
Efficient Computation of Level Sets for Path Planning

Bin Xu, Daniel J. Stilwell and Andrew Kurdila

Abstract— We propose an efficient method for updating a
path that was computed using level-set methods. Our approach
is suitable for autonomous vehicles navigating in a static
environment for which an a priori map of the environment is in-
accurate. When the autonomous vehicle detects a new obstacle,
our algorithm replans an optimal route without recomputing
the entire path. Computational costs when planning paths with
level set methods are due to creation of the level set. Once
the level set has been computed, the optimal path is simply
gradient descent down the level set. Our approach is based
on formal analysis of how the level set changes when a new
obstacle is detected. We show that in many practical cases, only
a small portion of the level set needs to be re-computed when
a new obstacle is detected. Simulation examples are presented
to validate the effectiveness of the proposed method.

I. INTRODUCTION

We consider an autonomous vehicle navigating towards a

predefined target in a static environment for which an a priori
map is available. Due to inconsistency between the a priori
map and actual environment, path replanning is required in

order to avoid collisions with obstacles that do not appear

on the a prior map.

In this paper, our goal is to design a minimal risk path

replanning method that decreases the computational costs

of using level-set path planning when new obstacles are

detected. The proposed method does not account for vehicle

dynamics or otherwise addresses path-following limitations.

Thus our approach is suited to vehicles that can follow arbi-

trary paths at potentially slow speeds. This includes certain

classes of autonomous surface vehicles, which motivates our

work, but also includes classes of ground vehicles and ground

hovercrafts. We presume that the environment is represented

by a two dimensional uniform-sized occupancy grid map [5]

which is initially generated from the a priori knowledge of

the environment. Obstacles in the environment are detected

by on-board sensors that have a limited range. Because the

higher occupied probability induces the higher risk for the

vehicle to traverse, we can associate a cost function to each

grid proportional to the occupied probability indicating the

risk for traversal.

Path planning for autonomous vehicles has been studied

for decades. Excellent references can be found in [13] and

[14]. These methods can be grouped into two categories:

local and global replanning. The former considers local

environment changes and plans locally to find a collision free

Bin Xu and Daniel J. Stilwell are with the Bradley Department of Elec-
trical and Computer Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, VA, 24061, USA. bxu, stilwell@vt.edu

Andrew J. Kurdila is with the Department of Mechanical Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061,
USA. kurdila@vt.edu

path, for example, [2], [8], [11], [12], and [21]. These local

planning methods are effective when environment changes

are small but they often fail in trap scenarios for which the

planner can not make progress toward the desired endpoint

due to the lack of global knowledge about the environment.

Global replanning can avoid these problems since it takes

account of the entire map to find a new path, although

global replanning can be computationally expensive. In [6],

a group of global replanning methods are introduced. These

methods share some common attributes. They are variants

of A* search (see e.g. [13], pp.604). The map is modeled

by nodes representing sites associated with cost to traverse.

Thus, finding an optimal path is treated as an minimal cost

path searching problem in graph [24]. Upon the change of

environments, the costs to traverse the corresponding nodes

will change, and the overall minimal cost to travel from a

given node to the goal is consistently updated.

Our approach to path planning is based on level-set meth-

ods, which compute minimum risk paths. The minimal risk

path problem is modelled as a partial differential equation

(PDE) ([3], [9] and [10]). The value of the level sets at

each point indicates the overall minimal risk to travel from

that point to the goal, and the optimal trajectory is along

the gradient of the level sets. The solution of the partial

differential equation can be approximated by the fast march-

ing method (FMM) [23]. The method has been successfully

applied to path planning when a priori maps are accurate,

for example, in [7], [9], [16] and [19]. There is limited

literature that discusses the level set for replanning paths in a

partially known environment. In [20], an E* Lite algorithm is

proposed which locally updates level sets at the nodes upon

the environment change. The qualitative comparison between

A* search and level set methods can be found in [1].

