
  

Abstract—In this paper, we present a novel data structure 

representing the environment with occupancy grid cells while 

each grid map is associated with a set of line features extracted 

from laser scan points. Due to the fact that line segments are 

principal elements of artificial environments, they provide 

considerable geometric information about the environment 

which can be used for enhancing the accuracy of localization. 

Orthogonal characteristic of line features is the key issue to 

guarantee the consistency of the SLAM algorithm by allowing 

us to deal with lines that are parallel or perpendicular to each 

other. This behavior allows us to sample robot poses more 

correctly. As a result, the proposed algorithm can close bigger 

loops with the same number of particles. Experimental results 

are carried out using SICK LMS-100 laser scanner which has a 

maximum range of 20m and Pioneer 3DX mobile robot 

mapping an indoor environment with the size of 40m � 47m. 

I. INTRODUCTION 

IMULTANEOUS localization and mapping (SLAM) of 

mobile robots has been a fundamental requirement for 

robust robotic navigation. It is also considered to be a 

chicken and egg problem, that is, a robot needs a consistent 

map for localization, in order to acquire such a map, precise 

estimation of robots’ location is required. This makes SLAM 

a hard problem which necessitates searching for solution in a 

high-dimensional space. A number of different solutions had 

been proposed, most of which aiming at the issue of how to 

represent, process, store, and retrieve the map information. 

The main idea of this paper resides in exploiting the 

characteristics of a structured indoor environment via adding 

an additional line database that stores line segments extracted 

from the map associated with each individual particle of 

Rao-Blackwellized particle filter (RBPF). Therefore, each 

particle updates an individual set of line segments extracted 

from their map known as a line database. Direction of line 

segments are then used in the localization stage for 

calculating weight of each particle. Due to the structure of 

indoor environments, particles with more extracted lines 

parallel or perpendicular to the dominating direction of the 

lines in its’ database has greater chance to express the correct 

map of the environment. 
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A. Background and Related Work 

In recent years, solutions to the SLAM problem have 

became more and more mature, and methods for solving the 

problem can be classified by the underlying techniques 

applied to estimate the robot pose as well as the map 

representation used to describe the environment. The most 

common approach to estimate the robot trajectory and 

landmark locations are extended Kalman filter (EKF) and 

particle filter (PF); where two state of the art mapping data 

structures are grid map and landmark map, respectively.  

A dominating approach to the SLAM problem that made 

use of EKF was introduced by Smith et al. [1]. In that paper, 

EKF is applied to incrementally estimate the posterior 

distribution over robot pose along with landmark location. 

However, EKF SLAM had problems with data association 

and also required time complexity quadratic to the number of 

landmarks. An alternative approach, FastSLAM, was 

addressed by Montemerlo [2]. He extended the framework of 

RBPF introduced by Murphy [3] to factorize EKF SLAM 

problem into a problem with robot’s localization problem 

and another with landmark’s location estimation, which are 

respectively solved by particle filter and Kalman filter. This 

allows the complexity of FastSLAM to scale logarithmically 

with the number of landmarks. 

Each particle of the RBPF represents a potential trajectory 

of the robot and a map of the environment. Eliazar and Parr 

[4] introduced a purely laser based algorithm, DP-SLAM, to 

apply the concept of RBPF on an approach based on grid 

map without any assumption on landmarks. DP-SLAM 

introduces a new map representation called distributed 

particle (DP) mapping, which is able to update and maintain 

hundreds of candidate maps and robot poses efficiently via a 

particle ancestry tree. Another similar work on grid based 

RBPF was addressed by Grisetti [5]. In that approach, a 

sensor aware proposal distribution and adaptive resampling 

are applied to increase the performance of RBPF with grid 

maps. 

