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Abstract— Robotic obstacle avoidance in cluttered and dense
environments is an important issue in robotic navigation.
Over the past few years a number of techniques has been
proposed to deal with safe navigation among obstacles in
unknown scenarios. Unfortunately many of these methods do
not consider obstacle velocities, which can rise some serious
questions concerning their safety [1]. This paper will deal with
a novel approach to moving obstacle avoidance in holonomic
robots. It proposes the Forbidden Velocity Map, a generalization
of the Dynamic Window concept [2] that considers obstacle
and robot shape, velocity and dynamics, resulting in a safe,
reactive real-time navigation algorithm that is able to deal with
navigation in unpredictable and cluttered scenarios.

I. INTRODUCTION AND RELATED WORK

Obstacle avoidance for autonomous robotic navigation has

traditionally been handled by two major techniques: the

deliberative approach, usually consisting of a motion planner

taking world static information as its input ([3] provides

an extensive review on planning methods), and the reactive

approach, where the instantaneous information accessible

to the robot (the positions and eventually the robot and

obstacles velocities) is used to calculate the robot actuation

at each time step. Among the reactive techniques we have,

for instance, the potential fields approach [4], [5], the vector

field histogram [6], the curvature method [7] or the dynamic

window approach [2], to name just a few.

One of the main advantages of reactive methods is their

low demanding of computing resources, making them very

suitable to real-time robot navigation. These methods can

be seen as local navigation algorithms, using only sensor

information concerning the vicinity of the robot. Since they

use only local information these methods are prone to being

trapped in some obstacle configurations. Global planning

algorithms, on the other hand, process information relative

to the all environment in order to find a sequence of actu-

ation commands that guarantees a convergence to the goal.

Typically such methods are very time consuming; moreover

the assumption of a known static environment sometimes is

not a very reasonable one, since most scenarios are dynamic

and partially or completely unknown. As a consequence

the trajectory generated by the planning algorithm must

be recalculated from time to time to take into account

environment changes. To overcome such limitations some

methods that incorporate both local and global techniques
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have been developed: Thrun et al. use a path planner to

calculate intermediate points on the path to the goal [8],

while dynamic window approach has been extended by

Brock and Khatib to incorporate a global planner that assures

convergence to the goal [9].

Surprisingly, many of the obstacle avoidance literature of

the past two decades does not explicitly take into account

the obstacle velocities. Simply discarding obstacle velocities

can have severe consequences for the robot safety [10], [1];

considering the obstacles velocities, on the other hand, can

improve the smoothness of the robot trajectories, as will

be shown. In [11] a planning algorithm is proposed that

considers obstacle velocities. Each obstacle yields a cone

shaped forbidden velocity: if the robot velocity enters such

cone a collision will occur in some latter time. A planned

trajectory is obtained taking into account all obstacle cones

and considering admissible velocities those whose expected

collision occurs after a fixed time horizon. [12] presents an

obstacle avoidance algorithm for non-holonomic robots that

takes the obstacles velocities into consideration, by obtaining

a time to collision surface on the velocity space of the robot.

Their method has some similarities to the one presented in

this paper, but in our method a forbidden velocity region

is calculated for which a collision will occur if the robot

maintains the same direction of motion, as opposed to the

time to collision surface. Our method also has the ability to

effortless incorporate information on obstacle position and

velocity uncertainty, as it will be shown in the next sections.

The obstacle avoidance algorithm proposed in this paper

is related to the Dynamic Window Approach in the sense

that a set of robot forbidden velocities is obtained at each

time step. This method, however, does include information

on obstacle velocity to generate motor actuations. It also

uses obstacle and robot shape and dynamic considerations

to obtain the Forbidden Velocity Map for obstacle avoidance

navigation. Other contribution is the fact that no discretiza-

tion of the velocity space is performed to obtain the set of

admissible velocities: instead, a piecewise linearization of the

Forbidden Velocity Map boundary is performed that allows

a faster search for admissible velocities. Also, uncertainty

on obstacle position and velocity is considered on the pro-

posed algorithm, that can be conceptually described by the

following steps:

• For each obstacle a polar curve is obtained that indicates

the distance to collision for each robot direction of

motion. The obstacle is (temporarily) assumed to be

static. Such curve only depends on shape considerations

on the robot and on the obstacle.

• Each distance to collision curve is then transformed into
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a forbidden velocity zone. Such zone is the set of current

robot velocities that lead to collision if the robot is

supposed to decelerate using its maximum break power

(and maintaining its direction of movement) in the

following time step. This transformation to a forbidden

velocity zone depends only on the dynamic of the robot.

