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Abstract— Cameras are becoming a common tool for auto-
mated vision purposes due to their low cost. Many surveillance
and inspection systems include cameras as their sensor of
choice. How useful these camera systems are is very dependent
upon the positioning of the cameras. This is especially true
if the cameras are to be used in automated systems as a
beneficial camera placement will simplify image processing
operations. Therefore, a reliable positioning algorithm can
lower the processing requirements of the system. In this paper
several considerations for improving camera placement are
investigated with the goal of developing a general algorithm that
can be applied to a variety of systems. This paper presents this
algorithm for placement problem in the context of computer
vision and robotics. Simulated results of our method are then
shown and discussed, along with an outline of future work.

I. INTRODUCTION

The ratio between the amount of information that can be
collected by a camera and its cost is very high, which enables
its use in almost every surveillance or inspection task. For
instance, one may argue that we can place thousands of
cameras since they are cheap. The downside however, is
that monitoring them can be very tricky and cumbersome.
In these cases, it is not feasible for a group of human oper-
ators to simultaneously monitor all the cameras effectively.
Programs have to be developed to help the operators succeed
in their tasks. These programs are faster and more accurate
when the surveilling cameras are placed appropriately.

Cameras can be mounted on mobile autonomous robots
for surveillance or scouting purposes. These robots will
be inexpensive in comparison to other robots using more
complex sensors such as lasers. A system that could control
the placement of these mobile robots in order to collect the
largest possible amount of information would enhance the
robots’ usefulness.

Cameras can also be used to increase efficiency in au-
tomated assembly lines where repetitive tasks may cause a
human monitoring the line to become bored or fatigued and
thus miss critical errors. Replacing humans with automated
systems for these tasks will increase the production speed
of the assembly line and reduce the risk of missing faulty
products, but in order for such an automated system to have
good results, the system has to have the best possible view
of the products it is monitoring.

The effectiveness of these camera systems is heavily
dependent upon their physical placement. Thus, it seems
advantageous to dedicate computational effort to determine

the optimal viewpoints for these systems. However, camera
placement is very dependent on the task the camera system
has to perform and therefore any placement system that
ignores the task at hand will not do well. For example gait
classification needs different visual cues than face recogni-
tion. The goal of this work is to assess different cues that are
important for different tasks and give mathematical functions
to quantify these features. It is hoped that the simple and
parametric functions found for these few example situations
can be used in other situations since the features are thought
to be universal to the placement problem.

After the discussion of related work, this paper will discuss
the quality functions that were developed to describe the
placement problem for three different tasks. Results from
simulated placements using this algorithm will then be
presented and areas of future research will be discussed.

II. RELATED WORK

As early as 1987 O’Rourke described the placement
problem in [1], where he discusses how to place guards in
order to cover all the edges of a polygon. This constitutes
the so called Art-Gallery problem. The proposed algorithms
give the necessary positions of guards in order to achieve
this task. However, the assumptions are strong, such as the
assumption of a 360 degree field of view for the cameras as
well as no image degradation with distance.

In [2], Cowan and Kovesi describe a method of computing
the optimal camera placement for different task requirements.
Cowan and Kovesi show that geometric relationships can
be found between these task requirements and the camera
locations. In this approach each requirement is considered
individually first, and the 3D region of viewpoints that
satisfy this requirement is calculated. The intersection of the
different regions gives the set of acceptable camera locations.

Similar to Cowan and Kowesi in [2], Tarabanis et al.
[3], [4] develop strategies that achieve an optimal placement
with a certain degree of satisfaction. This placement strategy
is based on four different constraints that are translated
into equations. These are used to build a cost function that
expresses the degree of satisfaction of a placement. Abrams
et al. [5] extends this work from the static to the dynamic
case by recomputing the static constraints at each time step.

A more recent placement strategy was devised by Chen
et al. [6], [7]. Chen introduces a metric that allows for the
measurement of the 3D position uncertainty of a moving
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target. The quality metric that has been devised includes
a probabilistic occlusion model, which constitutes the main
contribution of Chen’s work.

Another strategy that also uses a probabilistic modeling
of occlusions was developed by Mittal and Davis [8]. In this
work probabilistic models are used in order to analyze the
average cases whereas a deterministic approach is used in
order to analyze worst case scenarios.

All these strategies assume a priori knowledge of the en-
vironment. Cowan and Tarabanis also assume some previous
knowledge about the observed object itself. The strategy of
this paper is different from these approaches in that it has a
minimal set of a priori knowledge about the target and no a
priori knowledge of the environment. It gains its knowledge
from observation and uses this knowledge in order to place
the cameras. Three different tasks will be discussed in the
following section and general shared features will be found
that can be used for defining the placement problem.