Besides grid and landmark map representation, a Closed 

Line Segment (CLS) map which only uses line segment as 

elements was introduced by Zhang [6] in year 2000. The line 

segment in fact provides considerable geometric information 

of the laser scan, that can be used for fast localization and 

mapping.  Another approach for constructing the line-based 

map can be found in [7], where the author also provides 

closed form formulas for line fitting. Furthermore, Nguyen et 

al. (2006) also proposed a lightweight SLAM called 

Orthogonal SLAM (OrthoSLAM) [8], which reduces the 

complexity by mapping only lines that are parallel or 

perpendicular to each other, and such characteristic pertains 

to the main structure of most indoor environments. In 
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contrast to that, by associating a line database with each 

particle, we can reduce the number of particles needed, and 

moreover, increase the accuracy of mapping. 

Although matching line segment is an effective means to 

enhance the efficiency of localization, it is rarely used 

collectively with  particle filters to exert its influence. In this 

paper, we propose a RBPF based SLAM where each particle 

carries an individual grid map, associated with a set of line 

features collected during the mapping process. This allows 

us to utilize the rich line features of structured indoor 

environment, and furthermore being able to maintain and 

update the map efficiently with fewer particles. 

B. System Overview 

 
Fig. 1 Flowchart of our proposed algorithm 

  

Figure 1 shows the flowchart of our proposed algorithm. 

The orange diamond blocks are the main functions of the 

SLAM process, and orange rectangle blocks represent 

outputs of main functions. The upper half of Fig. 1 consists 

of components which build up the localization part of our 

algorithm, and particles are weighted and resampled during 

this phase. Output particles are used in the mapping part, as 

shown in the lower half of the figure, to update maps and line 

databases associated with particles. Finally, a new set of 

resampled particles are created and the algorithm repeats 

itself.  

C. Paper Structure 

 This paper is organized as follows. Section II briefly 

explains how RBPF can be used to solve the SLAM problem. 

We describe the implementation details of the hybrid 

approach in Section III. The experimental results are then 

shown in Section IV. Finally, Section V draws the 

conclusion and address future works. 

II. MAPPING WITH RBPFS 

RBPF have been introduced as an effective means to solve 

the simultaneous localization and mapping (SLAM) problem. 

The beauty of RBPF lies in the individual map maintained by 

each particle, meaning multiple hypotheses of the robot 

trajectory are held as candidates which will eventually 

converge to a few trajectories similar to the real one. The 

main idea is that RBPF maintains a joint distribution 

����:� , 	|��:� , ��:��� over the environment maps m and the 

robot trajectory ��:��with a particle filter. This distribution 

can be estimated by observations ��:� and control 

measurements ��:��obtained by sensors and wheel encoders 

on the mobile robot. Since the map and line segment 

estimation is considered on the path estimation, each particle 

maintains its own map along with a set of line segments L 

extracted from range readings. Furthermore, we can make 

use of the factorization: 

 

����:� , 	|��:� , ��:��� � 

����:�|��:� , ��:�� ���	, |��:� , ��:��               �1� 
 

This Rao-Blackwellization approach using the factorization 

above allows us to estimate the robot trajectory and 

environment map separately. The trajectory from time step 1 

to t can be calculated by estimating the posterior 

����:�|��:� , ��:�� � over the trajectory from time step 1 to t-1, 

which can be done by applying the particle filter. 

III. HYBRID APPROACH 

The hybrid approach we propose here is composed of 

mapping with two different map structures, namely, line 

segment map and grid map. Although two kinds of map 

representations are used, line segment map actually plays a 

role of correcting the grid map instead of serving as an 

independent map itself. Therefore, no extra processing is 

required for the extracted line segments to form a well knit 

map, and moreover storage of line segment map becomes 

rather simple, i.e., a database of line parameters is associated 

with each particle.  

A. Feature Enhanced RBPF Mapping 

Particle filter is a simulation-based method that tracks 

targets with partially observable state. It maintains a 

weighted set of sample states �� � ���, ��, … , ���  called 

particles. Each particle carries a weight value that represents 

the reliability of the state of the environment which it stands 

for. The process of particle filter can be summarized as the 

following four steps: 

1) Sampling:  In this step, a new generation of particles �� 
is obtained by applying the motion model to the 

previous generation of particles  ���  . The motion 

model we use can be found in [9] where an Expectation 

Maximization (EM) framework is used to learn 

parameters of the model. 