• Each forbidden velocity zone is then translated ac-

cording the corresponding obstacle velocity. After that

a piecewise linearization of each forbidden zone is

performed and, in the end, all these individual zones

are gathered to obtain a global forbidden velocity map.

This map consists of an union of (possible non convex)

polygons describing the set of velocities for which a

collision may occur.

• At each time step the robot desired velocity is checked

about its admissibility: if it leads to a possible colli-

sion another velocity is picked in the boundary of the

forbidden velocity map according to some criteria.

II. THE FORBIDDEN VELOCITY MAP FOR MOVING

OBSTACLES

Although the obstacle avoidance algorithm presented in

this paper can potentially deal with robots with arbitrary

geometry and locomotion type, we will henceforth, for the

sake of simplicity, consider a robot of omni-directional type:

these kind of vehicles have a kinematic model that allows

for a decoupled control for x, y and θ , the Cartesian position

and heading of the robot that altogether constitute the robot

configuration variables. This independent control of the three

configuration space variables is possible due to the full rank

nature of the Jacobian relating motor commands and the time

derivatives of the configuration space variables. Forbidden

velocity map for non-holonomic robots can be obtained

following the approach presented in [12].

A. General assumptions

A discrete time control scheme is assumed, with fixed

sample time T . At each sample instant, the robot has access

to information regarding obstacle shape, position and veloc-

ity, along with its own position and velocity. This information

will be used to calculate the motor controls to be applied

to the robot at the next sampling instant, in order to reach

a desired target while avoiding the environment moving

obstacles.

Since control actions lag correspondent sensor estimates

by exactly one sampling period T , the obstacle avoidance

algorithm presented in this paper must take into account

that when a motor command is issued the robot has already

traveled a vT distance along current robot direction of

movement, where v is the respective robot speed measured

at sensing time.

B. Distance to collision

Consider a circular robot of radius R and a circular static

obstacle Oi with radius ri, as represented in Figure 1, where

αi represents the obstacle direction in the robot referential

and hi is the distance between robot and obstacle. Making

R

h
i

r
i

α
i

Fig. 1. The static obstacle problem formulation

the robot a singular point by expanding the obstacle radius,

Ri = R+ ri, the distance to collision can be seen as a simple

line-circle interception problem, and after some geometric

considerations the following equation for the distance to

collision can be obtained, written as a function of the robot

direction of movement θ :

di(θ) = hi

(

cos(θ −αi)−

√

R2
i

h2
i

+ cos2(θ −αi)−1

)

, (1)

with

αi −∆αi ≤ θ ≤ αi +∆αi , (2)

where ∆αi = arccos

√

1−R2
i /h2

i .

Eq. (1) depends only on robot and obstacle geometry, and

similar equations can be derived for other types of geometric

objects such as, for instance, straight lines modeling walls,

using a similar reasoning. In [13] another method is proposed

that takes into consideration the robot shape.

C. Collision free velocities

If the robot is to stop using its maximum breaking power,

amax, the time tstop until immobilization is given by

v−amaxtstop = 0 ⇔ tstop =
v

amax

, (3)

where v is the robot speed at the time the braking order is

issued. If the robot is moving toward a static obstacle, the

distance traveled by the robot must be, at most, the distance

d until a collision occurs with such an obstacle:

vT + vtstop −
1

2
amaxt

2
stop = d .

Plunging equation (3) and solving for v we get

vmax(θ) =
√

2amaxd(θ)+a2
maxT 2 −amaxT , (4)

where a dependence on direction θ as been assumed. This

way, if the collision distance with an obstacle located in

direction θ is given by d(θ) and if the robot is moving

toward such an obstacle in a straight line, the maximum

speed allowed for the robot that avoids collision, using

maximum break power, is given by Eq. (4). Notice that this
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latter equation describes the robot dynamics and does not

take into account any geometric considerations.

Equations (4) and (1) define a forbidden velocity map for

each static obstacle — a velocity set for which a collision

can occur — in terms of robot velocity polar coordinates:

vi(θ) >
√

2amaxdi(θ)+a2
maxT 2 −amaxT , (5)

where di(θ) is given by equation (1).

If multiple static obstacles exist, the velocity forbidden

map corresponds to the union of the individual forbidden

maps for each obstacle Oi. Figure 2(a) represents the map

that corresponds to the three obstacles depicted in Fig-

ure 2(b).