III. CAMERA PLACEMENT

A. Description

We investigate the possibility of introducing a quality
metric for camera placement that can be used for three dif-
ferent tasks: gait classification, face recognition, and people
counting.

Gait classification is the task of telling apart gaits such as
walking and running given a series of test images from a
target. In [9] and [10] gait classification was investigated. In
these papers, the cameras are to be placed to facilitate the
algorithm to classify gaits. This means being able to see a
person from the side at a shallow angle to be able to observe
the stride. Thus, in these papers, the cameras were placed
perpendicularly to the walking direction.

Face recognition is the task of matching a face in an image
to a database of sample face images. In [11] Brunelli and
Poggio investigate face recognition. Similar work has been
done by Pentland et al. in [12]. In these two cases the people
have to be photographed from the front in order to be able
to make comparisons. The more a camera moves to the side,
the less reliable the algorithm becomes. Face recognition
algorithms try to be robust to these angle changes, but their
task is greatly facilitated if the camera was placed well before
the actual processing.

People counting is the task of estimating the number of
people in crowded groups. In [13], [14] and [15] work has
been done in this area. In all of these articles, the best view
for cameras is directly above the crowd of people. This point
of view tries to eliminate one of the main problems in group
counting, which is self-occlusions of the people within the
group.

To summarize, gait classification needs placement perpen-
dicular to the gait direction and face recognition requires
a placement facing the gait direction. Both of these need a
shallow angle at the target in order to get relevant information
from the images. People counting on the other hand works
best if the camera is placed above the target.

(a) Without foreshorten-
ing

(b) With foreshortening

Fig. 1. This figure the foreshortening effect. When the camera is placed
perpendicularly at the desired object in blue (1(a)) it is able to collect better
information than when the camera points obliquely at the object (1(b)).

As can be seen, these tasks require three different place-
ment strategies. However, there are enough similarities be-
tween them that a single framework can be developed that
solves all three. For example, both face and gait recognition
require a good resolution image of the subject from the
correct angle. The angle is thus a variable of the placement.

The setup for the placement system is as follows. First,
we install a main calibrated camera that observes the entirety
of a scene. From this camera’s images we extract the
movement of people through the scene by using motion
tracking. Specifically we use the method from [16] but any
other form of tracking people would work. Once we have
this information, we use quality functions to determine the
placement of mobile cameras that enable the realization of
the task.

B. Quality Function

We are investigating three different effects: foreshortening,
ground coverage, and resolution.

1) Foreshortening: The foreshortening effect impacts the
quantity of information that can be extracted from an obser-
vation. Fig. 1 gives a schematic view of this point.

We observe that a projection into the perpendicular plane
to the normal of the camera gives the measure of information
we can gather. This is why we are using a cosine in Eq. (2).

The way the algorithm manages the foreshortening is the
following. Once the trajectories of the people in the scene
have been extracted, the data is discretized. We are assuming
that people are moving on the ground plane and use a view
from above projection onto the ground, so that we have 2D
data to work with. To each point the direction of the moving
person at that point is attached. Then the datapoints on the
direction and on the position are clustered. Finally, we define
vectors −→a and

−→
Na as the mean vector of the cluster and the

normal vector to the mean vector, respectively (Fig. 2). The
vectors −→a ,

−→
Na and −→a ×

−→
Na form a basis in 3D space.

Depending on which task is to be accomplished, a vector
−→v is defined in this basis. This vector supports a cone that
limits the visibility of the object to the camera. The angles γ
and δ define the half angle of the cone that provides a good
view for the camera and the half angle of the cone from the
camera, respectively. The angles φ and θ give both the angle
from the normal of both cones to the vector connecting the
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Fig. 2. This figure shows the vectors a in blue and Na in red defined in
III-B.1. The black dots correspond to the discretized position and the black
arrows are the directions of the moving people. M is the mean point. The
dashed lines correspond to the convex hull of the points in the cluster.

Fig. 3. This figure shows in a top view, the angles γ and δ, which are
the half angles of the cones defined along with the angles φ and θ. Point
C indicates the camera position and M the center of the observed cluster.

position of the camera and the mean cluster position. Fig. 3
gives a view on these angles.

For face recognition the cone supported by vector −→vf is to
be aligned with the direction of the path and thus

−→vf =
(
1 0 0

)T
.

For the people counting task the camera should be placed
overhead as much as possible and thus the cone should be
pointed upwards so that

−→vp =
(
0 0 1

)T
.

For gait classification the cone supported by vector −→vg1
should point perpendicularly to the moving direction and thus

−→vg1 =
(
0 1 0

)T
.

Since we can choose either side of the paths to place the
cameras, we could equally use the opposite of this vector.
This comes from the fact that for gait classification, it does
not really matter from which side the target is observed. The
classification algorithm will perform equally well on both
sides and thus

−→vg2 =
(
0 −1 0

)T
.

