
A Multi-Hypothesis Topological SLAM Approach for Loop Closing on

Edge-Ordered Graphs

Stephen Tully, George Kantor, Howie Choset, and Felix Werner

Abstract— We present a method for topological SLAM that
specifically targets loop closing for edge-ordered graphs. Instead
of using a heuristic approach to accept or reject loop clos-
ing, we propose a probabilistically grounded multi-hypothesis
technique that relies on the incremental construction of a
map/state hypothesis tree. Loop closing is introduced auto-
matically within the tree expansion, and likely hypotheses are
chosen based on their posterior probability after a sequence of
sensor measurements. Careful pruning of the hypothesis tree
keeps the growing number of hypotheses under control and a
recursive formulation reduces storage and computational costs.

Experiments are used to validate the approach.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the

task of incrementally building a map of the environment

with a robot while simultaneously performing localization

within that map. In the past decade, there has been an

intense research effort to solve this problem accurately and

efficiently. The methods introduced are based on three types

of maps: feature maps [1], [2], grid or sample based obstacle

maps [3], [4], and topological maps [5]–[7].

Topological maps are concise maps that represent an envi-

ronment as a graph, whose vertices are interesting “places”

and whose edges represent the paths between them. The

advantages of topological maps are their computational ef-

ficiency, their reduced memory requirements, and their lack

of dependence on metric positioning.

Loop-closing for topological mapping is the problem of

detecting when a robot has returned to a previously visited

vertex in the graph. This can be especially difficult for a

map with perceptual aliasing, where multiple “places” are

indistinguishable to the robot. To solve this problem, the

robot must reason about the connectivity of the graph via the

sequence of observations it obtains during an experiment.

The primary issue with many of the existing topological

SLAM techniques is that they commit to a loop-closure

heuristically when two observations appear similar. If the

loop-closing decision is incorrect, the algorithm cannot re-

cover and the resulting experiment will fail. We use a multi-

hypothesis approach that avoids this problem entirely by

storing a tree of possible hypotheses, each of which encodes

the robot’s state and a topological graph.

S. Tully is with the Electrical and Computer Engineering Department
at Carnegie Mellon University, Pittsburgh, PA 15213, USA. G. Kantor
and H. Choset are with the Robotics Institute at Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, USA. {stully@ece, kantor@ri,
choset@cs}.cmu.edu. F. Werner is with the Information Technology
Department at Queensland University of Technology, Brisbane, Australia.
felix.werner@nicta.com.au.

CMU Wean Hall Floor 6

0 1 2 3 4

5

6
78910

Fig. 1. This is a floor plan of Wean Hall at Carnegie Mellon University
with the Voronoi graph drawn to depict the topology.

The contribution of this work is the design of a tree

expansion algorithm specific to edge-ordered graphs, as well

as the introduction of a customized method for recursively

computing the posterior probability over the topological map

hypotheses. This posterior probability is based on a Bayesian

model selection criterion that prevents over-fitting. Lastly,

this work introduces a set of conservative pruning rules that

help reduce the number of hypotheses in the tree.

Our experimental evaluation relies on the sensor-based

incremental construction of the Voronoi diagram of an envi-

ronment with a mobile robot, as in [5]. The Generalized

Voronoi Graph (GVG) is the resulting topological graph

whose vertices are points of three-way equidistance and

whose edges are obstacle-free paths between vertices. See

Fig. 1 for an example map.

II. RELATED WORK

Many topological mapping methods commit to a loop

closure after observing a similar fingerprint or structural

characteristic to that of a vertex already in the map. Choset

et. al. [5] use the degree and equidistance measures at the

nodes of a Voronoi diagram to determine if the robot has

returned to a previously visited vertex. Similarly, Tomatis et.

al. [8] observe when the probability distribution over robot

positions splits into two peaks, suggesting a loop. In both

cases, the algorithm is susceptible to the perceptual aliasing

problem, in which many locations are ambiguous.

A multi-hypothesis approach is necessary to investigate

multiple loop closure proposals. Several other papers, besides

this one, investigate the use of a hypothesis tree to store

possible topological maps. Dudek in [9] constructs the tree

and eliminates hypotheses when they are inconsistent. Savelli

et. al. in [10] use a tree and analyze the affect of planarity to

reduce the number of hypotheses. Neither of these solutions,

though, computes a probability measure over the set of

hypotheses to infer the correct topology.