In this paper, we propose a dynamic fast marching method

which modifies the original fast marching method [23] such

that the new paths are replanned more efficiently upon

changes to the environment. Our analysis addresses only the

case that the vehicle detects unexpected obstacles. These are

obstacles that are detected during the mission, but do not

appear on the a prior map. For the case that the unexpected

empty areas are detected, one would not be required to

compute a new path. The proposed path replanner reduces

the computation expenses in two aspects. First, we show

that if obstacles are not on the vehicle’s current optimal

trajectory and if there are no unexpected obstacle-free areas,

the trajectory remains optimal. This observation allows us

to delay computation of the level-set update if the original

trajectory is still feasible. Second, if an unexpected obstacle

intersects the current path, we show that only a portion of the

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4414

level sets needs to be recomputed. The proposed algorithm

draws heavily from the ideas in [20], and is very similar

in implementation. Our contribution is to present rigorous

and formal analysis of how changes in the environment

produce corresponding changes in the level set, and how

these changes yield can be used to reduce computational

burden of using level-set methods for path planning. As

illustrated by numerical simulations in Section VIII, the

proposed algorithm can find new paths with low computation

cost, especially for environments similar to riverine systems,

which motivates our work, and which we address in Section

VIII.

The rest of the paper is organized as follows. In Section

II, we introduce the preliminary results of using the level

set method for path planning problems. In Section III, we

define the obstacle detection and formulate the path replan-

ning problem. In Section IV, we propose path replanning

strategy. In both Section V and VI, we show the development

of the proposed replanning strategy. Simulation results are

illustrated in Section VIII.

II. PRELIMINARIES

In this part, we introduce the level set method for path

planning that is originally developed in [9], [17] and [23].

A. Eikonal Equation and Level Sets

Consider an autonomous vehicle with position denoted by

x ∈ R
2 in a global Cartesian reference frame, navigating in

the closure Ω of a connected and bounded open set Ω ⊂ R
2.

The vehicle is modeled a point mass under the assumption

that its characteristic size is small relative to Ω. The task

for the vehicle is to travel along an obstacle free path with

minimum risk such that the vehicle can reach a predefined

goal z ∈ Ω.

For each point in Ω, we associate a risk for the vehicle to

traverse a path, quantified by a cost function g ∈ C1(Ω; R),
which is positive everywhere except at the target z for which

g(z) = 0. For any ξ ∈ Ω, we define a function Q(ξ) which

represents the minimal cumulative cost to travel from ξ to z

Q(ξ) = min
c

∫ 1

0

g(c(p)) ‖c′(p)‖ dp (1)

where c ∈ Lip([0, 1]; Ω) is a parameterized Lipschitz con-

tinuous path with, c(0) = ξ being a current starting point,

and c(1) = z being the goal (see e.g. [15], pp. 116).

From (1) and from the definition of g, a simple application

of the fundamental theorem of calculus of variation shows

that Q(ξ) is the viscosity solution [23] of the following

Eikonal equation [9],

‖∇Q(ξ)‖ = g(ξ), Q(z) = 0. (2)

The value Q(ξ) is the overall minimal risk to travel from

the point ξ to the goal, and the optimal paths are along the

gradient of Q(ξ). Figure 1, 2 and 3 show an example of a
priori map and its corresponding contours of level sets with

respect to targets.

Fig. 1. An a priori map Ω for a riverine environment.

Fig. 2. The level sets for the a priori map.

1) Finite Difference Scheme and Its Properties: The

Eikonal equation (2) often cannot be solved analytically.

In [23], a first order update scheme is proposed which

approximates the viscosity solution of (2).

Let the goal location be z = [z1, z2]T . In order to

discretize Ω, we define a set Ψ ∈ Z × Z that is composed

of grids with mesh size Δx, where Z is the set of integers.

We denote the approximate value of Q by Q : Ψ → R
1

satisfying

Q(i, j) � Q(iΔx + z1, jΔx + z2). (3)

Correspondingly, we approximate the g with g : Ψ → R
1

satisfying

g(i, j) = g(iΔx + z1, jΔx + z2). (4)

We define the neighbors of a grid (i, j) ∈ Ψ to be the set of

grids (i+1, j), (i−1, j), (i, j+1) and (i, j−1). If grid (i, j)
satisfies [iΔx + z1, jΔx + z2]T /∈ Ω, we set value Q(i, j)
to be a very large number. Otherwise, if grid (i, j) satisfies

[iΔx + z1, jΔx + z2]T ∈ Ω, the numerical approximation

Q(i, j) satisfies the following conditions

Q(0, 0) = 0 (5)

max
(Q(i, j) − min(Q(i − 1, j),Q(i + 1, j))

Δx
, 0

)2

+ max
(Q(i, j) − min(Q(i, j + 1),Q(i, j − 1))

Δx
, 0

)2

− g2(i, j) = 0, ∀(i, j) 	= (0, 0)
(6)

4415

Fig. 3. The level sets contour and the optimal path for the a priori map.

which converges to the continuous solution as Δx → 0.

