODEL

Symbol Description

I Inertial reference frame

C Caster reference frame

Lo Distance between C and wheel axle

Lgs Distance between wheels

I Wheel radius

b Distance between caster c.o.m and wheel axle

L Distance of UGV c.o.m to caster axis

w; Vector of right and left wheel angular velocities
X; Position of it" caster in I, [ T Yi ]

a; Angular position of i*" caster w.r.t i1 axis

:kci Velocity of c.o.m of it/ caster along c1

ygi Velocity of c.o.m of it caster along co

X Position vector of UGV, [ X Y ¢ |

o} Angular position of UGV in I

FC, FZC Longitudinal forces from the wheels in C

Rg, Rz& Lateral forces from the wheels in C

cmj , Fyd: Forces acting on the axis of i*" caster in C

Jo Moment of inertia of caster about the vertical axis
w Moment of inertia of wheel about wheel’s rotational axis
J Moment of inertia of UGV body about vertical axis
m ASOC mass

My, UGV body mass

T Driving torque acting on i*" caster wheels

k Transmission gear ratio

Using inverse kinematics, the angular velocities of the
wheels are related to the velocity of point C by:

w; = Ak e
where:
1| cosay — L5 sinay;  sinoy + £ cos oy
A — = 1 QLLO 1 7 Qfo 1
7 . .
r | cosa; + 2LSO sina; sino; — QLSO CoS y;

The angular velocity of the ASOC is related to the wheel
velocities by:

, r
Gi =7 (wri — wis) 2
s
. . 7 1T .
Let X = [ %X{ ... %I ] . The velocities of casters can

be related to the robot velocity, X = [ X Y ¢ ]Tby:
%. = GX 3)

i2

Fig. 3. An illustration of a single ASOC in the inertial reference frame.
i1 and 7o are unit vectors in the X and Y directions.
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Fig. 4. Top view of the UGV model with arbitrary number of ASOCs.

where G is the associated Jacobian and can be computed as:

dzy
X oY 09
Oy Oy Oy
X oY 0¢
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0Ty 0Ty, 0Ty,
0X Y 0o
Oyn  Oyn  Oyn
0X Y ¢

Let the vector of wheel velocities be:

w=[wl .. W]"
and
A = Diag (Aq,....., Ap)
then w and %, are related by:
w=Ax, “)
Thus, .
w=AGX &)

Balancing forces and moments acting on c.o.m of ‘"
caster give the following:

miS,; = FS + FS — F, (6)
mijS; = RS + R, — F, (7)
L
Jods + (RS + RE) b+ FY (Lo —b) = (FS — FY) 5>
(8)

The non-holonomic no-slip constraint is given by the
condition that the velocity of the point at the center of axle
in the cp direction is zero. It is noted that this assumption
may not hold in outdoor terrain consisting of loose, granular
soil. This will be evaluated experimentally in future work.
From this it can be shown that:

Yo = bét; )

Differentiating (9) and defining, FY = [ Ff, FS ]T,

X0, = [ @5, ]T, and Fyy; = [ ES FS |7, then
(6), (7), and (8) can be written as:

Fu; = B;xS, + D,F¢ (10)
where:
2(Je+mb?) 2L
m = ——— 1 z©
B, =1 Ls , , D=1 _5
20 —2(Jo+mb?) 2|1 Léo

Ls

Using the transformation from C to I, (10) can be written
as:

F; = Ti:D;! (Fw; — BiXS,;) (11)
where:
I cosa; —sina;
Tic = sino;  cosay
3 3

Thus the equation for the forces acting on the « axis
of the it" caster, we can map these forces on the UGV
center using the Jacobian already given above. Let F =
[ FT FT ]T and M = Diag(my,my,J) then
forces and torques acting on the robot body can be given
by:

MX = G'F (12)

F can be written as:

F=D"! (FW—Bi&C) (13)

m
where:

D' = Diag (T1-D; ", ..., TLcD, )

n

B = Diag (B4, ...,B,)
T
Fy = [ Fiy Fiyn ]
T
so=[ag ]

The relation between the velocity of c.o.m of i*" caster in
C and %; can be given as:

¢, = Ei%; (14)
where:
COS (v; sin o;
E,=| 1 1
Lo sin o Lo cos a;
Expanding (14) for all n ASOCs yields:
¢ = Ex, (15)
where:
E = Diag (Eq,....,E,)
Using (3), (15) can be written as:
%¢ = EGX (16)
Differentiating (16) yields:
%C = (EG + EG) X + EGX 17)
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Equation (17) gives the acceleration of the center of mass
of the ASOCs. Now the wheel torques for each wheel
are introduced assuming that the friction in the driving
mechanism is negligible and defining:

R =rly, (18)

K = kI, 19)

T = [ T ‘rg ]T (20)
Jw = jwlan 2D

where I, is the 2n x 2n identity matrix. The actuator
dynamics can be given as:

Kr=Jwyw+ RFw (22)
Differentiating (5) yields:
o= (AG+AG)X + AGK (23)

Now using (12), (13), (17), (22), and (23) the direct
dynamic model of the UGV can be written as:

X-vY (R_lKT _ ZX) (24)

where:
Y=[M+G"™D' (R"JyA+BE)G]  G"D!
(25
Z- (R™JwA +BE) G+ (R JwA + BE) G (6)

Equation (24) represents the equations of motion for a UGV
employing n ASOCs. The procedure can easily be used to
find equations of motion of a UGV with any number of
ASOC modules.

III. INVERSE DYNAMIC CONTROL AND SIMULATION

This section details a inverse dynamic control algorithm
and compares the results to a kinematic controller used in
previous work [9].

