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Fig. 2. CAD rendering and photograph of the prototype ASOC and the
omnidirectional UGV comprised of four ASOCs. The distance between two
opposing ASOCs is 84 cm.

The work presented here is based on the design of a

man-portable omnidirectional UGV weighing approximately

30kg and capable of reaching 1.4m/s (see Fig. 2). With

low vehicle mass and high speeds, vehicle control becomes

more important than with previous implementations of the

design. For example, a similar drive system was used on

an assistive device that helped elderly people walk. It was

assumed that the system was quasi-static, and thus only a

kinematic controller that calculated wheel velocities based

on the angular position of α was used [9], [15]. This paper

details the derivation of the dynamic equations of motion for

the system and compares an inverse dynamic controller with

the previously implemented kinematic controller.

In Section II the dynamic equations of motion for this

unique UGV are derived. Section III details the derivation of

the controller and compares the results with the previously

implemented kinematic controller.

II. VEHICLE DYNAMIC MODEL

In this section the dynamic equations of motion for an

omnidirectional UGV consisting of n ASOCs is presented.

Note that only two ASOCs are required to achieve omnidirec-

tional motion (with the addition of passive caster to maintain

stability), but previous analysis has shown that three or four

ASOCs are optimal when operating on terrain of various

composition [11]. Fig. 3 shows a single ASOC in the inertial

reference frame, and the complete UGV using n ASOCs is

shown in Fig. 4. The nomenclature for the model is given in

Table I. Note that the external forces acting on the wheels

would need to be measured in real-time on an experimental

system. Although challenging, estimation of these forces is

not unprecedented [16], [17].

TABLE I

NOMENCLATURE FOR THE DYNAMIC MODEL

Symbol Description

I Inertial reference frame
C Caster reference frame
LO Distance between C and wheel axle
LS Distance between wheels
r Wheel radius
b Distance between caster c.o.m and wheel axle
L Distance of UGV c.o.m to caster axis
ωi Vector of right and left wheel angular velocities

xi Position of ith caster in I,
[

xi yi

]

αi Angular position of ith caster w.r.t i1 axis

ẋC
mi Velocity of c.o.m of ith caster along c1

ẏC
mi Velocity of c.o.m of ith caster along c2

X Position vector of UGV,
[

X Y φ
]

φ Angular position of UGV in I

F C
ri , F

C
li

Longitudinal forces from the wheels in C

RC
ri, R

C
li

Lateral forces from the wheels in C

F C
xi, F

C
yi Forces acting on the axis of ith caster in C

JC Moment of inertia of caster about the vertical axis
jW Moment of inertia of wheel about wheel’s rotational axis
J Moment of inertia of UGV body about vertical axis
m ASOC mass
mu UGV body mass

τi Driving torque acting on ith caster wheels
k Transmission gear ratio

Using inverse kinematics, the angular velocities of the

wheels are related to the velocity of point C by:

ωi = Aiẋi (1)

where:

Ai =
1

r

[

cos αi −
LS

2LO
sinαi sinαi + LS

2LO
cos αi

cos αi + LS

2LO
sinαi sinαi −

LS

2LO
cos αi

]

The angular velocity of the ASOC is related to the wheel

velocities by:

α̇i =
r

LS

(ωri − ωli) (2)

Let ẋc =
[

ẋT
1 .... ẋT

n

]T
. The velocities of casters can

be related to the robot velocity, Ẋ =
[

Ẋ Ẏ φ̇
]T

by:

ẋc = GẊ (3)

Fig. 3. An illustration of a single ASOC in the inertial reference frame.
i1 and i2 are unit vectors in the X and Y directions.
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Fig. 4. Top view of the UGV model with arbitrary number of ASOCs.

where G is the associated Jacobian and can be computed as:
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Let the vector of wheel velocities be:

ω =
[

ω
T
1 .... ω

T
n

]T

and

A = Diag (A1, ....,An)

then ω and ẋc are related by:

ω = Aẋc (4)

Thus,

ω = AGẊ (5)

Balancing forces and moments acting on c.o.m of ith

caster give the following:

mẍC
mi = FC

ri + FC
li − FC

xi (6)

mÿC
mi = RC

ri + RC
li − FC

yi (7)

JC α̈i +
(

RC
ri + RC

li

)

b + FC
yi (LO − b) =

(

FC
ri − FC

li

) LS

2
(8)

The non-holonomic no-slip constraint is given by the

condition that the velocity of the point at the center of axle

in the c2 direction is zero. It is noted that this assumption

may not hold in outdoor terrain consisting of loose, granular

soil. This will be evaluated experimentally in future work.

