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Abstract— We propose in this paper an improved geometric
formulation of POE (Product Of Exponential) based kinematic
calibration of serial robots, which is based on the work of
[1]. We use both joint offset-free formulation and adjoint
transformation errors of joint screws, and apply it to the
calibration of an elbow manipulator. Our formulation explains
why the original POE calibration always fails with the existence
of joint offset errors; the adjoint formulation of joint screw
errors eliminates joint screw constraints that was imposed in
the original iterated least square calibration algorithm. The
second contribution of this paper is the proposal of a modified
POE formulation which adopts point measurement data instead
of frame measurement data of the end-effector, which can
be more realistic and convenient for practical implementation.
Simulation results show that the proposed method is plausible
and effective. An experiment is under preparation to verify the
effectiveness of the proposed calibration method on an elbow
manipulator built by Googol Technology.

I. INTRODUCTION

Due to existence of manufacturing error, assembly error,
and mechanical wear, the kinematics model of a serial robot
will always deviate away from its nominal one, which creates
problems in planning and control of the robot. For example,
pure rotation or pure translation joint axis of a serial robot
may have direction and/or position error, which can be mod-
eled by the change of its joint screw coordinate; imperfect
installation of joint encoders will also introduce errors in
the reading of joint angles, known as the joint offset errors.
A kinematic calibration is usually needed and implemented
after the manipulator’s assembly as an effective means to
improve manipulator accuracy. Alternatively, kinematic cal-
ibration can be avoided through improved level of precision
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manufacturing, but at a rather higher cost. Judging from the
scale of industrial robot production, kinematic calibration
excels over quality control in terms of cost-effectiveness.

Kinematic calibration is a relatively old problem, which
can often be categorized into two methods. The first one
requires implementation of extra (redundant) sensors (self-
calibration or auto-calibration)[2], [3], [4] or imposition of
mechanical constraints of the end-effector or links[5]. Kine-
matic parameters and joint encoder offsets can be calibrated
using the additional sensing information and constraint equa-
tions. The second one utilizes an external measuring device
to measure poses of the end-effector. Kinematic parameters
and joint offsets are identified via the manipulator’s direct
and/or inverse kinematics. Thus the first method is often
referred to as implicit or intrinsic method, which utilizes the
input-to-state geometric model of the manipulator; while the
second one is often referred to as external method, which is
based on input-to-output geometric model of the manipulator
in discussion. A good overview of calibration formulations
can be found in [6].

In this paper, we focus on the external calibration method
for two major reasons: first, it is relatively difficult to
add/assemble extra sensors to an assembled machine, which
could also introduce additional error variables and com-
plexify the design of calibration algorithm; second, recent
development in computer vision has been widely applied to
kinematic calibration for its preferably low cost and flexibil-
ity. A vision based measuring system could be setup within
hours. Moreover, the auto-calibration of on-hand camera is
also a relatively mature technique.

In [1], a method for kinematic calibration of open chain
mechanisms based on the POE formula was presented. To
be specific, the forward kinematics (input-output geometric
model) of robots is modeled by POE, taking into con-
sideration variation of geometric parameters. According to
[1], unlike kinematic representations based on the Denavit-
Hartenberg (D-H) parameters, kinematic parameters in the
POE formula vary smoothly with changes of the joint screw
coordinates. However, the geometric formulation and cali-
bration algorithm proposed in [1] has several problems as
we first implemented them ourselves: when the joint offset
errors are to be calibrated alongside joint screw errors, the
calibration result is not consistent with prescribed errors (the
original paper [1] suggested that the calibration algorithm
will also work under existence of joint offset errors, however
the only example shown in that paper is one without joint
offset errors). Several other issues also arise which brought
our attention to a possible improvement of the underlying

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5261



geometric formulation. For example, it is possible to use
adjoint transformation to model the joint screw coordinate
errors, which relieves of using quadratic constraints in the
least square calibration algorithm, which turns the calibration
problem into an unconstrained optimization problem. This
is a considerable improvement no matter what the specific
optimization algorithm is (aside from the iterated linear
least square algorithm, it is also possible to use nonlinear
optimization algorithms and/or any other equation solving
algorithms). In addition, the practicability of measuring end-
effector’s frame transformation is doubtful. We reformulate
the POE equation so that only point measurements are
needed in the calibration process.