Another multi-hypothesis approach is one that samples

over the space of possible topologies [11]. This method

decides to split or merge vertices based on their metric

locations by penalizing the placement of nearby vertices.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4943

2 (1,3)
a) b)

2 (1,3)1 (4,2,3)

1 (4,3,2)

3 (2,4,1)4 (3,1) 4 (3,1) 3 (2,4,1)

Fig. 2. This is an example of two edge-ordered graphs. The values next
to each vertex are the vertex indices, while the parenthetical sequences
represent the edge-ordered neighbor lists associated to each vertex. The
first mapped edge for each vertex is shown with an arrow.

Although the algorithm is similar in its use of Bayesian

inference, we believe it may have difficulty closing large

loops with significant positioning error.

De et. al. [12] use an E-M algorithm to generate topolog-

ical maps that are consistent with the data. They incorporate

a model selection criterion to penalize over-fitting with

notable success. Unfortunately, their novel approach is only

applicable to graphs that have one or two cycles.

III. CONSTRUCTING A HYPOTHESIS TREE

We adopt a multi-hypothesis approach to SLAM. Each

hypothesis h stores the robot’s state on that graph, Xh

k
, as

well as a possible edge-ordered topological graph, Gh

k
, to

be defined shortly. The state is represented by the vertex

at which the robot is currently located, vh

k
, as well as the

edge from which the robot arrived at that vertex, αh

k
, thus

Xh

k
= (vh

k
, αh

k
). The subscript k represents the time step that

is associated with that hypothesis.

A. Edge-ordered Topological Graphs

For each hypothesis h, a possible topological graph is

stored, which, in our case, is an edge-ordered graph. This

type of graph can be represented by the number of vertices

Nh

k
and a set of circular neighbor lists Lh

k
(one list per

vertex), thus Gh

k
= (Nh

k
, Lh

k
), as in [13]. A neighbor list,

such as Lh

k
(vh

k
) stores the vertices in the graph that are

neighbors of vertex vh

k
in the order they occur (counter-

clockwise from the first mapped edge). An element of the

neighbor list Lh

k
(vh

k
, j) represents the neighboring vertex of

vh

k
along the j-th edge. Fig. 2 shows two edge-ordered graphs

with similar topologies but different edge-orderings.

For this work, we also consider partially explored maps.

In this case, a neighbor list in the graph contains one or more

entries marked as unexplored, which means, according to

that hypothesis, the robot has not yet traversed the edge

associated with that entry of the neighbor list.

B. Incremental Construction of a Hypothesis Tree

Our goal is to incrementally build a set of hypotheses

that can completely reproduce the possible map/state pairs

at every time step k. To do this, we maintain a hypothesis tree

where each level of the tree represents a different time step

in the experiment. Therefore, a level of the tree is indexed

with k and a hypothesis within that level is indexed with h.

The tree structure we maintain is similar to that in [7], [9].

The robot begins an experiment at one vertex in the map.

The robot has no other information except for the degree of

that vertex, δ0, which equals the number of edges emanating

from the vertex. Therefore, we initialize the root of the

hypothesis tree as follows: h = 0, k = 0, Nh

k
= 1, vh

k
= 0,

and αh

k
= 0. The circular list for the first vertex, Lh

k
(0), is

initialized as a list of length δ0 for which each entry is labeled

as unexplored. All hypotheses in the tree are ultimately

spawned from this initial root hypothesis.

The robot is continuously moving. At each time step k,

the robot chooses a motion input uk in order to transition

to another vertex. The motion input is a relative offset

from the previous arrival edge, and produces the following

departure edge βk for a new hypothesis that is spawned from

hypothesis h.

βk = (αh

k−1
+ uk) mod δk−1 (1)

After departing along edge βk, the robot drives to a new

vertex and then detects the number of edges emanating from

that vertex, which is stored as the degree δk.