Fig. 4 shows these different vectors in relation with the
direction vector −→a .

Once we have decided which cone to use, we can define
the following function:

Fig. 4. This figure shows the vector a with the different vectors that define
the cone orientation. Vector vf in blue for face recognition, vp for people
counting in green and vectors vg1 and vg2 for gait classsification in red.

QF = g (θ, γ)︸ ︷︷ ︸
camera

· g (φ, δ)︸ ︷︷ ︸
cluster

, (1)

where g takes arbitrary real numbers and is defined as,

g (x, y) =

{
cosx if |x| < y

0 otherwise.
(2)

The function QF gives the quality function corresponding
to the foreshortening.

2) Ground Coverage: Once we have computed the direc-
tion clusters and the foreshortening, we use this information
again in the computation of the ground coverage term. In
order to estimate the people density of a given region we
take Parzen Windows [17] over the discretized data from
the motion clustering. After this computation we build a
convex hull around the thresholded data. These convex hulls
define the areas of most human density in the scene. We are
trying to maximize the coverage of these convex hulls with
the camera frustum (Fig. 5(a)). In order to achieve this, the
frustum is projected onto the ground plane. From there the
differences and intersections between the convex hulls and
the projected frustum can be computed (Fig. 6).

Placing the camera closer to the convex hull can achieve
this. However, getting too close to the target entails that the
frustum might not encompass the entire convex hull, which
would mean that even though good information would be
available locally, some parts of the hull would not be seen
at all.

The ground coverage function takes into account these
observations.

QG = exp
(
−βG

(
max(FG −A,A− FG)

FG

)αG
)

(3)

where A is the area of the computed convex hull as shown
in Fig. 2 (dashed lines) and FG is the area of the frustum of
the camera projected onto the ground plane.

The function behaves like a normal function with the most
weight when FG − A = 0. In the case of the whole convex
hull being covered by the frustum, the maximum of the
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(a) Projection into world ground
plane

(b) Projection into im-
age plane

Fig. 5. This figure shows the different projections that are done in order to
compute the quality functions. 5(a) shows the case for the ground coverage
term where the frustum is projected onto the world ground plane (III-B.2).
5(b) shows the case where the object is projected into the image plane
(III-B.3).

Fig. 6. This figure shows how the ground coverage gets analyzed. The
world and camera frames are given in red (x-axis), green (y-axis) and blue
(z-axis). The projected frustum in the ground plane is depicted in blue. The
convex hull on the ground is represented in black.

function is reached. If the convex hull completely encom-
passes the frustum, or the frustum completely encompasses
the convex hull without filling the entire frustum, the function
gives a smaller result. The most desirable would be for A to
completely fill FG.

The value αG changes the shape of the function depending
on the steepness the cost function is desired to have and the
value βG controls its width (Fig. 7).

3) Resolution: In order to define the resolution quality
function, we first build a simple model of a person. We
assume each person is a cylinder of height h and radius
r that we place on each of the discretized points from
section III-B.1. The values of h and r come from the known
average sizes of a person, and are the only a prior knowledge
required by the proposed algorithm. These cylinders are
projected into the image plane of the camera and from there,
a similar idea as in Section III-B.2 is used (Fig. 8). We try
to cover the complete field of view of the camera with the
projection of the cylinders. If the camera is too far away, and
the surface of the target is smaller than a threshold t, we set
the function to zero.

The function we use is the following:

(a) α = 1 β = 1 (b) α = 3 β = 1

(c) α = 1 β = 3 (d) α = 3 β = 3

Fig. 7. This figure shows the quality function QG for two different values
of αG and two different values of βG.

Fig. 8. This figure shows how the resolution gets analyzed. The world
and camera frames are given in red (x-axis), green (y-axis) and blue (z-
axis). A model (blue) is projected into the image plane (black). From these
projections, the computations of the areas are done.

QR =

{
exp

(
−βR

(
max(FI−S,S−FI)

FI

)αR
)

if S > t

0 otherwise
.

(4)
where S is the surface of the projected cylinder onto the

image plane and FI is the projected frustum onto the image
plane. αR and βR control the steepness and the width in a
fashion similar to the function in III-B.2.

The closer S and FI fit, the better information we get
(Fig. 5(b)). It is in this way that we use a similar idea as in
III-B.2.

The ground coverage and the resolution quality function
both try to find a balance between being able to cover
the entire data available and maximizing the gathered per
pixel information. If the camera gets closer to the convex
hull the per pixel information rises since getting closer
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Fig. 9. This figure shows the human density estimation through Parzen
windowing of the data. It is easily seen that the most dense region is the
area where both main paths’ directions cross.