The paper is organized as follows: in Section II, we review
the mathematical formulation of POE based calibration; in
Section III, the improved geometric formulation is proposed
and its advantages over the original are explained; in Sec-
tion IV, the modified geometric formulation is proposed to
further accommodate point measurements instead of frame
measurements of the end-effector; in Section IV, we construct
a simulation that apply both the improved and the modified
formulation to the calibration of an elbow manipulator; at
last, we draw several conclusion concerning the effectiveness
of our calibration method.

II. GEOMETRIC FORMULATION OF POE BASED

CALIBRATION

In this section, the geometric formulation of POE based
kinematic calibration for serial manipulators is summarized.
An improved and modified formulation is proposed accord-
ingly.

A. POE formulation of robot forward kinematics

Given a n degree-of-freedom (DoF) non-redundant serial
manipulator with only revolute or prismatic joints, its joint
axis information is reflected by its corresponding joint twist
(screw) coordinates {ξi}n

i=1, which are elements of the Lie
algebra se(3) of the special Euclidean group SE(3)[7].
Recall that if ξ is a constant twist, the rigid motion associated
with it, with respect to reference frame s and end-effector
tool frame t,is given by:

gst : Γ �→ SE(3), gst(θ) = eξ̂θgst(0) (1)

where θ is the angle rotated about ξ. If ξ corresponds to a
prismatic (infinite pitch) joint, then θ ∈ R is the amount of
translation along ξ; otherwise, θ ∈ S1 measures the angle
of rotation about the rotational axis defined by ξ. Using
the POE (Product of Exponential) formulation (or so called
the zero reference formulation [8], or recently the active
transformation [9] ), the forward kinematics map for an open-
chain manipulator with n degrees of freedom can be easily
found

f : Γn �→ SE(3), f(θ) = eξ̂1θ1 · · · eξ̂nθngst(0) (2)

(2) is known as the POE (product of exponential) formula
[7], see Figure 1. Note that here eξ̂1θ1 · · · eξ̂6θ6 is the part of
rigid body motion generated by the serial manipulator with

q1

ξ5

q2

ξ2 ξ3
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T

S

Fig. 1. Geometry of the elbow manipulator (Courtesy of Zexiang Li)

respect to the reference frame s, while gst(0) is the part
of coordinate transformation of t with respect to s which
does not count as rigid body motion. Both rigid body motion
and initial coordinate transformation need be calibrated to
produce an accurate output of a point on the end-effector.

B. POE based calibration [1]

Now that the forward kinematics of a serial manipulator
is given by POE formula (2), we are also interested in the
dependence of (2) on joint screw coordinates, then we have:

f : Γn × se(3)n �→ SE(3),

f(θ1, . . . , θn, ξ1, . . . , ξn) = eξ̂1θ1 · · · eξ̂nθnM
(3)

where M = gst(0). Using the exponential mapping, M is
written as M = eΥ for some constant Γ ∈ se(3). Then the
right pull back of the total differential of f is calculated by:

df · f−1 =

d(eξ̂1θ1)e−ξ̂1θ1 + eξ̂1θ1d(eξ̂2θ2)e−ξ̂2θ2e−ξ̂1θ1+

· · · + eξ̂1θ1eξ̂2θ2 · · · d(eξ̂nθn)·
e−ξ̂nθn · · · e−ξ̂2θ2e−ξ̂1θ1 + eξ̂1θ1 · · · eξ̂nθndM ·
M−1e−ξ̂nθn · · · e−ξ̂2θ2e−ξ̂1θ1

(4)

Each term d(eξ̂iθi)e−ξ̂iθi in (4) can be expanded as:

d(eξ̂iθi)e−ξ̂iθi =
∫ 1

0

eξ̂iθisdξ̂iθie
−ξ̂iθisds

+
∫ 1

0

eξ̂iθisξ̂idθie
−ξ̂iθisds

= θi

∫ 1

0

eξ̂iθisdξ̂ie
−ξ̂iθisds + ξ̂idθi

(5)