We assume that the robot correctly performs the motion

input uk at each time step and therefore leaves the previous

vertex via the appropriate departure edge. This has been

an accurate assumption experimentally, most likely due to

the robust sensor-based control of the robot we use for

experiments. Nevertheless, we provide a discussion of how

to relax this assumption in Sec. VII.

Algorithm 1 Expanding the Hypothesis Tree

1: for all h ∈ Hk−1 do

2: [vh

k−1
, αh

k−1
, Nh

k−1
, Lh

k−1
]← LoadHypothesis(h)

3: βk = (αh

k−1
+ uk) mod δk−1

4: if Lh

k−1
(vh

k−1
, βk) = unexplored then

5: h′ ← CreateChildHypothesis(h)

6: Lh
′

k
= Lh

k−1

7: Lh
′

k
(Nh

k−1
+ 1, 0) = vh

k−1

8: for e = 1 to δk − 1 do

9: Lh
′

k
(Nh

k−1
+ 1, e) = unexplored

10: end for

11: Lh
′

k
(vh

k−1
, βk) = Nh

k−1
+ 1

12: AddChild(h′, Nh

k−1
+ 1, 0, Nh

k−1
+ 1, Lh

′

k
)

13: for v = 0 to Nh

k−1
− 1 with v 6= vh

k−1
do

14: for all α s.t. Lh

k−1
(v, α) = unexplored do

15: h′ ← CreateChildHypothesis(h)

16: Lh
′

k
= Lh

k−1

17: Lh
′

k
(v, α) = vh

k−1

18: Lh
′

k
(vh

k−1
, βk) = v

19: AddChild(h′, v, α, Nh

k−1
, Lh

′

k
)

20: end for

21: end for

22: else

23: h′ ← CreateChildHypothesis(h)

24: vh
′

k
= Lh

k−1
(vh

k−1
, βk)

25: αh
′

k
= e s.t. Lh

k−1
(vh

′

k
, e) = vh

k−1

26: AddChild(h′, vh
′

k
, αh

′

k
, Nh

k−1
, Lh

k−1
)

27: end if

28: end for

When the robot chooses a new motion input uk, we must

4944

R

R

R

R

R

R

1 (•,2)

2 (1,3)

3 (2,4)4 (3,5)

5 (4,•)

1 (4,2) 2 (1,3)

3 (2,4)4 (3,1)

1 (3,2) 2 (1,3)

3 (2,1)

1 (•,2) 2 (1,3)

1 (•,2) 2 (1,3)

3 (2,4)

1 (3,2)

3 (2,1)

2 (1,3)

4 (3,•)

3 (2,•)

a)

b) c)

d) e) f)

Fig. 3. This is an example of expanding the hypothesis tree due to robot
motion. Hypothesis (a) spawns (b) and (c) after one edge traversal. After
another edge traversal, hypothesis (b) spawns (d) and (e) while hypothesis
(c) spawns only (f). The location of R in the figure marks the robot’s state.

update the hypothesis tree by expanding all of the leaf nodes

of the tree (the leaf nodes being the set of hypotheses at time

step k − 1). The new hypotheses that are spawned become

the new leaf nodes of the tree for time step k. The algorithm

for expanding the tree is outlined in Alg. 1.

Alg. 1 expands all Hk−1 leaf nodes of the hypothesis

tree in the following way. If Lh

k−1
(vh

k−1
, βk) (the neighbor

of vh

k−1
that is associated to the departing edge βk) is not

unexplored, then we copy the hypothesis to a single child

hypothesis but move the robot’s state to the new vertex and

update the arrival edge. If Lh

k−1
(vh

k−1
, βk) is unexplored,

then the algorithm considers several possibilities that would

agree with hypothesis h. The first possibility is that the robot

traverses the unexplored edge and arrives at a new vertex

(one hypothesis is spawned for this possibility). Additionally,

the algorithm considers that a loop is closed and the robot

arrives at a previously visited vertex via one of its unexplored

edges. One hypothesis is spawned for each unexplored edge

in the graph except for the current departure edge.

Fig. 3 demonstrates the expansion of the hypothesis tree.