(a) h = 4 (b) h = 6

(c) h = 9

Fig. 10. This figure shows the results of the experiment for ground
coverage. In all of the figures the camera points towards the intersection
of the path. The surfaces represent the quality of the positioning. The hotter
the region, the better the positioning is. It can be observed that the different
regions at the different heights line up with the direction of the camera.

means that more details become visible. On the other hand
however, even though the per pixel information becomes
higher, getting too close to the target reduces the field of
view of the camera and some information may be lost due
to the fact that the camera cannot see the target in its entirety
anymore.

Depending on the task that is to be accomplished we
can put more emphasis on the ground coverage term or the
resolution term by changing the different values of α and β.

IV. EXPERIMENTAL RESULTS

The experiments have been run on synthetic data in
Matlab. The input data is superimposed on the different
results in white (Fig. 10), blue (Fig. 11) and green (Fig.
12).

Fig. 9 shows the corresponding human density estimation.
It can be seen that the area of most human density is where
the paths cross. This is then in turn the area which the camera
is trying to capture.

(a) Clustering result (b) Gait classification positioning

(c) Face recognition positioning

Fig. 11. This figure shows the results of the experiment for foreshortening.
11(a) shows the initial clustering step. 11(b) shows the positioning for gait
classification and 11(c) shows the positioning for face recognition. It can
be observed both placements are almost orthogonal one to another.

Fig. 10 shows the result of the ground coverage function.
In all of the subfigures the camera points towards the main
intersection of the path. The hot regions in these figures
correspond to a good placement. It can be observed that the
different regions at different heights line up with the direction
of the camera, so that when superimposing them, the actual
direction could be seen. The different smaller acceptable
regions in Fig. 10(a) come from the shape of the human
density regions. In Fig. 9 there are two other distinct peaks
aside from the main peak which get captured in Fig. 10(a). In
Figs. 10(b) and 10(c) these same acceptable regions appear,
though they are less pronounced.

Figs. 11(b) and 11(c) show the result for foreshortening in
the case of gait classification and face recognition, respec-
tively. The same synthetic data was used as previously, on
which clustering was performed to get the necessary angles
for the computation (Fig. 11(a)).

Fig. 11 shows the impact of the foreshortening function. It
can be observed that the good placements (hotter regions) for
face recognition are orthogonal to the good placements for
gait classification. A single camera will have trouble covering
both clusters well at the same time however. Placing a camera
in a good position defined by this quality function, it will be
able to achieve its task well for one set of paths but less so
for the second set of paths. This suggests that a more cluster
centric approach might be appropriate, in which the use of
a single camera per cluster becomes paramount.

Fig. 12 shows the resolution quality function for three
different heights. The results are very similar to the ground
coverage function. The camera points towards the intersec-
tion and through the different heights, a single ray can be
followed. This particular angle is found because of the fact
that at the intersection, more cylinders are placed and a
camera scores a better result when its frustum is able to
cover several projected cylinders at once.
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(a) h = 4 (b) h = 6

(c) h = 9

Fig. 12. This figure shows the results of the experiment for resolution.
The surfaces represent the quality of the positioning. The hotter the region,
the better the positioning is. Similar to the ground coverage function, the
camera points towards the intersection of the path. It is in this area where
the frustum is most likely to be completely filled.

V. CONCLUSION

The aim of this work was the development of quality
functions for camera placement that could be used for three
different tasks. The main contribution of this paper is the
idea of not only considering geometric constraints on the
camera’s position with respect to the discovered paths, but
also take into account what the camera might see from a
certain position. This is achieved in the resolution problem
(III-B.3) by projecting simple models from the real world
into the image plane and comparing with the coverage of the
actual camera frustum in this plane. For the ground coverage
problem (III-B.2) the frustum is this time projected onto
the ground plane in the real world and this projection is
then compared to the convex hulls of the different computed
clusters. The results are promising in that they reflect the
expected placement for the different tasks. It may become
interesting to check how much information can be gained by
using several cameras covering each cluster separately rather
than having one camera trying to catch the entire scene by
itself.

VI. FUTURE WORK

The next step is to quantize the amount of improvement
in the different tasks gained from camera placement. This
will constitute the next set of experiments. We will use
some face recognition algorithms in different positions and
check empirically that our placement improves the software’s
capabilities. We will do the same for gait classification and
people counting algorithms. Another avenue of future work
will be to attempt to use this formulation outside of the three
applications for which it was designed. Great care was taken
to make the equations as general as possible, and we believe
this will allow the formulation to have expanded applications,
but more work needs to be done to be sure of this. A third
direction to explore will be the addition of probabilities into

our models in order to get a description of the scene that
may be more accurate by using better predictions of the
movements and densities of the targets. Finally, as the main
direction, the case of multiple cameras will be addressed in
the context of cooperative sensor networks.
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