As remarked in [22], Q in (5) and (6) exhibits a first order

accuracy of order Δx.

The discrete approximation solution Q is found as follows.

We define

a := min(Q(i + 1, j),Q(i − 1, j))
b := min(Q(i, j + 1),Q(i, j − 1)).

The approximate solution Q(i, j) is computed by identifying

two cases,

Case 1: If |a − b| ≥ g(i, j)Δx, then

Q(i, j) = min(a, b) + g(i, j)Δx (7)

Case 2: If |a− b| < g(i, j)Δx, then Q(i, j) is selected as

the larger solution of the quadratic equation

(Q(i, j) − a)2 + (Q(i, j) − b)2 − g2(i, j)Δx2 = 0 (8)

that is

Q(i, j) =
(
a + b +

√
2g2(i, j)Δx2 − (a − b)2

)
/2 (9)

Both (7) and (9) show that for each grid (i, j), the value

Q(i, j) depends on the smaller values of the neighbors. This

is called upwind property indicating that the values of Q
propagate from smaller values to larger ones. In addition, the

scheme admits no local minima. Indeed, if Q(i, j) would be

lower than its neighbors, and given that g(i, j) > 0 for all

(i, j) 	= (0, 0), the left-hand side of (6) would be negative.

2) Fast Marching Method Algorithm: The fast marching

method proposed in [23] can efficiently compute the solution

for (6). Indeed, the fast marching method solves (5) and (6)

in O(N log N) where N is the number of grids in Ω. Making

use of the upwind property, fast marching method builds the

solution outward from smaller values of Q to larger values.

The reader is referred to [23] for details.

3) Directed Graph: As proposed in [20], when computing

the approximate solution Q of the Eikonal equation, one can

use a directed graph to explicitly represent which neighbor

grids the value of Q(i, j) depends upon. We denote by Σ the

graph whose nodes corresponds to the grids in Ψ and whose

directed edges represent the computational dependance be-

tween the value of the level set at each node. As an example

depicted in Figure 4, we illustrate the construction of Σ with

respect to the value dependence of the grid in the center. For

notational simplicity, we define the center grid by E and its

four neighbors by A, B, C and D. For Case 1, since the

value Q(E) is determined by its smallest neighbor, say node

A, Σ would contain an a directed edge from A to E as in

Figure 4 (b). For Case 2, Q(E) depends on two nodes, say

A and B. Then Σ would contain directed edges from A to

E and from B to E, as in Figure 4 (c). If there is a directed

edge from a node (i, j) to another node (k, m), then (k, m)
is said to be a direct child of (i, j), and (i, j) is said to be a

direct parent of (k, m). If a path leads from (i, j) to (p, q),
then (p, q) is said to be a child of (i, j) and (i, j) is said to

be a parent of (p, q).

�
� ��
�

���	
�

���	
�
���

���

���

�

��

��

�

�

�

�

�

Fig. 4. (a) Grid E and its neighbors; (b) Graph Σ for Case 1; and (c)
Graph Σ for Case 2

III. PROBLEM FORMULATION

A. Obstacle Detection

Consider the possible presence of obstacles due to in-

consistency between the a priori map and the actual envi-

ronment. We denote the set of locations of newly detected

obstacle by an open set O ⊂ R
2 which satisfies O ⊆ Ω.

Let the detection range of an onboard sensor be r. It takes

measurements periodically with period h. Letting

tk = t0 + kh,∀k = 0, 1, . . . , (10)

we denote the obstacle detected at time tk, by the closure of

an open subset O(k) satisfying

O(k + 1) = ∪t∈[tk,tk+1]Br(x(t)) ∩ O (11)

where Br(x(t)) is an open ball of radius r centered at the

vehicle’s current position x(t). O(k + 1) = Ø indicates that

the vehicle does not detect any obstacle at time tk+1.

In order to model the environmental changes that are in-

duced by detection of obstacles, we denote the cost functions

at time instant tk by gk. If there is no new obstacle detected

at time tk+1, we let gk+1 = gk for the entire domain Ω.