In this example, an edge traversal causes (a) to spawn

hypotheses (b) and (c). This accounts for the possibility of

either visiting a new vertex or closing a loop with vertex

1. After a second edge traversal, hypothesis (b) spawns

hypotheses (d) and (e) for the same reasoning. Hypothesis

(c), though, is a complete graph with no unexplored edges,

and therefore spawns just one hypothesis, (f), in which the

state has moved according to the robot motion.

IV. TOPOLOGICAL SLAM

In order to solve the problem of topological SLAM, we

must determine which hypotheses among the leaf nodes of

the hypothesis tree are likely to represent the true state and

the true map. To do this, we compute the posterior probability

of each hypothesis given a sequence of sensor measurements.

The hypothesis that better fits the sensor data will produce

a higher probability measure and is therefore more likely to

represent the true state and map.

A. Posterior Probability

During time step k, the robot leaves the previous vertex,

traverses an edge in the graph, and arrives at a new vertex. A

measurement ze

k
is obtained during the edge traversal (such

as a travel distance measurement) and a measurement zv

k
is

obtained when the robot arrives at the new vertex (such as a

range measurement to obstacles). The posterior probability

of a hypothesis is as follows,

p(Xh

k , Gh

k |z0:k, u1:k), (2)

where, as before, Xh

k
and Gh

k
represent the robot’s state and

graph respectively. Additionally, z0:k = (zv

0:k
, ze

1:k
) is the

collection of all measurements during the experiment, which

includes the edge measurement sequence, ze

1:k
, as well as

the vertex measurement sequence, zv

0:k
. The sequence u1:k

represents the motion inputs through time step k.

The posterior of Eq. 2 can be computed using Bayes law,

p(Xh

k
, Gh

k
|z0:k, u1:k) =

η p(z0:k|X
h

k , Gh

k , u1:k) p(Xh

k , Gh

k |u1:k)

η p(z0:k|X
h

k
, Gh

k
, u1:k) p(Xh

k
|Gh

k
, u1:k) p(Gh

k
|u1:k)

η p(z0:k|X
h

k
, Gh

k
, u1:k) p(Gh

k
|u1:k), (3)

where p(z0:k|X
h

k
, Gh

k
, u1:k) is the measurement likelihood

function and p(Xh

k
, Gh

k
|u1:k) is a prior on the hypothesis.

The prior reduces to p(Gh

k
|u1:k) in Eq. 3 because the proba-

bility of the state given the map and inputs, p(Xh

k
|Gh

k
, u1:k),

is equal to one. This is because we assume we have a robot

that correctly performs the motion input sequence. The scalar

value η in Eq. 3 is used for normalization over possible

hypotheses, such that the following holds true,

Hk−1
∑

h=0

p(Xh

k , Gh

k |z0:k, u1:k) = 1,

where Hk is the number of current leaf nodes in the

hypothesis tree. This is valid because the tree’s exhaustive

expansion guarantees that one of the hypotheses in the leaf

nodes of the tree is correct.

B. Likelihood Function

For a given time step, after expanding the leaf nodes of the

tree to account for robot motion, we compute the posterior

probability of the new leaf nodes of the tree using Eq. 3.

To reduce storage and computation, the likelihood term of

a new hypothesis h′ can be computed recursively given the

likelihood of the parent hypothesis h, i.e.,

p(z0:k|X
h
′

k , Gh
′

k , u1:k)

= p(ze

k
, zv

k
|z0:k−1, X

h
′

k
, Gh

′

k
, u1:k) p(z0:k−1|X

h
′

k
, Gh

′

k
, u1:k)

= p(ze

k
,zv

k
|z0:k−1,X

h
′

k
,Gh

′

k
,u1:k) p(z0:k−1|X

h

k−1
, Gh

k−1
, u1:k−1)

(4)

In Eq. 4, the likelihood function has been split into two terms

using the definition of conditional probability: the second

4945

term can be viewed as a prior on the likelihood function

for the recursion, while the first term represents the update

to the likelihood after receiving a new measurement. The

hypothesis h′ and time step k have been reverted back to the

parent hypothesis h and the previous time step k − 1 in the

second term of Eq. 4 in order to fit the recursive form. This

is done without error or approximation due to the fact that

past measurements are only dependent upon the graph and

inputs before the tree expansion.