From this it can be shown that:

ẏC
mi = bα̇i (9)

Differentiating (9) and defining, FC
i =

[

FC
xi FC

yi

]T
,

ẋC
mi =

[

ẋC
mi α̇i

]T
, and FWi =

[

FC
ri FC

li

]T
, then

(6), (7), and (8) can be written as:

FWi = Biẍ
C
mi + DiF

C
i (10)

where:

Bi = 1
2





m
2(JC+mb2)

LS

m
−2(JC+mb2)

LS



 , Di = 1
2

[

1 2LO

LS

1 −2LO

LS

]

Using the transformation from C to I, (10) can be written

as:

Fi = TI
iCD−1

i

(

FWi − Biẍ
C
mi

)

(11)

where:

TI
iC =

[

cos αi − sinαi

sinαi cos αi

]

Thus the equation for the forces acting on the α axis

of the ith caster, we can map these forces on the UGV

center using the Jacobian already given above. Let F =
[

FT
1 .... FT

n

]T
and M = Diag (mu, mu, J) then

forces and torques acting on the robot body can be given

by:

MẌ = GT F (12)

F can be written as:

F = D−1
(

FW − Bẍ
C
m

)

(13)

where:

D−1 = Diag
(

TI
1CD−1

1 , ...,TI
nCD−1

n

)

B = Diag (B1, ...,Bn)

FW =
[

FT
W1 .... FT

Wn

]T

ẍC
m =

[

ẍCT

m1
· · · ẍCT

mn

]T

The relation between the velocity of c.o.m of ith caster in

C and ẋi can be given as:

ẋC
mi = Eiẋi (14)

where:

Ei =

[

cos αi sinαi

−

1
LO sin αi

1
LO cos αi

]

Expanding (14) for all n ASOCs yields:

ẋC
m = Eẋc (15)

where:

E = Diag (E1, ....,En)

Using (3), (15) can be written as:

ẋC
m = EGẊ (16)

Differentiating (16) yields:

ẍC
m =

(

ĖG + EĠ
)

Ẋ + EGẌ (17)
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Equation (17) gives the acceleration of the center of mass

of the ASOCs. Now the wheel torques for each wheel

are introduced assuming that the friction in the driving

mechanism is negligible and defining:

R = rI2n (18)

K = kI2n (19)

τ =
[

τ
T
1 .... τ

T
n

]T
(20)

JW = jW I2n (21)

where I2n is the 2n x 2n identity matrix. The actuator

dynamics can be given as:

Kτ = JW ω̇ + RFW (22)

Differentiating (5) yields:

ω̇ =
(

ȦG + AĠ
)

Ẋ + AGẌ (23)

Now using (12), (13), (17), (22), and (23) the direct

dynamic model of the UGV can be written as:

Ẍ = Y
(

R−1Kτ − ZẊ
)

(24)

where:

Y =
[

M + GT D−1
(

R−1JW A + BE
)

G
]

−1
GT D−1

(25)

Z =
(

R−1JW Ȧ + BĖ
)

G +
(

R−1JW A + BE
)

Ġ (26)

Equation (24) represents the equations of motion for a UGV

employing n ASOCs. The procedure can easily be used to

find equations of motion of a UGV with any number of

ASOC modules.

III. INVERSE DYNAMIC CONTROL AND SIMULATION

This section details a inverse dynamic control algorithm

and compares the results to a kinematic controller used in

previous work [9].

A. Inverse Dynamic Model

From (12) we can write:

F = G#MẌ (27)

where G# is the right pseudo inverse of G. Also from (13)

we can write:

FW = DF + Bẍ
C
m (28)

Then using (17), (22), (23), (27), and (28) the inverse

dynamic model can be written as:

τ = K−1
(

PẊ + QẌ
)

(29)

where:

P =
(

JW Ȧ + RBĖ
)

G+ (JW A + RBE) Ġ (30)

Linearized System

Trajectory
Outer
Loop

Inner
Loop Robot

Xd aq
�

�1,...,� ��������n 1 n,...,

X, X

� �

Fig. 5. Control architecture for the inverse dynamic model.