Otherwise, if O(k + 1) 	= Ø, we let gk+1 be such that

gk+1(ξ) > gk(ξ) for ξ ∈ O(k +1) and gk+1(ξ) = gk(ξ) for

ξ ∈ Ω \ O(k + 1). Thus, the new Eikonal equation that is

induced by new cost functions gk at time tk becomes

‖∇Qk(ξ)‖ = gk(ξ), Qk(z) = 0. (12)

where ξ ∈ Ω.

4416

B. Problem Statement

One way to update the solution of Eikonal equation (12)

is to recalculate level sets over the entire domain Ω with

respect to the new cost function gk. For the purpose of real-

time application, we propose a new path replanning method

such that the solutions of Eikonal equations can be more

efficiently updated upon the detection of obstacles.

IV. PATH REPLANNING STRATEGY

The main features of the path replanning strategy are that

we do not need to recompute the optimal path unless an

obstacle intersects the path, and when a path is recomputed,

we recompute only those nodes that might change value

and ignore all other nodes. In the case that newly detected

obstacles are near the autonomous vehicle, it is often the

case that most grid elements do not need to be recomputed.

Note that we address the path replanning in the presence

of unexpected obstacles. Thus, we assume that gk monoton-

ically increases with the time sequence tk.

V. OPTIMALITY OF TRAJECTORIES IN THE PRESENCE OF

NEW OBSTACLES

We show that an optimal path remain optimal when a

new obstacle is detected so long as the obstacle does not

intersect the path. Due to this fact, we are required to

update the level set only when a new obstacle intersects the

path. For notational simplicity, without further specification,

gk+1 ≥ gk means that, for any ξ ∈ Ω, gk+1(ξ) ≥ gk(ξ). Cor-

respondingly, similar meaning can be deduced for gk+1 ≥ gk

in discrete case.

Proposition 1: Suppose Qk and Qk+1 are the solutions of

(12) for the cost functions gk and gk+1, respectively. Assume

gk+1 ≥ gk. Then,

(a) For all ξ ∈ Ω, Qk+1(ξ) ≥ Qk(ξ).
(b) If c∗ is the optimal path associated to gk and if Ok+1

does not intersect c∗, then c∗ is still one of the optimal paths

associated to the new cost function gk+1.

Proof: [Proof of Proposition 1] We prove (a) first and

then (b) as an immediate implication of (a).
Let I = [0, 1]. Given the cost function gk, denote the cu-

mulative cost along an arbitrary differentiable parameterized

path c(p) ∈ Lip(I; Ω) by

Jk(c) =
∫

I

gk(c(p)) ‖c′(p)‖ dp (13)

where c(0) = ξ and c(1) = z. Thus, by definition,

Qk = min
c∈Lip(I;Ω)

Jk(c), (14)

and

Qk+1 = min
c∈Lip(I;Ω)

Jk+1(c). (15)

Denote with L the intersection of curve c(p) and obstacle

Ok+1. Thus, L satisfies

L = {p ∈ I : c(p) ⊆ O(k + 1)}. (16)

Since for all ξ ∈ Ω, gk+1(ξ) ≥ gk(ξ), subtracting Jk(c)
from Jk+1(c) yields

ΔJ(c) =Jk+1(c) − Jk(c)

=
∫

I\L

(gk+1(c(p)) − gk(c(p))) ‖c′(p)‖ dp

+
∫

L

(gk+1(c(p)) − gk(c(p))) ‖c′(p)‖ dp

=
∫

L

(gk+1(c(p)) − gk(c(p))) ‖c′(p)‖ dp

(17)

By inspecting the above equation, we conclude that (i)
ΔJ(c) = 0 when L = ∅, and (ii) ΔJ(c) ≥ 0 when L 	= ∅.

This implies

Jk+1(c) ≥ Jk(c) (18)

for any differentiable parameterized path c connecting ξ and

z. Since Qk and Qk+1 are the optimal values for Jk(c) and

Jk+1(c), respectively, we conclude that Qk+1 ≥ Qk.

We now prove (b). Considering (17), since L = ∅, for the

path along c∗

Jk+1(c∗) = Jk(c∗) (19)

Since c∗ is the optimal path given gk, Jk(c∗) ≤ Jk(c).
Together with (18), we conclude that for an arbitrary curve

c,

Jk+1(c∗) = Jk(c∗) ≤ Jk(c) ≤ Jk+1(c) (20)

The inequality (20) indicates the path c∗ is the optimal for

the cost function gk+1.