The edge measurement ze

k
, according to hypothesis h, is

associated with edge αh

k
of vertex vh

k
. Likewise, the measure-

ment zv

k
is associated with vertex vh

k
. For each hypothesis, we

maintain the mean of the measurements associated to each

edge, which we denote µe
h

k
, as well as the mean of the mea-

surements associated to each vertex, which we denote µv
h

k
.

µe
h

k
is indexed similarly to a neighbor list, e.g. µe

h

k
(vh

k
, αh

k
),

and µv
h

k
is indexed by the vertex, e.g. µv

h

k
(vh

k
). Lastly, we

keep track of the number of measurements associated to each

edge with Me
h

k
and each vertex with Mv

h

k
. These are indexed

in the same way as the means. This allows for a compact

recursive computation for the likelihood update of Eq. 4,

p(ze

k
, zv

k
|z0:k−1, X

h
′

k
, Gh

′

k
, u1:k) ∝

exp

(

−
1

2
(ze

k
−µe

h

k−1
(vh

k
, αh

k
))TCe

k

−1(ze

k
−µe

h

k−1
(vh

k
, αh

k
))

)

× exp

(

−
1

2
(zv

k−µv
h

k−1
(vh

k))T Cv

k

−1(zv

k − µv
h

k−1
(vh

k))

)

(5)

In Eq. 5, the means µe
h

k−1
and µv

e

k−1
are acting as sufficient

statistics for the history of sensor measurements z0:k−1. The

measurements are assumed to have additive zero mean white

Gaussian noise with covariances Re and Rv for the edge and

vertex respectively. The following matrices are used in the

computation of Eq. 5,

Ce

k
=

(

1+
1

Me
h

k−1
(vh

k
, αh

k
)

)

Re Cv

k
=

(

1+
1

Mv
h

k−1
(vh

k
)

)

Rv

To revisit the original problem, we would like to compute the

posterior probability for each hypothesis when the robot tra-

verses a new edge. To do this, we first update the likelihood

function with Eq. 4 by loading the likelihood of the parent

hypothesis and incorporating the new information with Eq. 5.

The posterior is then easily computed by Eq. 3. Finally, the

means µe
h

k
and µv

h

k
are updated for the next iteration.

C. Prior Distribution

Neglected thus far in our discussion is the prior p(Gh

k
|u1:k)

in Eq. 3. This term represents, without any sensor infor-

mation, the probability that the robot happens to be placed

in an environment with a topology Gh

k
. What should this

distribution be? There is no way to know the right answer.

But we can do better than a uniform distribution. Consider

the following situation: a robot is circling a triangle topology,

as in Fig. 4 (a), with three different edges. Over time, it

would appear that a sensor measurement is repeated every

third time step because the robot is traversing the same three

edges over and over. The triangle, as the correct map, would

a)
2 (1,3)1 (3,2)

3 (2,1)

b)
2 (1,3)

1 (6,2)

3 (2,4)

4 (3,5)

5 (4,6)

6 (5,1)

Fig. 4. This is an example of two different topologies that can result in a
situation of perceptual aliasing. Both topologies fit the sensor data well.

fit the sensor data very well. On the other hand, the topology

in Fig. 4 (b) would also fit well for the same measurement

sequence due to perceptual aliasing. Which topology should

be preferred? In some sense, topology (b) is over-fitting the

data. We use the following distribution for experiments,

p(Gh

k
|u1:k) ∝ exp

(

−Nh

k
log k

)

When two hypotheses have a similar likelihood, this prior

will give preference to the smaller map. This makes sense,

because we would like to prevent over-fitting. It turns out

that this formulation is equivalent to using the Bayesian

information criterion [14] for model selection. The Akaike

information criterion [15] is related and is used in [12] with

considerable success for a limited class of topologies.

By combining in Eq. 3 the prior developed here with the

likelihood function of Eq. 4, we are effectively trying to

capture the perfect balance between small concise maps that

would make sense for a structured environment and large

intricate maps that better fit the data.