2) Weighting: An importance weight w�
���

 is given to each 

ith particle of the current generation based on the 

measurement models �������|�� , 	���� and 

 �������| ����,  ����. Here,  ��� � �!�, !�, … , !"� is the set 

of the line segments in the database and  ���� #�!�, !�, … , !$� is the set of lines perceived at time t. Line 

segments in  ���� are compared to the line segments in 

 ��� according to their parameters in Hough space. The 
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details of weighting will be explained in the next few 

sections. 

3) Resampling: A new set of particles of the current 

generation is randomly drawn with replacement from 

S�  with probability proportional to its weight. Since 

particles with mismatched line direction results in very 

low weight, it is not likely to be resampled. 

4) Map Estimation: For each particle, an individual map 

and an updated database of line segments is computed 

with �&	���,  ���'��:� , ��:� ,  ����( based on the trajectory 

x�:����  estimated by that particle. Moreover, the line 

databases associated with each particle is also update 

according to ��:� and  ����. 
In this paper, we propose an innovative weighting method 

which considers the alignment of dominating direction line 

segments with the extracted line segment of each particle 

during the weighting step. The benefit of such modification 

to the algorithm reduces the risk of orientation mismatch. 

This is implemented by modifying RBPF so that each map 

carried by individual particles is associated with a set of line 

segments, known as a “line database,” extracted from the 

previously built map. The following sections show how lines 

are detected and weighted.  

B. Line Detection 

The indoor environment contains many artificial 

landmarks, such as walls and corners. These landmarks are 

easy to extract and matching can also be straight forward 

while using an appropriate line segment representation. A 

comparison of line extraction algorithms can be found in [10]. 

In our approach, a line segment ! is defined by the following 

set of parameters:! � �*, +, ,, ��-�./� , 0-�./��, ��123 , 0123�� ,  

where ρ and θ  are parameters of Hough space; l, 

��-�./� , 0-�./��, and ��123 , 0123� are length and endpoints of 

a line segment respectively. The structure of particles is 

depicted in Table 1, where 9� is the number of extracted lines 

in particle i, which may differ between particles according to 

the estimated robot path. So far, we can find a number of 

works aiming to detect line segments and other features with 

the use of laser range finder  [11][12]. Our feature detection 

procedure includes the following steps. 

TABLE 1 
Particle structure of the hybrid approach 

 robot 

pose 

map line 1 line 2 … line :� 

particle 

1 
� 0 + m *�+�,�… *�+�,�… … *$;+$;,$; … 

particle 

2 
� 0 + m *�+�,�… *�+�,�… … *$<+$<,$< … 

… 

particle 

N 
� 0 + m *�+�,�… *�+�,�… … *$=+$=,$= … 

1) Range data segmentation: 

Preprocessing of line segments is done before line 

extraction, where consecutive scan points are clustered into 

the same segments based on the assumption that points 

belong to the same object as long as the distance between 

them is less than a given threshold. Since sensor LMS-100 

has a maximum range of 20m, range readings farther than 

this are ignored, and therefore such reading also break 

segments. 

 

2) Least square line fitting: 

Each segment is then fitted into a line on the x-y plane by 

performing the least square line fitting algorithm. An 

estimation of line parameters in ax+by+c=0 is calculated 

during this step. Furthermore, line segments with line fitting 

error larger than >�?, @, A� are eliminated. Line parameters 

can be calculated by applying the following equations: 
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Here, we fit one segment at a time, and IJ is the number of 

points in the segment we are currently dealing with. The 

more points there is in a segment, the more precise it will fit 

with the line ax+by+c=0. With these parameters, the line 

fitting error can be obtained by (4) 

>�?, @, A� �  B�E?
@ �� E

"

�D�

A
@ E 0���                    �5� 

3) Hough parameter calculation: 

Since least square line fitting algorithm is heavily affected 

by outliers, we apply a Hough transform which has a voting 

space being restricted such that |* E *L|  and |+ E +L|  are 

smaller than a threshold value. Here, *  and +  are initial 

Hough parameters obtained from line parameters a, b, and c. 

