
  

  

Abstract— In this paper we evaluate the use of a novel spatial 

histogram, the terrain spatiogram, as a common representation 

for exchanging landmark information between robots working 

as a team to map an area.  Individual robots use range sensors 

to provide the spatial dimension of the spatiogram and video for 

the image dimension. We have previously shown that terrain 

spatiograms can be shared between robots in a heterogeneous 

team to recognize landmarks and to fuse observations from 

multiple sensors or multiple platforms.  

A terrain spatiogram using a mixture of Gaussians (MOG) 

model is introduced and a corresponding normalized 

spatiogram similarity measure defined. Two methods to 

generate a MOG terrain spatiogram are presented and 

compared experimentally using indoor and outdoor landmark 

information transferred between two different models of robot 

equipped with differently configured stereocameras.  

I. INTRODUCTION 

A team of robots working to collaboratively and quickly 

generate a map of a site showing hazards, obstacles, 

traversable routes, etc, will need to register their local maps.  

One effective way to do this is communicate landmark 

information to each other. In previous work [9], we proposed 

a novel landmark representation, the terrain spatiogram, 

which is designed to allow the easy fusion of data from 

multiple sensors and multiple platforms and to facilitate the 

sharing of landmark information between mobile platforms 

in the team. Based on Birchfield and Rangarajan’s image 

spatiogram [2], the terrain spatiogram represents image data 

and corresponding 3D terrain spatial information rather than 

image spatial information. We showed that this 

representation allows effective sharing of landmark 

information between differently equipped platforms. In this 

paper, we present a terrain spatiogram based on a mixture of 

Gaussians model. We introduce two methods to fuse 

multiple views in this model and present an experimental 

evaluation of each.  

Previous work is reviewed in Section II of the paper. In 

Section III, we recap the terrain spatiogram notation from [9] 

and its extension to a mixture of Gaussians framework. 

Section IV presents two approaches to fusing information 

from multiple views in a mixture of Gaussians framework. In 

Section V the experimental evaluation of each is reported. 
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II. PRIOR WORK 

One of the principle uses of a landmark in navigation and 

mapping is to allow the recognition of a place. Approaches 

to robot map representation  include topological maps, maps 

based on places and their interconnection, and metric maps, 

maps based on accurate spatial measurements [16]. A 

cognitive map [12] is a biologically inspired, primarily 

topological map composed of natural landmarks [5] 

identifying places, the edges identifying routes between 

places and augmented with navigation and hazard 

information. In this framework, a robot needs to be able to 

select and recognize landmarks. Robots working as a team 

can function more efficiently if they can share landmark 

information, allowing them to fit their local maps together 

correctly and coordinate exploration and mapping activities. 

Other robots in the team can also serve as visual landmarks, 

leveraging a valuable, additional source of localization 

information.  

Landmark selection refers to the process of determining 

which parts of the environment can function as effective 

landmarks and landmark recognition refers to the process of 

identifying previously selected landmarks. In this paper we 

restrict our attention to landmark recognition. The primary 

focus will be place recognition in a topological map. Micro-

landmarks whose appearance is independent of scale and 

rotation, e.g., SIFT features [14], are commonly used in 

metric mapping. A collection of these micro-landmarks are 

matched to localize the robot accurately. The approach 

presented here, in contrast, uses a small number of macro-

landmarks to recognize place within a topological map.  

However, landmark recognition is also important in metric 

mapping for loop closure. Ramos et al. [13] shows that a 

combination of depth and image information can be a 

powerful tool for landmark recognition. They employ 

Tenenbaum’s Isomap to learn low-dimensional location and 

image descriptions for landmarks to implement loop-closure 

for outdoor SLAM. 