V. PRUNING THE HYPOTHESIS TREE

The tree expansion algorithm described in Sec. III ex-

haustively considers all possible loop closures during an

experiment. Therefore, even for a small map, the number of

leaf hypotheses in the tree can grow very quickly (even to

a size that is not computationally feasible). To keep the tree

size bounded, we apply a series of pruning tests to the leaf

hypotheses at each time step. This pruning stage is crucial

in the success of the algorithm and allows for the processing

of large and ambiguous maps. We apply only conservative

rules to prune hypotheses in order to reduce the chance of

eliminating the hypothesis that represents the true map/state.

We note that by eliminating hypotheses in this step, our

approach is no longer Bayes optimal.

A. Degree Test

In Alg. 1, when Lh

k−1
(vh

k−1
, βk) = unexplored, the

hypothesis tree adds a child hypothesis for every possible

loop closure to any vertex v that also has an unexplored edge.

If the detected degree of the arrival vertex, δk, is unequal

to the degree of vertex v, then that child hypothesis is

immediately discarded. This is because the detected number

of edges seen emanating from the new vertex should agree

with what is expected for vertex v. This test involves no risk

of eliminating the true hypothesis.

B. Likelihood Update Test

When updating the likelihood for a new

hypothesis recursively via Eq. 4, we observe whether

4946

p(ze

k
, zv

k
|z0:k−1, X

h
′

k
, Gh

′

k
) exceeds a 4-sigma error bound.

If true, this would imply that the new measurements

ze

k
and/or zv

k
do not agree with the measurements already

associated to the corresponding edge/vertex and are therefore

outliers in the data. This hints at an incorrect loop closure

and thus the hypothesis is pruned. The test we use for

pruning is when one of the following conditions is met,

(ze

k−µe
h

k−1
(vh

k , αh

k))TCe

k

−1(ze

k−µe
h

k−1
(vh

k , αh

k)) > 16

(zv

k
−µv

h

k−1
(vh

k
))T Cv

k

−1(zv

k
− µv

h

k−1
(vh

k
)) > 16

This test has an extremely small but nevertheless non-zero

chance of eliminating the true hypothesis.

C. Planarity Test

As in [10], we use a strict test to eliminate hypotheses

that are not planar. This test can often prune a large number

of hypotheses without the risk of discarding the correct

hypothesis. The specific planarity test algorithm that we use

is related to [13] because it is specifically designed for edge-

ordered graphs. The benefit is that we can prune even more

graphs, e.g. those that are planar in a conventional sense but

not planar when considering edge-ordering. An example is

the graph in Fig. 2 (b).

D. Posterior Probability Test

Our last pruning rule is to eliminate any hypothesis whose

posterior probability drops below a threshold. This implies

that the hypothesis is either a very poor fit to the sensor

data or is dominated by a hypothesis that can explain the

sequence of measurements just as well with a smaller map.

A hypothesis is pruned when the following condition is met,

p(Xh

k , Gh

k |z0:k, u1:k) < τ.

VI. ALGORITHM EVALUATION

The topology we use for experiments is based on the

Voronoi diagram: the locus of points equidistant to two or

more obstacles. Vertices correspond to points of three-way

equidistance and edges correspond to paths between vertex

locations. In Fig. 1, a floor plan of the sixth floor of Wean

Hall at Carnegie Mellon University is depicted along with

its corresponding Voronoi graph.

For all of our topological SLAM experiments, we use a

two wheeled differential drive robot that has an array of

sonar sensors. The robot can navigate from vertex to vertex

in the generalized Voronoi graph (GVG) of an environment

using sensor-based control. While traveling along an edge in

the graph, the robot records a distance traveled measurement

that corresponds to ze

k
in the SLAM formulation of Sec. IV.

While visiting a vertex in the graph, the robot records a

range measurement to obstacles that corresponds to zv

k
in

the SLAM formulation of Sec. IV.

We recorded a library of data from real experiments that

were performed in the map depicted in Fig. 1. During the

experiments, we had the robot store the aforementioned mea-

surements for each edge and each vertex over several trials.