D. The forbidden map for moving obstacles

If an obstacle Oi is moving equation (5) still holds if

the robot speed vi is replaced by v∗i , the relative speed

between the robot and obstacle Oi. Such a relative speed

can be obtained if the difference between robot and obstacle

velocities is considered,
[

v∗xi

v∗yi

]

=

[

vx

vy

]

−

[

vxi

vyi

]

, (6)

where (v∗xi,v
∗
yi), (vx,vy) and (vxi,vyi) are respectively the

relative velocity, the robot velocity and the obstacle velocity,

all expressed in Cartesian coordinates. It is easy to see that

taking into account the obstacle velocity is equivalent to

performing a linear translation on the velocity forbidden map

for that obstacle by (vxi,vyi), as is depicted in Figure 2(c). A

simple algebraic expression for the robot forbidden velocity

map in the presence of multiple moving obstacles, however,

is no longer possible to obtain: equation (5) presents the

forbidden velocity zone in polar coordinates, while the

relative velocity is stated as a difference between Cartesian

coordinates.

E. Forbidden map linearization

Consider an obstacle Oi whose state is characterized by αi,

hi, Ri, vxi and vyi. The forbidden map boundary is, according

to (4), the curve defined by

F(v∗,d) = v∗−

√

2amaxd +a2
maxT 2 −amaxT = 0 , (7)

where d depends on θ and obstacles according to expres-

sion (1). This dependence on θ can be written, for future

convenience, as
[

v∗

d

]

= Gi(v
∗,θ) =

=





v∗

hi cos(θ −αi)−hi

√

R2
i

h2
i

+ cos2(θ −αi)−1



, (8)

again with θ defined over the interval given by Eq. (2).

The robot absolute velocity (vx,vy) can be obtained from

the relative velocity to obstacle Oi according to (6), and

thus a relation between robot absolute velocity and polar

coordinates of relative velocity can easily be obtained:
[

vx

vy

]

= Hi(v
∗,θ) =

[

v∗ cosθ

v∗ sinθ

]

+

[

vxi

vyi

]

. (9)

The forbidden map boundary Bi for obstacle Oi can thus

be expressed, using the previous relations, as a function of

the robot absolute velocity (vx,vy),

Bi(vx,vy) = F ◦Gi ◦H−1(vx,vy) = 0 . (10)

Performing a piecewise linearization for every obstacle

boundary Bi(vx,vy) not only transforms this boundary into

a polygonal one, thus greatly lowering the computational

burden of the algorithm, but also greatly simplifies the task of

finding the union of forbidden zones for multiple obstacles.

To do that, note that the gradient of Bi(vx,vy) is readily

obtained from (10):

∇Bi(vx,vy) = ∇F ∇Gi ∇H−1(vx,vy) , (11)

where we have

∇F(v∗,d) =

[

1 −

(

2
d

amax

+T 2

)−
1
2

]

, (12)

∇Gi(v
∗,θ) =











1 0

0 hi sin(θ −αi)







cos(θ−αi)
√

cos2(θ−αi)+
R2

i

h2
i

−1

−1

















(13)

and

∇H−1(vx,vy) =
[

cos(θ) sin(θ)
−sin(θ)/v∗ cos(θ)/v∗

]∣

∣

∣

∣

(V ∗,θ)=H−1(vx,vy)

. (14)

The piecewise linearization of the forbidden map bound-

ary can now be performed by considering a corresponding

discretization of the admissible values of θ , as given in

Eq. 2, for each existing obstacle. In this paper we consider

a uniform sampling for the interval (2) into a set of Nθ

different angles θik, with 1 < k < Nθ , although any other

kind of reasonable sampling can also be performed.

The linearized forbidden velocity boundary for each ob-

stacle can now be represented by a set of Nθ intercepting

straight lines, each of them described by the following

parameters:

• Application point Bik = (vxk,vyk), where (vxk,vyk) is

obtained for each value θik by successively obtaining

corresponding values of d and v∗ using equations (8),

(7) and (9).

• Normal direction ∇Bik = ∇Bi(vxk,vyk), obtained using

Eq. (10). Note that this normal vector points to the

interior of the forbidden velocity map.

The final Forbidden Velocity Map is found by performing

the union of the polygons describing each obstacle forbidden

velocity zone.
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Fig. 2. (a) Three distinct obstacles and corresponding velocities. (b) The velocity forbidden map for this obstacle configuration, assuming null velocities.
(c) The velocity forbidden map for this obstacle configuration, assuming corresponding velocities.