VI. DYNAMIC FAST MARCHING METHOD

In this section, we show the development of the proposed

dynamic fast marching method. We analyze changes in the

discretized solutions of the Eikonal equation that result when

the value of the cost function gk increases. Using the result

of our analysis and employing the directed graph introduced

in Section II-A.3, we show that level sets do not necessarily

need to be updated everywhere, and we identify the group

of grids whose level sets should be updated.

A. The Approximation of Level Sets in Discrete Space

Proposition 1 indicates that the values of level sets

monotonically increases if the cost function monotonically

increases. We now investigate the corresponding property

for the discrete approximation of the level set. The update

scheme (6) uses the first order finite difference approximation

which introduces approximation errors. It remains a question

whether there exist some nodes (i, j) whose approximations

are such that Qk(i, j) > Qk+1(i, j) due to approximation

errors. With Proposition 2 and 3, we identify the area for

which level sets update is necessary. Specifically, we show

that if the sequence of discrete cost functions satisfy gk ≤
gk+1, then discrete approximation of the level set satisfies

Qk ≤ Qk+1.

Proposition 2: Given gk and gk+1, let Qk and Qk+1 be

the discrete solutions to (12) on the same grid with mesh size

4417

Δx. If gk+1 ≥ gk, the approximation satisfies Qk+1(i, j) ≥
Qk(i, j) for all grids (i, j).

Proposition 2 is a direct consequence of the numerical

algorithm proposed in [22]. We replace Q and g in the left-

hand side of (6) with Qk and gk+1 respectively. Follow-

ing the algorithm in [22], we can construct a convergent

sequence Vn, where n = 1, 2, . . ., V1 = Qk and lim
n→∞Vn =

Qk+1. Since we can show by the algorithm in [22] that Vn

is monotonically increasing, we conclude that Qk+1(i, j) ≥
Qk(i, j) for all grids (i, j).

By using the directed graph, we identify the nodes that

need to be updated. Assume that at time tk+1, the vehicle

detects new obstacles. Then, the cost functions of these grids

are such that gk+1 > gk. Consider a graph Σk that indicates

dependence of the value of the level set on other neighbor

nodes at time tk. Using Σk, Proposition 3, and Corollary 1,

we show that when the cost function gk increases to gk+1

level sets do not necessarily need to be updated at all grids

elements, and we can identify the nodes for which the level

sets update is necessary.

Proposition 3: Denote the computational dependence be-

tween nodes for fast marching algorithm by the graphs

Σk and Σk+1 for times tk and tk+1 respectively. Assume

that for every node gk+1 ≥ gk. For a grid element (i, j),
if gk+1(i, j) = gk(i, j) and Qk(l, m) = Qk+1(l,m)
where node (l, m) is any direct parent of node (i, j), then

Qk+1(i, j) = Qk(i, j) and the direct parents of (i, j) in Σk

are direct parents of (i, j) in Σk+1.

Proof: [Proof of Proposition 3] We only detail the

proof for Case 1. The proof for Case 2 follows the similar

procedure. For notational simplicity, we define E := (i, j)
and neighbors of E by A, B, C and D as shown in Figure 4

(a). We assume that A is the only direct parent of E. Thus,

Qk(A) ≤ Qk(C), (21)

and

min(Qk(B),Qk(D)) −Qk(A) ≥ gk(E)Δx. (22)

By Proposition 2, Qk+1 ≥ Qk for all the neighbor

nodes B, C and D. Thus, since Qk+1(A) = Qk(A) and

gk+1(E) = gk(E), from (21) and (22) we have

Qk+1(A) ≤ Qk+1(C), (23)

and

min(Qk+1(B),Qk+1(D)) −Qk+1(A) ≥ gk+1(E)Δx.
(24)

The above two inequalities imply

Qk+1(E) =Qk+1(A) + gk+1(E)Δx

=Qk(A) + gk(E)Δx

=Qk(E)
(25)

which completes the proof for Case 1.

Consider an arbitrary Σk of a level set. Applying Propo-
sition 3 from the node corresponding to the target z, the

following corollary follows.

Corollary 1: Define the set

Υ := {(i, j) ∈ Ψ : gk+1(i, j) > gk(i, j)}. (26)

For a node (i, j) and given the graph Σk, Qk+1(i, j) >
Qk(i, j) only if (i, j) ∈ Υ, or, in graph Σk, (i, j) is a child

of a grid in Υ.