Another representation that combines depth and image 

information is Birchfield and Rangarajan [2]’s spatial 

histogram or spatiogram. The image spatiogram extends an 

image histogram with a Gaussian distribution per histogram 

bin that summarizes the image location for the image pixels 

that fall in that histogram bin. In [9], we note that if a robot 

is equipped with range sensing equipment in addition to a 

visual sensor, then it is possible to relate the image positions 

of the spatiogram to Cartesian coordinates relative to the 

robot. If this spatial information is used rather than image 
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spatial information, we called the result a terrain spatiogram 

(as opposed to image spatiogram). We showed in [9] that a 

landmark could be represented by a stored terrain spatiogram 

in landmark-centered cylindrical coordinates and that this 

representation enabled effective landmark recognition on one 

robot of landmarks seen by another robot with a different 

sensor configuration.  

However, the terrain spatiogram model proposed by [9] 

followed [2] in using a Gaussian distribution per bin, limiting 

how well it could represent outdoor landmarks, where colors 

could have multimodal distributions. In this paper, we 

present a reformulation of the terrain spatiogram model to 

include a mixture of Gaussian distribution per bin and we 

introduce present similarity measures for the new model.  

III. THE TERRAIN SPATIOGRAM APPROACH 

A. Spatiograms.  

Let I : P→V  be a function that returns the value v∈V 

of a pixel at a location p∈P in the image. The histogram 

of I captures the number of times each pixel value 

occurs in the range of the function I. Consider a set, B, 

of equivalence classes on V,  a histogram of I, written hI 

maps B to the set {0,…,|P|} such that hI(b)=nb and 
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equivalence class and 0 otherwise, and η is a normalizing 

constant. A spatiogram or spatial histogram adds 

information about where values occur in the image: 

hI (b ) = 〈 nb , µb , Σb 〉 

where µb , Σb are the spatial mean and covariance of the 

values in the class b defined as: 
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Birchfield & Ragajaran define a histogram as a first order 

spatiogram, a formulation that also allows for second and 

higher order spatiograms. They also introduce an approach 

to comparing two spatiograms as the spatially weighted sum 

of similarities 

)',()',(
||

1

b

B

b

bnb nnhh ∑
=

= ρψρ  

where ψb evaluates the spatial means of bins in h in the 

spatial distributions of h’ and where ρn compares the bin 

values. O’Conaire et al. [11] developed a normalized 

spatiogram comparison measure (one in which ρ(h,h)=1), 

making it much more intuitive to use ρ to match two 

spatiograms. 

 

B. Terrain Spatiograms 

The spatial dimensions used by Birchfield & Ragajaran 

and others are the spatial dimensions of the image and a 

primary use of spatiograms has been for color-based tracking 

in video images. Note that there is nothing about the 

definition which constrains the spatial dimensions to be in 

the image. If, for example, the image information comes 

from a stereo camera, then the spatial information can be 

three-dimensional depth information. 

The function d(p) is introduced that maps a pixel at 

position p to its three dimensional location in the viewed 

scene and the definition of the function δib is modified  so 

that δib = 1 iff the i
th

 pixel is in the b
th

 equivalence class and 

its stereo disparity is defined, 0 otherwise. The spatial 

moments for a terrain spatiogram then become: 
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Figure 1(a) shows an image taken from a Pioneer AT3 robot  

using the SRI SmallVision [7] software and Videre digital 

stereohead
1
. Fig. 1(b) is a monochrome disparity map. Figs 

1(c,d) are an illustration of a terrain spatiogram calculated as 

follows: Terrain spatiograms R(b), G(b) and B(b) with |B|=32 

were taken for the red, green and blue color channels of this 

image. Fig. 1(c) is the projection of the three spatiograms 

onto Cartesian XY space; and Fig. 1(d) the projection onto 

Cartesian  YZ space. The X axis is horizontal in all. The 

 
1 Model STH-MDCS3 

 
Figure 1: Terrain spatiogram example: (a) image, (b) disparity,  

(c) spatiogram XY projection; and (d) spatiogram XZ projection. 

(a)                                            (b) 

 

 

 

 

 

 

 

 

(c)                                            (d) 
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spatiogram image is a composite of all three color channel 

spatiograms and is constructed by traversing the buckets of 

all three spatiograms and for each bucket value (rb , gb , bb) 

drawing an ellipse of Σb with that color. 