Similarly, dM · M−1in (4) becomes

dM · M−1 = d(eΥ)e−Υ =
∫ 1

0

eΥsdΥe−Υsds
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So a more compact form of (4) can be rewritten as:

df · f−1 = ξ̂1dθ1 + Ad
eξ̂1θ1 (ξ̂2)dθ2

+ · · · + Ad
eξ̂1θ1 ···eξ̂n−1θn−1 (ξ̂n)dθn

+ θ1

∫ 1

0

Adeξ̂1θ1s(dξ̂1)ds

+ θ2Ad
eξ̂1θ1 (

∫ 1

0

Ad
eξ̂2θ2s(dξ̂2)ds)

+ · · · + θnAd
eξ̂1θ1 ···eξ̂n−1θn−1

· (
∫ 1

0

Adeξ̂nθns(dξ̂n)ds)

+ Ad
eξ̂1θ1 ···eξ̂nθn

(
∫ 1

0

AdeΥs(dΥ)ds)

(6)

where Ad is the Adjoint transformation [7]. We collect the
above linearized equation into a matrix form of Ap = y,
where p ∈ R

7n+6 is the kinematic parameter vector

p = [dθ1 · · · dθn dξT
1 · · · dξT

n dΥT ]T (7)

and y is the screw coordinate of df · f−1, or using the ∨
operator in [7], y = (df · f−1)∨.

We make the following notations,

eξ̂iθi =
[

Ri pi

0 1

]
, eξ̂iθis =

[
Ri(s) pi(s)

0 1

]
(8a)

eΥ =
[

RM pM

0 1

]
, eΥs =

[
RM (s) pM (s)

0 1

]
(8b)

ξi = [dvT
i dωT

i ]T (8c)

rk =

(
k−1∏
i=0

[
Ri p̂iRi

0 Ri

])[
vk

wk

]
(8d)

Qk =

(
k−1∏
i=0

[
Ri p̂iRi

0 Ri

])
xk

·
∫ 1

0

[
Rk(s) p̂k(s)Rk(s)

0 Rk(s)

]
ds

(8e)

QM =

(
n∏

i=0

[
Ri p̂iRi

0 Ri

])
xk

·
∫ 1

0

[
RM (s) ˆpM (s)Rk(s)

0 Rk(s)

]
ds

(8f)

with eξ̂0θ0 defined to be the identity matrix. Then (6) can be
expressed as :

y = [r1 · · · rn Q1 · · ·Qn QM ]p � Ap (9)

The original least square calibration is carried out in
the following way: various instances of configurations of
the manipulator in the workspace are measured. For each
instance i, the error vectors y and Jacobian A are denoted
by yi and Ai, which shall be solved in a least square fashion.
Collect all instances of (9) into a matrix form and we have:

y =

⎡
⎢⎣

y1

...
ym

⎤
⎥⎦ =

⎡
⎢⎣

A1

...
Am

⎤
⎥⎦ p

which we would like to denote by:

Y = A p (10)

So that the POE calibration problem is equivalent to itera-
tions of the minimization problem of the least square error
function

J(p) = ‖A p − Y ‖2

subject to joint screw constraints. Each revolute joint screw
ξ̂i must satisfy the constraint wT

i vi = 0, ‖wi‖ = 1 while for
prismatic joints only vi need be identified and ωi is always
kept zero and thus left out of the calibration.

III. AN IMPROVED GEOMETRIC FORMULATION FOR POE
CALIBRATION

A. Joint offset-free calibration

When using the original POE formulation, we find out that
joint offset errors can not be identified very well. In fact,
there will always be some error in the joint offsets and joint
screw errors. However it works well with joint offset-free
assumption.