B. Dynamic Fast Marching Method

We now describe the proposed method to update level sets.

From Corollary 1, we only need to recalculate the nodes that

are children of the node whose cost has increased. Therefore,

the first step is to identify these nodes, using, for example,

the depth first search (see e.g. pp. 477, [4]). The second

step is to recompute Qk+1 value for all children nodes. We

employ the same principle of the fast marching method that

propagates Qk+1 from smaller to larger values. Once the

node corresponding to the location of the vehicle has been

calculated, then an updated optimal path exists and further

update of the level set is not needed. Since obstacles are

detected near the autonomous vehicle, the number nodes that

must be recalculated is often very small.

VII. COMPUTATION EFFICIENCY

Let N be the total number of nodes of a map. The com-

putation cost for dynamic fast marching method O(N lg N)
(see e.g., [23]). Although it is the same as that for the

fast marching method [23], since the dynamic fast marching

method only updates a portion of the entire map, the actual

execution time is, in general, much smaller. We will show the

difference in computational cost between the two methods in

the next sections with some simulations.

VIII. ILLUSTRATIONS

To illustrate the principal conclusions in this paper, we

show a simulation result for an autonomous surface vehicle

(ASV) navigating in a riverine environment. Figure 1 and 5

respectively represent the a priori map and actual environ-

ment both of which span an area of 800m×600m. In Figure

5, the grey area is the obstacles that do not appear in the a
priori map. The grid size is 3m × 3m. During the entire

mission, the ASV detected obstacles within about 35 meters

range and the proposed method updated level sets a total of

eight times. The corresponding locations of where updates

occurred are marked in sequence in Figure 5. As shown in

Figure 5, the ASV traveled along an obstacle free trajectory.

Note that between the 5th to 7th updates, the ASV entered a

U-shaped trap taking the route as a shortcut to the goal. But,

as soon as the vehicle detected the dead end of the trap, the

vehicle managed to escape after the 8th update.

The majority of computation is spent on identifying chil-

dren nodes of obstacles and recalculating level set values

for a subset of them. Let H be the number of child nodes

and let K be the number of the nodes that are recalculated.

4418

The computation cost to identify the children of obstacles

is O(H) (see e.g., pp. 477 [4]) and the cost to sort and

recalculate K nodes is O(K lg K) (see e.g., pp.140 [4]).

Since H and K depends on environment changes and

the autonomous vehicle locations during the mission, the

execution time varies for different scenarios. However, the

newly detected obstacles are often close to the vehicle and

thus the number of nodes K that need to be recomputed is

small in most cases. For each update, Table I lists the number

of the nodes which are detected as obstacles, children of the

obstacles H and nodes which are recomputed K before the

node corresponding to the location of the vehicle has been

calculated. The last column of the table is the ratio between

the nodes recalculated and the total number of the nodes.

This column shows that the proposed method significantly

reduces the computation cost compared to computing the

level sets values over the entire domain. Since the trap

scenario at the 8th update is more complicated, the number of

the nodes recalculated are correspondingly the largest among

the eight updates in Table I.

1

2

3

4

5

6

7
8

Fig. 5. The grey colored areas are some unexpect obstacles due to the
inaccuracy and incompleteness of the a priori map in Figure 1. The actual
trajectory is marked by red line.

TABLE I

COMPUTATION COST OF DYNAMIC FAST MARCHING METHOD FOR

ASV NAVIGATION EXAMPLE

Update Number of Children of Nodes Percentage
Obstacles Obstacles (H) Recalculated (K) (K/N)

1 109 443 119 1.01 %
2 142 251 141 1.19%
3 757 1132 173 1.47%
4 811 6105 144 1.22%
5 413 2029 973 8.26%
6 306 1211 117 0.99%
7 365 420 100 0.85%
8 558 420 1940 16.48%

Total Number of Nodes (N): 11775

IX. CONCLUDING REMARKS

This paper proposes an efficient algorithm that uses the

level set method to replan paths. To find an obstacle free path

upon the detection of new obstacles, one needs to update

level sets which can be computationally expensive if we

use the conventional fast marching method. The proposed

method reduces computation expenses in two aspects. First,

we do not update level sets unless there are obstacles on

the current optimal trajectory of the vehicle. Second, when

we update level sets, we recompute only a portion of them.