The initial Hough parameters can be obtained from the line 

parameters as follows: 

* �  A
√?� N @�             + � O?P� QE@

?R               �6� 
C. Feature Association 

Matching score on both grid map and feature location are 

considered when particles are being weighted. The weighting 

is done by checking which particle makes a more correct 

guess of feature association, and particles with the wrong 

feature association will eventually disappear in the 

resampling process. 

Choi et al. proposed a line feature based SLAM [13] that 

associates line features through a weighted Euclidean 

distance measure in Hough space and the length of overlap 

between lines, and this same method is also applied in our 

implementation. Our line matching procedure starts with 

matching of the set of lines extracted from current sensor 

readings TU with lines in the database TV. If the extracted line 

 TU���  matches with line  TV�W�  in the database, the line 

parameters *, +, ,, ��-�./� , 0-�./��, and ��123 , 0123�  of  TV�W� 
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are updated in order to let the two line segments be merged. 

The line merging algorithm consists of the following steps: 

 

1) Search :  

For each line segment  TU���  in  TU  a complete search 

through  TV is performed, and once a closest match is found 

in the database and the difference between parameters ρ and 

θ  of the closest matched lines are lower than a given 

threshold value, we regard the two line segments belonging 

to the same line, and therefore we merge the two lines. If line 

segment  TU���  isn’t found in the database, and its length 

exceeds 5m, TU��� is very likely to be a newly discovered line, 

and therefore we insert it into the database. 

 

2) Update :  

Line merging is the most important part of updating the 

database. The following equation shows the updated 

parameters of TV�W� : 
*3,21X�Y� � AZ�PO [ *3,\]3�Y� N *-���

AZ�PO N 1                       �7� 

θ3,21X�Y� � AZ�PO [ θ3,\]3�Y� N θ-���
AZ�PO N 1                       �8� 

 

A variable count is used to keep track of the number of times 

the line segment  TV�W�  is updated for. Two endpoints are 

chosen after searching for the longest distance among 

��-�./� , 0-�./��3�Y� , ��123 , 0123�3�Y� , ��-�./� , 0-�./��-��� , 

and  ��123 , 0123�-��� . The two farthest points are then 

projected onto the line with Hough parameters *3,21X�Y�
 and 

θ3,21X�Y�
, forming the new endpoints as shown in Fig. 2. 

 

Fig. 2 Two line segments  TV�W� and  TU��� are merged, forming a new line 

  

3) Pruning :  

Some line segments might be detected only once or twice 

due to sensor and localization errors. These undesirable data 

are pruned away during this step. If the count of a certain line 

segment is smaller than a predefined threshold, a cleanup 

action is performed every, say, 10 iterations. This pruning 

action is important, since each particle carries an individual 

set of lines, and we prefer to keep the number of line 

segments as low as possible. 

D. Particle Weighting 

The weight of each particle comes from two principal 

factors. One of them is similar to that concerning observation 

model proposed in [4], where each laser scan is given a 

weight value à/�3 ranging from 0 to 1 after a laser 

penetration model is applied to the estimated robot pose on 

the grid map constructed so far. The other weighting factor 

]̀�21is obtained by matching line segments extracted from 

the current scan to those in the database with (9).  

 

]̀�21 �  OZO?, ,bPcOd Ze 	?OAdbf ,gPb�  ?O Og	b O
OZO?, ,bPcOd Ze fbObAObf ,gPb� ?O Og	b O   �9� 

 

Since matching line direction has the most significant effect 

on weighting particles, line segments with iθ-��� E
θ3�Y�', iθ-��� E θ3�Y� E j

�i , or iθ-
��� E θ3�Y� N j

�i  smaller than a 

given threshold value are considered as matched lines.  