A. Inverse Dynamic Model
From (12) we can write:

F = G"MX (27)

where G# is the right pseudo inverse of G. Also from (13)
we can write:

Fy = DF + BxS (28)

Then using (17), (22), (23), (27), and (28) the inverse
dynamic model can be written as:

r—K! (PX n QX) (29)
where:

. (JWA + RBE) G+(JwA +RBE)G  (30)

Linearized System

' X, X :

X \ 2 v :

; o«_|Outer|! a, |Inner| *
Trajectory f— Loop - Loop —>

: Qli,...,Oln dl,...,dn :

Fig. 5. Control architecture for the inverse dynamic model.

Q = RDG*M+ (JwA + RBE)G (31)
If the control input 7 is chosen according to:
=K' (PX + Qag) (32)

then, the combined system of (29) and (32) will reduce to:

X =aq, (33)

Setting aq to:

a, =X, —Kpé—Kpe (34)

In (34) Xd is the desired acceleration, e and & are the errors
in position and velocity respectively, and Kp and Kp are the
proportional and derivative gains. Substituting (34) in (33)
gives:

e+ Kpée+Kpe=0 (35)

Equation (35) represents the inverse dynamics control law
and provides the feedback linearization for trajectory track-
ing of UGV.

B. Simulation Results

The prototype vehicle has four ASOC modules as shown
in Fig. 2. The Jacobian, G, for the prototype vehicle with
four equally spaced ASOCs can be given as:

[1 0 —Lsing |
0 1 Lsing
1 0 —Lcoso
0 1 —Lsing
G= 1 0 Lsing
0 1 —Lcos¢
1 0 Lcoso¢
| 0 1 Lsing

On the experimental system, the angular position of the
ASOC modules can be directly measured. For the simulation,
angular positions and velocities are calculated using (2) and
(5). Table II shows the physical parameters used for the
simulation, which are based on the experimental system
described earlier and control parameters that were tuned to
yield suitable results.

Fig. 6 shows the desired trajectory of UGV in the XY
plane, the trajectory of the UGV using the inverse dynamics
controller, and the trajectory of the UGV using the kinematic
controller.
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TABLE I
PHYSICAL PROPERTIES USED IN THE SIMULATION

Parameter Value Units
My 1.98 kg
m 7.56 kg
Jw 0.0027 kg -m?
Je 0.1577 kg -m?
J 0.1450 kg -m?2
b 0.051 m
Lg 0.285 m
Lo 0.1425 m

r 0.08 m

L 0.415 m

k 1 —
Kp 3 —
Kp 1 —

T -
— Desired
= = Kinematic Control

* Inverse Dynamics Control

Fig. 6. Path tracking results comparing the inverse dynamics controller
with a kinematic controller

Fig. 7 displays the total path tracking error of the UGV as a
function of time when using the inverse dynamics controller
and kinematic controller. The results indicate that the inverse
dynamics controller performs significantly better than the
kinematic controller. The RMS error for the inverse dynamics
controller was 1.3 mm. For the kinematic controller the error
was 21.7 mm. The differences are especially evident when
the trajectory is discontinuous as a function of the path
length.

A second trajectory is shown in Fig. 8 for the UGV. This
trajectory was chosen to demonstrate the omnidirectional
capabilities of the UGV. The desired orientation of the
UGV was 0 degrees throughout the path. Fig. 9 shows the
orientation of the UGV in time for the tracked trajectory.
Note that the UGV maintains its orientation for the entire
path with negligible error for both inverse dynamics and
kinematic controller. Fig. 10 shows the absolute velocity of
the UGV for the step trajectory. For the inverse dynamics
control the RMS absolute velocity of the UGV for the path
is 3.21 m/sec, and for the kinematic control, the RMS
absolute velocity is 3.20 m/sec. The elapsed time to regain
the desired velocity at the edges was 1.0 secs both the
controllers. At the edges, the magnitude of the velocity does

60 - -
—Kinematic Control

= = =Inverse Dynamics Control

50F

Absolute Error (mm)

1 2 3 4 5 6 7 8 9 10
Time (secs)
Fig. 7. Path tracking error against in time.
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Fig. 8. Step trajectory for the simulation.

not fall below then 44.0% of the desired magnitude of 3
m/sec for the inverse dynamics control and approaches zero
for the kinematic control. Fig. 11 shows the angular position
of one ASOC in time. The ASOCs rotates by 7/2 radians
at the edges in approximately 0.5 s for both controllers.

IV. CONCLUSION AND FUTURE WORK

In this paper, the dynamic equations of motion for a unique
omnidirectional UGV consisting of an arbitrary number
of ASOCs were derived and an inverse dynamics based
controller was chosen to analyze the model. Using simu-
lations an inverse dynamics control law was compared to a

— Kinematic Control
- = -Inverse Dynamics Control
6F H A il

Angle (degrees)
[
T
i

Time (secs)

Fig. 9. UGV orientation in time for the step trajectory.
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Fig. 10. Absolute velocity of UGV against time for the step trajectory.

— Kinematic Control
100- - = -Inverse Dynamics Control

80

601

Angle (degrees)
IS
<

201

_ I I | I I I I | |
2(JO 1 2 3 4 5 6 7 8 9 10

Time‘(secs)

Fig. 11. Angular position of one ASOC against time for the step trajectory.

kinematic control law for the prototype vehicle. Simulation
results indicate that an inverse dynamic controller performed
significantly better than the kinematic controller and the
UGV was able to follow the desired trajectories with good
accuracy while exhibiting omnidirectional capabilities.

It is noted that the dynamic model derived in this paper
is for a robot operating on a planar surface, and that it is
not always appropriate to assume that outdoor terrains are
planar. Thus, future work will entail experimental validation
of these results in an outdoor environment. Based on the

results of those experiments, a full six DOF dynamic model
and controller may need to be derived and implemented.
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