The following analysis can be made to explain such
deficiency. Assume there exists no joint screw errors in the
POE formula, but there exists joint offset errors for each
joint. However, equivalently, we can ignore the joint offsets
and regard them as deviations in the joint screw axis, such
as shown in Figure 2. Denote the nominal value of a variable

2
n

ˆ 112 2Ad n
a n

e

1

2 1 2 ( 4, , )i n

ˆ ˆ1 21 23 3Ad n n
a n

e e

1
n

3
n

Fig. 2. Equivalent joint screw error due to joint offset errors

(either joint screw or joint variable) x by xn and its actual
value by xa, then the screw motion of the ith joint is:

eξ̂n
i θa

i = eξ̂n
i (θn

i +Δθn
i ) = eξ̂n

i θn
i eξ̂n

i Δθn
i (11)

So the actual forward kinematic equation (2) becomes:

f(θa
1 , θa

2 , ...., θa
n)

= eξ̂n
1 (θn

1 +Δθn
1 ) · · · eξ̂n

n(θn
n+Δθn

n)gn
st(0)

= eξ̂n
1 θn

1 eξ̂n
1 Δθn

1 · · · eξ̂n
nθn

neξ̂n
nΔθn

ngn
st(0)

(12)

Thus this equation can be simplified using the fact that if
M ∈ SE(3), then M−1epM = eM−1pM . By repeatedly
applying the identity Mep = eMpM−1

M , f can be rewritten
as:

f(θa
1 , θa

2 , . . . , θa
n)

= eξ̂a
1 θa

1 · · · eξ̂a
nθa

n · eξ̂n
1 Δθn

1 · · · eξ̂n
nΔθn

ngn
st(0)

(13)
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where

ξ̂a
1 = ξ̂n

1

ξ̂a
2 = eξ̂n

1 Δθn
1 ξ̂n

2 e−ξ̂n
1 Δθn

1 = (Ad
eξ̂n

1 Δθn
1
ξn
2 )∧

· · ·
ξ̂a
n = (Ad

eξ̂n
1 Δθn

1 ···eξ̂n
n−1Δθn

n−1
ξn
6 )∧

(14)

If we denote eξ̂n
1 Δθn

1 · · · eξ̂n
6 Δθn

6 gn
st(0) by ga

st(0), the forward
kinematic equation equals:

f(θa
1 , . . . , θa

6) = eξ̂a
1 θn

1 · · · eξ̂a
6 θn

6 ga
st(0) (15)

hence showing the equivalence of joint offset error to ad-
joint errors of joint screws. In other words, a set of joint
offset errors Δθn

i can always be separated into two parts
Δθn1

i + Δθn2
i so that Δθn1

i is identified with the new joint
offset errors while Δθn2

i is identified with joint screw errors.
Considering the infinite possibilities of Δθn1

i + Δθn2
i , the

following conclusion can be drawn.
Proposition 1: In the above POE calibration settings,

joint offset errors are not identifiable.
Proof: Trivial.

Yet once all joint offset errors are identified with certain joint
screw errors, the gross joint screw errors thus caused can be
identified by POE calibration. Thus the first contribution of
this paper is the conclusion that there is no need to consider
joint offset errors at all!

B. Eliminating the joint screw constraint

In the previous least-squares algorithm, after every it-
eration, the updated screw coordinate for each joint will
no longer satisfy the joint screw constraints. Since linear
least square optimization with quadratic equality constraints
are difficult to solve analytically if not impossible [10],
it is suggested that the normalization of ‖ωi‖ = 1 and
orthogonalization of vT

i · ωi = 0 be taken right after each
iteration of the least square algorithm. Such solution, though
practically plausible, is not mathematically rigorous.

The second contribution of this paper is to o eliminate
the joint screw constraints before the iterated linear least
square algorithm take place, transforming the problem into
an unconstrained one.

Intuitively, if the axis screw of any joint in a robot ma-
nipulator has some deviation, we can regard the offsets as a
small rigid body motion. In robotics, the rigid transformation
of joint screws is known as the Adjoint transformation [7],
which is a special type of linear transformation on screw
coordinates. Based on the notion of Adjoint transformation,
we propose a geometrically meaningful formulation for the
joint screw errors.