Q = RDG#M+ (JW A + RBE)G (31)

If the control input τ is chosen according to:

τ = K−1
(

PẊ + Qaq

)

(32)

then, the combined system of (29) and (32) will reduce to:

Ẍ = aq (33)

Setting aq to:

aq = Ẍd − KDė − KP e (34)

In (34) Ẍd is the desired acceleration, e and ė are the errors

in position and velocity respectively, and KP and KD are the

proportional and derivative gains. Substituting (34) in (33)

gives:

ë + KDė + KP e = 0 (35)

Equation (35) represents the inverse dynamics control law

and provides the feedback linearization for trajectory track-

ing of UGV.

B. Simulation Results

The prototype vehicle has four ASOC modules as shown

in Fig. 2. The Jacobian, G, for the prototype vehicle with

four equally spaced ASOCs can be given as:

G =

























1 0 −L sinφ
0 1 L sinφ
1 0 −L cos φ
0 1 −L sinφ
1 0 L sinφ
0 1 −L cos φ
1 0 L cos φ
0 1 L sinφ

























On the experimental system, the angular position of the

ASOC modules can be directly measured. For the simulation,

angular positions and velocities are calculated using (2) and

(5). Table II shows the physical parameters used for the

simulation, which are based on the experimental system

described earlier and control parameters that were tuned to

yield suitable results.

Fig. 6 shows the desired trajectory of UGV in the XY
plane, the trajectory of the UGV using the inverse dynamics

controller, and the trajectory of the UGV using the kinematic

controller.
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TABLE II

PHYSICAL PROPERTIES USED IN THE SIMULATION

Parameter Value Units

mu 1.98 kg

m 7.56 kg

jW 0.0027 kg · m2

Jc 0.1577 kg · m2

J 0.1450 kg · m2

b 0.051 m

LS 0.285 m

LO 0.1425 m

r 0.08 m

L 0.415 m

k 1 —
KP 3 —
KD 1 —
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Fig. 6. Path tracking results comparing the inverse dynamics controller
with a kinematic controller

Fig. 7 displays the total path tracking error of the UGV as a

function of time when using the inverse dynamics controller

and kinematic controller. The results indicate that the inverse

dynamics controller performs significantly better than the

kinematic controller. The RMS error for the inverse dynamics

controller was 1.3 mm. For the kinematic controller the error

was 21.7 mm. The differences are especially evident when

the trajectory is discontinuous as a function of the path

length.

A second trajectory is shown in Fig. 8 for the UGV. This

trajectory was chosen to demonstrate the omnidirectional

capabilities of the UGV. The desired orientation of the

UGV was 0 degrees throughout the path. Fig. 9 shows the

orientation of the UGV in time for the tracked trajectory.

Note that the UGV maintains its orientation for the entire

path with negligible error for both inverse dynamics and

kinematic controller. Fig. 10 shows the absolute velocity of

the UGV for the step trajectory. For the inverse dynamics

control the RMS absolute velocity of the UGV for the path

is 3.21 m/sec, and for the kinematic control, the RMS

absolute velocity is 3.20 m/sec. The elapsed time to regain

the desired velocity at the edges was 1.0 secs both the

controllers. At the edges, the magnitude of the velocity does
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Fig. 7. Path tracking error against in time.
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Fig. 8. Step trajectory for the simulation.

not fall below then 44.0% of the desired magnitude of 3

m/sec for the inverse dynamics control and approaches zero

for the kinematic control. Fig. 11 shows the angular position

of one ASOC in time. The ASOCs rotates by π/2 radians
at the edges in approximately 0.5 s for both controllers.

IV. CONCLUSION AND FUTURE WORK

In this paper, the dynamic equations of motion for a unique

omnidirectional UGV consisting of an arbitrary number

of ASOCs were derived and an inverse dynamics based

controller was chosen to analyze the model. Using simu-

lations an inverse dynamics control law was compared to a
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Fig. 9. UGV orientation in time for the step trajectory.
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Fig. 10. Absolute velocity of UGV against time for the step trajectory.
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Fig. 11. Angular position of one ASOC against time for the step trajectory.

kinematic control law for the prototype vehicle. Simulation

results indicate that an inverse dynamic controller performed

significantly better than the kinematic controller and the

UGV was able to follow the desired trajectories with good

accuracy while exhibiting omnidirectional capabilities.

It is noted that the dynamic model derived in this paper

is for a robot operating on a planar surface, and that it is

not always appropriate to assume that outdoor terrains are

planar. Thus, future work will entail experimental validation

of these results in an outdoor environment. Based on the

results of those experiments, a full six DOF dynamic model

and controller may need to be derived and implemented.
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