By creating this large library of measurement data, we can

1 2
3

4 5

6

1

7

8
910

11 12 13

14

4

1 3 8

8

9

10 10

7

5

0 1

10
9

8

3

3

4

6

5

0

2

7

8

2
5

14 10
9

2

7

2
7

10

5

5

6

1

8

93

0

7

13 12

1
3

6

6

6

5

9 9

10

12

211 9
0

914

8

5

3
0

0 0

0
0

0

0
00

914 14

14 1414

14 14

141414

14 14

Fig. 5. This is a map created to simulate a much larger and more ambiguous
version of Wean Hall at Carnegie Mellon University. Each number next to
a vertex represents the corresponding true vertex from which this newly
added vertex has been copied. Each number next to an edge represents the
corresponding true edge from which this newly added edge has been copied.

post-process the data and completely recreate in simulation

the robot performing real experiments and acquiring real

sensor measurements but with the added benefit that we can

alter the path that the robot takes through the graph by simply

reordering the measurement sequence that is obtained.

We ran an experiment (Experiment 1) in which the robot

performs 100 random edge traversals in the map depicted

in Fig. 1. The experiment starts with the robot sitting at

one of the vertices with no additional information. The tree

expansion algorithm from Sec. III and the probability com-

putations from Sec. IV are used to track multiple hypotheses

of the map and robot state. For this environment, there are a

number of ambiguities that make mapping difficult, namely

vertices that share the same equidistance and edges that are

the same length. Despite the ambiguities, the robot correctly

maps this environment and localizes properly within the 100

edge traversals. At the end of the experiment, there is only

one hypothesis that survives the pruning steps in Sec. V, and

it is the correct hypothesis with the correct map.

We also ran another more challenging experiment (Ex-

periment 2) that is based on a ground truth map that has a

much larger amount of ambiguity. This example is used to

demonstrate our algorithm’s ability to handle the problem of

perceptual aliasing. The graph we used for this experiment

is shown in Fig. 5, and was made by adding a number

of extra vertices and edges to the original floor plan of

Fig. 1. Although this map is artificial, the vertices and edges

are duplicated from the original map and therefore we can

still recreate real sensor measurements as if the robot were

actually traveling in this environment.

We ran Experiment 2 in the map depicted in Fig. 5

with the robot performing 500 random edge traversals and

fully exploring the map. The number of hypotheses tracked

throughout the experiment is shown in Fig. 6 (a). In the

4947

0 50 100 150 200 250 300 350 400 450 500
10

0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Number of Hypotheses (Experiment 2)

Posterior Probability - Correct Hypothesis (Experiment 2)

Edge Traversals

P
o

st
e

ri
o

r
P

ro
b

a
b

ili
ty

N
u

m
. H

y
p

o
th

e
se

s

Edge Traversalsa)

b)

Fig. 6. (a) This is a plot of the number of hypotheses throughout
Experiment 2. (b) This is a plot that shows the posterior probability tracked
for the correct hypothesis during Experiment 2.

beginning of the experiment, the number of hypotheses

grows quickly because of the large amount of ambiguity in

the map. Eventually, pruning begins to reduce the number of

hypotheses. At the end of the experiment, there is only one

hypothesis that remains and it is the correct state and map.

In Fig. 6 (b), the posterior probability for the correct

hypothesis is displayed throughout the 500 edge traversals

for Experiment 2. There are certain times during the experi-

ment when the robot associates a very low probability to the

correct hypothesis. This could be caused by the existence

of a different hypothesis that has a smaller map but also

fits the data. Eventually though, as seen in Fig. 6, this

other hypothesis becomes inconsistent and is discarded. The

correct hypothesis then reemerges as a good candidate with

a high probability.

We note that the implementations in [9], [10] only remove

hypotheses in the tree when the graph becomes inconsistent

or when planarity fails. If these implementations were run

on our data set, we would expect the number of hypotheses

to grow beyond what is computationally feasible.

VII. CONCLUSION

The contribution of this work is to present a formal,

probabilistic method for solving the topological graph loop

closing problem. We introduce a tree expansion algorithm

and a technique for recursively computing the posterior

probabilities for hypotheses in the tree. This is a multi-

hypothesis approach, and so it avoids the issue of committing

to a false loop closure. Additionally, the posterior probability

is properly defined to prevent over-fitting the data while

helping to prune inconsistent hypotheses.