As show in Figure 3, the ith axis (denoted by solid lines) is
deviated from its nominal value (denoted by dashed lines).
For an joint screw ξn going through small deviation, we
can formulate its deviation by the Adjoint transformation
ξa = Adeη̂ · ξn. If we denote eη̂ and ξn by:

eη̂ =
[

R P

0 1

]
, ξn =

[
vn

ωn

]
(16)

a
i

n
i

ˆe
Ad

( 1)
n
i

( 1)
a
i

( 1)
n
i

Fig. 3. Illustration of joint screw errors

Then

Adeη̂ξn =
[

Rvn + P̂Rωn

Rωn

]

Apparently, ‖Rωn‖ = ‖ωn‖, (Rωn)T (Rvn + P̂Rωn) = 0:
after small rigid-body motion the joint screw ξn changes
to a new screw Adeη̂ξn, which still satisfies joint screw
constraints of the same type. If we regard the deviation of
the axis as a small rigid motion, then the calibration task
becomes to identify the Adjoint error ηi’s instead of Δξi’s.
Infinitesimally,

eη̂ ξ̂ne−η̂ ≈ ξ̂n + [η̂, ξ̂n] (17)

This is the equivalent form to the original update ξ̂n +Δξ̂n,
which means that the update Δξ̂n should in principle not be
chosen arbitrarily but should be chosen as the Lie bracket
[η̂, ξ̂n].

For the initial configuration error M , we simply apply a
rigid motion of some error screw: Υ.

Ma = eΥ̂M

Then the derivation of spatial residue df · f−1 boils down
to derivation of dξi = d(Adeη̂i ξ

n
i ):

dξ̂i = d(Adeη̂i ξ
n
i )∧ = d(eη̂i ξ̂n

i e−η̂i)
= d(eη̂i)e−η̂ieη̂i ξ̂n

i e−η̂i + eη̂i ξ̂n
i e−η̂ieη̂id(e−η̂i)

=
((∫ 1

0

Adeη̂is

)
dηi

)∧
(Adeη̂i ξ

n
i )∧

−(Adeη̂i ξ
n
i )∧

((∫ 1

0

Adeη̂is

)
dηi

)∧

= −
[
(Adeη̂i ξ

n
i )∧,

((∫ 1

0

Adeη̂is

)
dηi

)∧]

=⇒

dξi = −ad(Adeη̂i ξ
n
i )
(∫ 1

0

Adeη̂isds

)
dηi (18)

Then the least square algorithm is formulated using dηi’s
instead of dξi’s, and hence have achieved elimination of the
joint screw constraints. From calculus’s viewpoint, (18) is
just a change of coordinate.
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IV. MODIFIED GEOMETRIC FORMULATION OF POE
CALIBRATION

In this section, we consider the calibration problem of
a serial manipulator with only end-effector point measure-
ments. Let Pc be a point on the end-effector, its position is
calculated by:

Pc = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθnPc0

= f · Pc0 (19)

Where Pc0 is its initial position with respect to the reference
frame s. Take the differential on both sides of (19):

dPc = df · Pc0 + f · dPc0

= (df · f−1)fPc0 + f · dPc0

= (df · f−1)Pc + f · dPc0 (20)

where dPc ∈ R
3 is the deviation of point measurement

Pc from its nominal value. Note that for the first term
(df · f−1)fPc0, dηi cannot be extracted on the right. So
the original POE calibration algorithm cannot be directly
applied. Now denote

s =
[

ŵ v

0 0

]
∈ se(3) (21)

and

Pc =
[

P

1

]
4×1

(22)

We observe that

sPc =
[

ŵ v

0 0

] [
P

1

]
=
[

ŵP + v

0

]

=
[

I −P̂

0 0

] [
v

w

]

=
[

I −P̂
] [ v

w

]

Since df · f−1 also in a twist form, (20) becomes:

dPc = [I − P̂c](df · f−1)∧ + f · dPc0 (23)

Combining (18) with 23 and we have:

(Qidξi)∧Pc =
[
I − P̂

]
Qidξi

= −
[
I − P̂

]
Qi · ad(Adeη̂i ξ

n
i )
(∫ 1

0

Adeη̂isds

)
dηi

(24)

At the same time, suppose

eξ̂1θ1eξ̂2θ2 · · · eξ̂nθn =
[

Rf bf

0 1

]

dPc0 =
[

dPc0

0

]

So

fdPc0 = RfdPc0 (25)

(a)

�

��

��

�

�

1�

��

�� ��

1

�

�

�
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�

(b)

Fig. 4. The elbow robot used in simulation: (a) a CAD model; (b) a
schematic.