With these two weighting factors, the current pose is 

obtained by finding the ith particle which maximizes the 

value à/�3
��� � ]̀�21

���
. The grid map and line database are 

assumed to be conditionally independent, and this somehow 

works properly. As a result, integrating line direction 

analysis into the weight computation allows us to discard 

those particles whose extracted line direction doesn’t match 

the dominating line directions observed, since ]̀�21is nearly 

0 for a line direction mismatched. 

IV. EXPERIMENTAL RESULTS 

We tested our algorithm with sensor logs generated by 

P3-DX robot and SICK LMS-100 laser rangefinder on a 

standard PC, equipped with 1.6GHz CPU and 2G memory. 

The program runs at real time with grid size set to 5cm and 

50 particles used for all experiments. Communication 

between application programs are established on a 

client-server framework that run at 5Hz. The first experiment 

is made under a scenario where traditional particle filter 

performs more unstably, such as when robot makes sudden 

turns or passes narrow doorways. The results are shown in 

Fig. 3. Light blue circle represents location of the robot, and 

red dots scattered around the robots’ location depicts the 

particle distribution. It can be seen from the result of 

experiments that the distribution of particles are more 

centralized while using our hybrid approach, which 

accordingly leads to reduction of orientation mismatch, as 

shown in Figs. 4(a.2), (b.2). This is because particles 

sampled via the motion model are likely to include incorrect 

orientations, causing mismatch between extracted line 

directions and the principal line directions. As a result of line 

direction matching in the hybrid approach, these particles are 

given relatively low weights, and therefore aren’t likely to be 

resampled. 
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Fig. 3 The two figures on the left show the distribution of particles when 

using original RBPF; the other two on the right show distributions while 

taking line direction matching into account. 

The improvement in handling loop closing is validated in 

the second experiment, which is carried out on sensor logs of 

the CSIE building in NTU. The size of the building is 

approximately 40m �  47m and contains a perfect loop. 

Figure 4 shows the comparison of results with and without 

matching line directions. Red circle in the figure indicates the 

location where loop is closed. Since our hybrid approach 

keeps track of extracted line directions, and the direction of 

main corridors of the building are perpendicular to each other, 

the directional mismatch which causes loop closing failure 

hardly occurs.  

Figure 5 depicts a comparison of the variance along x, y, 

and + axes of robot poses while traveling along a 378-step 

path. When our approach is used (Fig. 5 right), the variance 

of y and + seem to drop enormously, yet the variance on the 

major direction of the robot (in this case the x axis) doesn’t 

improve, this is because less than two corner features were 

detected. The general SLAM used for this comparison is 

similar to the one in [4]. Note that for both methods, only 20 

particles are used. Figure 6 verifies the accuracy of our 

hybrid approach by showing that the corridors map matches 

almost completely the two rectangles approximately 

representing the floor plan, that is, the ground truth. 

Fig. 5 (left)Portion of the grid map where data forming the curve is collected (right)Comparison of hybrid and general approach. Dash line shows the time 

interval where robot makes a rapid turn

Fig. 4 SLAM in the CSIE building with general approach (left), and hybrid approach(right). 

1527



 
Fig. 6 Grid map compared with two rectangles representing the ground truth 

V. CONCLUSION 

In this paper, we have increased the accuracy and 

efficiency of Rao-Blackwellized particle filter SLAM 

algorithm by considering the direction of extracted lines 

when weighting particles. The main contribution of this 

paper verified by the experimental results via verifying with 

a real robot lies in that weighting according to our proposed 

method actually reduces the number of particles required to 

achieve precise localization and mapping. A consequence of 

this is of course more efficient and/or more precise SLAM 

algorithm can be expected. 

The proposed line merging algorithm learns principal 

direction of line segments, and also stores representative line 

segments into the database as a basis of future matching. 

Our future work includes integrating other features 

extracted from range data, such as corner, arc, and circle as a 

reference of weighting. Since these are strong information 

features, they are expected to make a considerable 

improvement to the accuracy of localizing the robot. 
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