For a robot to recognize a landmark, it computes a terrain 

spatiogram of the landmark and then compares that 

spatiogram with the terrain spatiograms of a list of stored 

landmarks.  The spatial information must be landmark-

centered rather than robot-centered [9]. We employ a variant 

on the normalized spatiogram measure introduced by [11] 

to compare two terrain spatiograms h and h’: 
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is the normalized probabilistic spatial weighting term.
2
   

 

C.  Mixture of Gaussian (MOG) Terrain Spatiograms 

We argue that a unimodal bin distribution makes this 

representation less useful in representing the appearance 

of outdoor landmarks effectively for several reasons: 

1. A multimodal color distribution can be a useful 

feature to distinguish a landmark in a complex outdoor 

scene (e.g., compare Fig. 2(c) and (d)). 

2. When unimodal terrain spatiograms from multiple 

sources (sensors or platforms) are combined the resultant 

spatiogram may over-generalize and become less 

effective for landmark identification purposes.  

A MOG terrain spatiogram is defined as: 

 

h(b ) = 〈 nb , mb = ((αb1 , µb1 , Σb1),…, (αbm , µbm , Σbm))  〉 
 

where µbi , Σbi are the ith mixture parameters and αbi is the 

weight or mode probability of the ith mixture. The 

probability for bin b of the spatial location x is given as 
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The definition of normalized similarity ρ, needs to be 

modified to accommodate the mb component.  We define the 

normalized similarity of two mixture of Gaussian 

spatiograms h and h’ as follows: 
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2 It can be easily verified that ρ(h,h)=1. 

Since a single Gaussian bin distribution is a special case of a 

mixture of Gaussians, we can also use this measure to 

compare the normalized similarity of a Gaussian spatiogram 

and a mixture of Gaussians spatiogram. 

IV. CALCULATING MIXTURE OF GAUSSIAN SPATIOGRAMS 

Two approaches are proposed here to construct a mixture 

of Gaussians terrain spatiogram: clustering and fusion. The 

next section presents an experimental evaluation of the 

proposals. 

A. Clustering 

To be useful in this application, a clustering approach 

needs to be fast. For example, a 3-channel 32 bin histogram 

needs to perform 96 clustering steps just to generate the 

spatiogram. For this reason, we propose a simple k-means 

based clustering. 

 1) Cluster initiation.  

1. Select a cluster center at random. 

2. Select furthest data point from this as next center. 

3. Repeat 2 until m cluster centers selected. 

2) K-means. 

1. Assign each data point to its closest cluster. 

2. Recalculate clusters as centroids of assigned points. 

3. Repeat 1 and 2 until the average distance from a 

point to its cluster center does not change more than 

ε=0.001 

4. Calculate the variance of points in each converged 

cluster. 

5. Calculate the cluster weight as the number of points 

in the cluster divided by the total number of points. 

Figure 2 shows an example of a mixture of Guassians 

terrain spatiogram calculated using this clustering method. 

Fig. 2(a) shows a Pioneer AT3 robot viewed by a second 

Pioneer DX2 robot using a stereocamera. Figs. 2(b) and (c) 

show the RGB terrain spatiogram in XY and YZ projections, 

(a)                                            (b) 

 

 

 

 

 

 

 

 

(c)                                            (d) 

 
Figure 2: Terrain spatiogram of landmark (a): Gaussian XZ 

projection (b) XY projection (c), and mixture of Gaussians XY 

projection (d). 

(a)                                           (b) 

 

 

 

 

 

 

 

(c)                                           (d) 
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calculated as described for Fig. 1. Fig. 2(d) shows the 

mixture of Gaussian terrain spatiogram calculated using K-

means in XY projection. Note that the yellow wheels show 

up as a single, centered point in Fig. 2(c) but as two distinct 

points in Fig. 2(d).  