l0 150 mm
l1 570 mm
l2 150 mm
l3 634 mm

Parameters

l4 50 mm
Joint 1 (-180,+180) deg
Joint 2 (-105,+175) deg
Joint 3 (-235,+85) deg
Joint 4 (-180,+180) deg
Joint 5 (-40,+220) deg

Joint reach

Joint 6 (-360,+360) deg

TABLE I

KINEMATICS PARAMETERS AND JOINT REACHES OF AN ELBOW ROBOT

Then (20) becomes:

dPc = (df · f−1)Pc + fdPc0 = Ãp̃ (26)

where

Q̃i = −[I − P̂ ]Qi · ad(Adeη̂i ξ
n
i )
(∫ 1

0

Adeη̂isds

)
dηi

Ã =
[

Q̃1| Q̃2| · · · |Q̃n|Rf

]
p̃ =

[
dη1

T · · · dηn
T dPc0

]
V. SIMULATION RESULT

In the absence of calibration experiment, we verify the
improved and modified geometric formulation for POE cal-
ibration by a simulation of an elbow robot. Fig. 4 shows a
CAD model and a schematic of the robot. In Table I, its
kinematic parameters and joint reaches are presented. The
nominal and identified screw information is shown in Table
II.

Two simulation were carried out. The first one is per-
formed based on the complete information of end-effector
posture and the second one is based on its position in-
formation. After 6 iterations, the kinematic parameters are
successfully identified. In the second simulation, 10 iterations
are required to achieve the same accuracy. The number of
iteration nearly doubles for the position information case.
This is predictable since only position information is used.

We also want to emphasize that the exponential mapping
is only locally one-to-one. So when dealing with the initial
position screw ξpc0 , there may exist more than one solution.

5265



Normal parameters Identified parameters
ξ1 (0 0 0 0 0 1) (0.0222 -0.0144 0.0009 0.0194 -0.0317 0.9993)
ξ2 (0 0 150 0 1 0) (0.1764 2.8933 151.2188 0.0504 0.9985 -0.0192)
ξ3 (570 0 -150 0 -1 0) (583.8102 14.9619 -154.0245 0.0307 -0.9993 0.0195)
ξ4 (0 -720 0 -1 0 0) (60.3165 -690.8776 1.7673 -0.9958 -0.0870 -0.0290)
ξ5 (-720 0 784 0 1 0) (-733.2256 -29.1784 798.2115 -0.0143 0.9996 0.0234)
ξ6 (0 -720 0 -1 0 0) (-17.1142 -702.2271 -0.9022 -0.9984 0.0244 -0.0517)

ξpc0 (834 0 720 0 0 0) (839.0100 -5.0300 724.9740 0 0 0)

TABLE II

NOMINAL AND IDENTIFIED PARAMETERS FOR GOOGOL TECH ELBOW MANIPULATOR

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an improved and modified
geometric formulation of POE-based kinematic calibration
of robot manipulators. Both joint offset errors and joint
screw constraints are eliminated. This reduces the calibration
problem to an unconstrained sequential linear least-square
optimization problem. It is shown that the joint offset errors
are equivalent to a set of joint screw errors. Hence they can
be ignored without any danger. It is also shown that the joint
screw error can be modeled using adjoint transformation by
small magnitude screw motion.

In the modified formulation, Instead of measuring com-
plete posture (position and orientation) of the end-effector
with respect to a world reference frame, only position mea-
surement is needed for calibration. This not only simplifies
experiment implementation, but also alleviates requirement
on measuring equipment since it is not an easy problem
to measure orientations of an manipulator. By the modified
formulation, the original constrained calibration problem im-
mediately becomes an unconstrained optimization problem.
The formulation is no more complex than the original one.
In both cases, the speed of convergence is impressive, due
to the robustness of sequential linear least-square algorithm.

The end-effector point measurement can be achieved by
either a contacting coordinate measuring machine (CMM) or
a non-contact vision based measuring system. A vision-based
measuring system is flexible and relatively economical. In
order to verify the improved geometric formulation, a vision-
based calibration system is being set up to calibrate a 6-DoF
serial robot.
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