In order to justify the proposed method, we provide formal

analysis of how level sets change when new obstacles are

detected. In the end, simulations are presented to validate

the effectiveness of the proposed method.

REFERENCES

[1] K. Alton and I.M. Mitchell, “Optimal path planning under different
norms continuous state spaces,” Proc. of IEEE International Conf. on
Robotics and Automation, pp.866-872, 2006.

[2] W. Choi, D. Zhu and J.C. Latombe, “Contingency-tolerant robot mo-
tion planning and control,” Proc. of IEEE/RSJ International Workshop
on Intelligent Robots and Systems, pp.78-86, 1989.

[3] L.D. Cohen and R. Kimmel, “Global minimum for active contours
models: a minimal path approach,” International Journal of Computer
Vision, vol.24, no.1, pp.57-78, 1997.

[4] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algo-
rithms, The MIT Press, Cambridge, MA, 1989.

[5] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol.22, no.6, pp.46-57, 1989.

[6] D. Ferguson, M. Likhachev and A. Stentz, “A guide to heuristic path
planning,” Proc. of the International Workshop on Planning under
Uncertainty for Autonomous Systems, International Conference on
Automated Planning and Scheduling, 2005.

[7] M.S. Hassouna, A.E. Abdel-Hakim and A.A. Farag, “Robust robotic
path planning using level sets,” Proc. of IEEE International Conf. on
Image Processing, vol.3, pp.473-476, 2005.

[8] M. Khatib, H. Jaouni, R. Chatila, J.P. Laumond, “Dynamic path
modification for car-like nonholonomic mobile robots,” Prof. of IEEE
International Conf. on Robotics and Automation, pp.2920-2925, 1997.

[9] R. Kimmel and J.A. Sethian, “Optimal algorithm for shape from
shading and path planning,” Journal of Mathematical Imaging and
Vision, vol. 14, pp.237-244, 2001.

[10] R. Kimmel, A. Amir and A.M. Bruckstein, “Finding shortest paths
on surfaces using level set methods,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol.17, no.6, pp.635-640, 1995.

[11] B.H. Krogh and C.E. Thrope, “Integrated path planning and dynamic
steering control for autonomous vehicles,” Proc. of IEEE International
Conf. on Robotics and Automation, pp.1664-1669, 1986.

[12] F. Lamiraux, D. Bonnafous and O. Lefebvre, “Reactive path defor-
mation for nonholonomic mobile robots,” IEEE Trans. on Robotics,
vol.2, no.6, pp.967-977, 2004.

[13] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
Norwell, MA, 1991.

[14] S. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[15] P.L. Lions, Generalized Solutions of Hamilton-Jacobi Solutions, Pit-

man Publishing INC, 1982.
[16] I.M. Mitchell and S. Sastry, “Continuous path planning with multiple

constraints,” Proc. of the 42nd IEEE Conf. on Decision and Control,
pp.5502-5507, 2003.

[17] S.J. Osher and J.A. Sethian, “Fronts propagating with curvature
dependent speed: algorithms based on Hamilton-Jacobi formulations,”
Journal of Computational Physics, 79, pp.12-49, 1988.

[18] A. Papoulis and S.U. Pillai, Probability, Random Variables and
Stochastic Process, 4th Edition, McGraw Hill, 2002.

[19] C. Petres, Y. Pailhas, P. Patron, Y. Petillot, J. Evans and D. Lane,
“Path planning for autonomous underwater vehicles,” IEEE Trans. on
Robotics, vol.23, no.2, pp.331-341, 2007.

[20] R. Phillippsen, “A light formulation of the E* interpolated path
replanner,” Technical Report, Autonomous Systems Lab, Ecole Poly-
technique Federale de Lausanne, Switzerland, 2006.

[21] S. Quinlan and O. Khatib, “Elastic bands: connecting path planning
and control,” Proc. of IEEE International Conf. on Robotics and
Automation, pp.802-807, 1993.

[22] E. Rouy and A. Tourin, “A viscosity solutions approach to shape-
from-shading,” SIAM Journal on Numerical Analysis, vol.29, no.3,
pp.867-884, 1992.

[23] J.A. Sethian, “Fast marching method,” SIAM Review, vol.41, No.2,
pp.199-235, 1999.

[24] J.N. Tsitsiklis, “Efficient algorithm for globally optimal trajectories,”
IEEE Trans. on Automatic Control, vo. 40, no. 9, pp. 1528–1538,
1995.

4419