The experiments show the algorithms success in situations

with perceptual aliasing. The second experiment is especially

challenging because the map is large and contains numerous

ambiguities. Despite a challenging experimental setup, the

algorithm remarkably produces the correct mapping and

localization hypothesis with a high level of confidence.

Throughout the paper, we assume the robot turns down

the correct departure edge given a motion input uk. This

assumption can be made more general by adding a motion

model to Eq. 3 according to the law of total probability,

p(Xh

k
|Gh

k
,u1:k)=

∑

Xh

k−1

p(Xh

k
|Xh

k−1
,Gh

k
,uk)p(Xh

k−1
|Gh

k
,u1:k−1)

The difference would be that for any given tree expansion, a

leaf hypothesis would spawn more hypotheses (because the

algorithm would consider the possibility that the robot has

turned down an incorrect edge).

Despite the fact that our pruning rules are conservative by

design, there is still a non-zero chance of eliminating the true

hypothesis. If this happens, it is still possible for the algo-

rithm to recover in the following way. The hypotheses that

were not pruned are incorrect, and therefore will eventually

prove inconsistent with the data. The algorithm will prune

these hypotheses as well, leaving zero remaining hypotheses

in the tree. In this case, the algorithm can revive the next

best branch in the tree from a previous time step and replay

the measurement sequence as if it were never pruned.

REFERENCES

[1] M. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark, and
M. Csorba, “A solution to the simultaneous localisation and map
building (SLAM) problem,” IEEE Transactions of Robotics and Au-

tomation, vol. 17, no. 3, pp. 229–241, June 2001.
[2] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Gharamani, and H. Durrant-

Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Intl. Journal of Robotics Research, vol. 23, no.
7-8, pp. 693–716, 2004.

[3] A. Elfes, “Occupancy grids: A probabilistic framework for robot
perception and navigation,” PhD thesis, Department of Electrical and

Computer Engineering, Carnegie Mellon University, 1989.
[4] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile

robot mapping with applications to multi-robot and 3d mapping,” In

Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2000),
vol. 1, pp. 321–328, 2000.

[5] H. Choset and K. Nagatani, “Topological simultaneous localization
and mapping (SLAM): toward exact localization without explicit
localization,” Robotics and Automation, IEEE Transactions on, vol. 17,
no. 2, pp. 125–137, Apr 2001.

[6] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, and H. Choset,
“The hierarchical atlas,” Robotics, IEEE Transactions on, vol. 21,
no. 3, pp. 473–481, June 2005.

[7] E. Remolina and B. Kuipers, “Towards a general theory of topological
maps,” Artificial Intelligence, vol. 152, no. 1, pp. 47–104, 2004.

[8] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous
localization and map building: a natural integration of topological and
metric,” Robotics and Autonomous Systems, 2002.

[9] G. Dudek, P. Freedman, and S. Hadjres, “Using local information
in a non-local way for mapping graph-like worlds,” Proc. the 3rd

International Conference on Artificial Intelligence, pp. 1639–1645,
1993.

[10] F. Savelli and B. Kuipers, “Loop-closing and planarity in topological
map-building,” Intelligent Robots and Systems, 2004. IROS 2004.

IEEE/RSJ International Conference on, pp. 1511–1517, 2004.
[11] E. Ranganathan, E. Menegatti, and F. Delleart, “Bayesian inference in

the space of topological maps,” IEEE Trans. Robot. Autom., vol. 22,
no. 1, pp. 92–107, February 2006.

[12] A. De, J. Lee, and N. Cowan, “Toward SLAM on graphs,” Workshop

on the Algorithmic Foundations of Robotics, 2008. WAFR 2008.,
December 2008.

[13] G. Vijayan and A. Wigderson, “Planarity of edge ordered graphs,”
Technical Report 307, Princeton University, vol. TR307, December
1982.

[14] G. Schwarz, “Estimating the dimension of a model,” The Annals of

Statistics, vol. 6, pp. 461–464, 1978.
[15] H. Akaike, “A new look at the statistical model identification,”

Automatic Control, IEEE Transactions on, vol. 19, no. 6, pp. 716–
723, Dec 1974.

4948