III. UNCERTAINTY

An uncertainty ∆r in robot and obstacles position can

readily be modeled as an increase in total radius Ri, i.e.,

Ri = R+ri +∆r. This uncertainty typically results from noisy

sensors and measures and can easily be estimated a priori.

One can have, of course, a different position uncertainty for

each obstacle, but for most of the cases it just turns out to

be sufficient to use a global uncertainty measure ∆r.

On the other hand, robot and obstacle velocity uncertainty

plays a fundamental role on the robot navigation behavior: a

high uncertainty on obstacle velocities denote the possibility

of an abrupt change of obstacle velocity on the next sam-

pling time: therefore, the robot must have a more cautious

behavior, which, on the other hand, implies the construction

of an accordingly more conservative forbidden velocity map.

To take into account a speed uncertainty ∆v we just have

to enlarge each obstacle velocity forbidden map by ∆v. This

is particularly simple to achieve after the linearization of

the forbidden map has been done: just move each point

Bik a distance ∆v outwards the forbidden map, along the

correspondent gradient ∇Bik.

This uncertainty on obstacle velocity just comes to be an

excellent free parameter that allows the obstacle avoidance

algorithm to exhibit a wide range of dynamic behaviors:

keeping such an uncertainty high makes the algorithm more

conservative, since each obstacle velocity is expected to

change by a higher quantity each time step; alternatively,

obstacles with a low uncertainty on the respective velocity

account typically for slow time varying trajectories or static

obstacles, for which a more aggressive control is possible.

IV. GETTING TO THE GOAL

The proposed obstacle avoidance method does not con-

sider how the robot can reach a desired posture, thus allowing

a easy integration with a large variety of navigation schemes.

In fact, this algorithm can be interpreted as a kind of dynamic

perturbation on the actuation provided by some navigation

algorithm. Such a perturbation causes a deviation from the

planned robot path in order to avoid an imminent collision.

In each time step the algorithm obtains a region on the
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robot velocity space where a collision will occur if the robot

and obstacles velocities remain constant. So, given a desired

velocity, provided by some kind of navigation algorithm, we

must check if such a velocity is an admissible one, i.e., one

that does not belong to the forbidden velocity map. When

a velocity is not considered safe the proposed algorithm

rectifies the velocity so as to move it away from the forbidden

zone. Such a procedure will produce a velocity belonging to

the border of the forbidden velocity map. This makes the

algorithm computationally very efficient, since finding the

minimum distance point of a polygon to a given location is

very fast and scales linearly with the number of edges of the

polygon describing the obstacles.

Note that no claims on optimality or collision free tra-

jectories are made in this paper. The obstacles motion and

position is not known a priori, making quite infeasible the

task of obtaining a collision free optimal sequence of motor

commands regarding some time or displacement criterion.

On the other hand, in dense and cluttered environments some

obstacle configuration can be achieved where an obstacle

moves in the direction of the robot and the robot has no

place to go in order to avoid a collision. Such claims can be

obtained only in highly controlled environments.

A. The dynamic window and saturation window

Besides the velocity restrictions due to the presence of ob-

stacles, one must also take into account actuators saturation

and acceleration constraints. Actuators saturation restrains

the set of possible reachable velocities, while the acceleration

constraints limit the achievable robot velocities in the next

time step. Together, they respectively produce a saturation

window and a dynamic window on the velocity space. Other

works [9] use these windows to narrow the velocity space

search. In this paper, however, these restrictions are needed

in order to ensure the correctness of the algorithm: otherwise

the desired velocity, in order to avoid an obstacle, could be

transformed in a velocity physically impossible to attain. The

dynamic and saturation windows appear as two additional

restriction zones in the velocity forbidden map:
∣

∣(vx,vy)
∣

∣> vmax

and
∣

∣

∣(vx,vy)− (vx,vy)
(t)
∣

∣

∣> amaxT ,

where (vx,vy)
(t) is the current robot velocity. The dynamic

and saturation window can thus be incorporated in the

algorithm by simply including these forbidden zones in the

previously obtained Forbidden Velocity Map.

B. Additional physical constraints

There is a set of other physical constraints that can be

dealt with by this algorithm in a very elegant way. A robot

pushing a box on the floor, for instance, can be viewed as

a balance in the robot velocities and accelerations that must

be achieved in order to not let the box slip away. Similarly,

the robotic soccer problem of moving fast while carrying the

ball can be viewed in the same perspective [14]. It turns out
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Fig. 3. Robot behavior when avoiding a crossing obstacle. Black: obstacle
path; red: Forbidden Velocity Map; blue: Modified Potiential Fields [14].

that, if such problems can be put as a set of restrictions and

dependences on the robot velocities, they can, in principle,

be handled quite easily by the proposed method.

V. EXPERIMENTAL RESULTS

There is one particular test where most reactive obstacle

avoidance methods based only on obstacle positions fail: an

obstacle crossing perpendicularly the robot path, as illus-

trated in Fig. 3. Since these schemes consider obstacles at

each time step to be static ones, when a obstacle starts to

cross their path coming, say, from the left, they usually try

to avoid collision turning to the right. However, since the

obstacle is also moving in that direction, that results in a

robot trajectory side by side to the obstacle, as if trying to

circumvent an imaginary wall.

The Forbidden Velocity Map, on the other hand, by consid-

ering the obstacle velocity, does not exhibit such undesirable

behavior, as can be seen in the previous figure. In this

example the robot turns in the direction of the obstacle, i.e.,

to the left, in order to maintain a velocity as close as possibly

to the maximum speed in the direction of its target.

Figure 4 shows the role of the uncertainty on obstacle

velocity. Such uncertainty can be a result of sensor noise,

but mainly will arise as an estimate of the maximum change

in obstacle trajectories at each time step. A high value for this

free parameter makes the robot very conservative, since the

sensed obstacle velocity can be very different from the true

one. On the other hand, a very low value for this uncertainty

implicitly assumes constant velocity for the obstacles, i.e.,

static obstacles or constant speed linear trajectories. In this

latter case the algorithm causes the robot to pass very close

to the obstacles, as their trajectories are presumed to be fully

predictable. In the figure two trajectories are shown for the

same static obstacle, for different values of the uncertainty on

the obstacle velocity. Blue trajectory corresponds to a higher

value of this parameter, causing a broader trajectory around

the obstacle.
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Fig. 4. Uncertainty on the obstacle velocity affects the overall robot
behavior.

The video that was jointly submitted with this paper

presents five different tries of an omni-directional robot to

reach a desired target, marked with an X, using the Forbidden

Velocity Map. The first three scenarios, however, are clut-

tered with many obstacles moving with random motion and

that change their velocity from time to time. This is a very

demanding environment (can correspond, for instance, to a

room filled with people) for which the proposed algorithm,

nevertheless, can react with quite success. The other two

experiences depicted in the video show on one hand the

ability of the proposed algorithm to deal with fast crossing

obstacles and in the other hand how it can successfully be

confronted with fast parallel obstacles, that can simulate, for

instance, traffic on a highway.

VI. CONCLUSIONS

In this paper we present a computationally fast algorithm

that allows a robot to avoid collision with multiple moving

obstacles. Instead of performing an exhaustive search on

the robot velocity space, the proposed method computes

the Forbidden Velocity Map, a union of polygonal zones

corresponding to the non admissible velocities.

The resolution of the linearization performed in section II-

E is a free parameter that sets a compromise between the

computational burden of the algorithm and the quality of the

approximation to the true Forbidden Velocity Map. Note,

however, that given the extremely low computational cost of

the algorithm this is hardly a problem in modern computers:

when integrated into a more broad robotic platform, the CPU

use of the proposed obstacle avoidance algorithm is typically

irrelevant.

The proposed method can be easily extended to other robot

shapes and different dynamic models: while Equation (1)

alone defines the geometric considerations for the obstacles

and the robot, Equation (4) deals with the dynamic model

for the robot. In this way we can deal with arbitrary obstacle

shapes (circles and lines and composition of circles and lines,

for instance).

Another advantage of the forbidden velocity approach to

obstacle avoidance is the effortless integration of uncertainty

on obstacle positions and velocities in the algorithm. In fact,

the uncertainty on the variation in obstacle velocities every

time step constitutes a great free parameter to control the

global algorithm behavior, allowing it to exhibit a more

conservative motion or a more unsafe navigation. No other

parameters need to be tuned.

Finally, although the presented method does not guarantee

a collision free navigation, it can identify the velocities that

lead to collision if no alteration occurs on the obstacles and

robot velocities. This provides a very convenient way to

adapt a desired velocity in the presence of obstacles in order

to prevent a collision. We intend to test the presented method

in the real, demanding environment of the robot soccer.
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