Panoramic and omnidirectional cameras have been used in 

robot navigation for some time (e.g., [8] etc.) and there is 

evidence that panoramic processing is used in some kinds of 

insect navigation [4]. We can consider the terrain spatiogram 

in cylindrical coordinates to be analogous to an 

omnidirectional camera image but with camera normal 

facing in – towards the object – rather than out – towards the 

environment.  However, to take advantage of this, we need to 

be able to combine multiple views into a terrain spatiogram.  

 On solution is simply to combine data from multiple views 

in the clustering process. Figure 3 shows four views of a 

Pioneer AT3 robot (left, front, right and back, 3(a-d) 

respectively) taken from a stereocamera. If the data from all 

four views are clustered (with appropriate rotations of 0, π/2, 

π, 3π/2 for each set of data), then the terrain spatiogram in 

Fig. 4(a) is the result. Fig. 4(b) shows a combination of four 

similar orthogonal views in a different location and from a 

different robot. In this paper, we restrict our study to 

combining views taken by the same robot. 

B. Fusion. 

Aspect graphs represent a 3D object as a collection of 

views of the object [3]. Thus, another approach to build a 

mixture model for multiple views is to incorporate each 

view as a separate mixture member. The steps involved 

are as follows: 

1) View collection.  

1. Collect a single Gaussian terrain spatiogram per 

view, hv . 

2. Record the pose of the view in the landmark-

based cylindrical coordinate frame, av . 

2) View Fusion. 

1. Translate the mean and variance of each bin in 

hv by  av. 

2. Copy the modified hv to the vth mixture  

3. Repeat until all views/mixtures completed. 

Figure 5(a) shows the result of fusing four Gaussian 

terrain spatiograms of the robot in Fig. 3. (The same 

views as used for Fig. 4(a)). Figure 5(b) shows the result 

of fusing four spatiograms of a similar robot in a different 

location and taken by a different robot. (Same views as Fig. 

4(b)). 

V. EXPERIMENTAL RESULTS 

A. Experimental Procedure 

The experiments were conducted using the  same 

equipment as [9]: two Pioneer AT3 robots and one Pioneer 

DX2 robot as follows: 

1. AT3-1: Pioneer AT3 equipped with a stereocamera 

(6mm lens) on a PTZ base;  

2. AT3-2: Pioneer AT3 (passive target);  

3. DX2-1: Pioneer DX2 equipped a stereocamera (12 mm 

lenses) on fixed base. 

(a)                                            (b) 

 

 

 

 

 

 

 

 

(c)                                            (d) 

 
         (a)                                             (b) 

Figure 4: (a) Combined MOG terrain spatiogram for the four 

views in Fig. 3. (b) combined spatiogram for four similar 

views in a different location and from a different robot. 
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(c)                                            (d) 

 
Figure 3: Four views of a Pioneer AT3 taken from Pioneer DX2 

using stereocamera (black areas within image indicate no 

disparity). 

(a)                                           (b) 

 

 

 

 

 

 

 

(c)                                           (d) 
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(c)                                            (d) 

 
         (a)                                             (b) 

Figure 5: (a) Fused MOG terrain spatiogram for the four 

views in Fig. 3. (b) fused spatiogram for four similar views 

in a different location and from a different robot. 
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The AT3-2 platform played a passive role in the 

experiments, acting as a robot landmark, and the other two 

robots were used to collect stereo depth information from 

which landmark terrain spatiograms were computed.  

Landmark data collection was carried out as follows: 

1.  The AT3-1 platform was used to collect data on four 

outdoor landmarks composed of stacked construction 

debris. The robot was manually guided to the vicinity of 

the landmarks and each was manually windowed. These 

landmarks are labelled OL1 to OL4. (See [9] for images 

and descriptions of these.) 

2.  The AT3-1 platform was driven in a one meter circle 

around the AT3-2 platform which functioned as a robot 

landmark. Stereo data was collected at four points on the 

circumference; the front left, back and right of the AT3-

2 platform.  The robot landmark was manually 

windowed. These landmarks are labelled R1 to R4. 

3.  In a separate location, the DX2-1 platform repeated 

these four measurements on the AT3-2 platform. These 

landmarks are labelled R5 to R8. 

The landmark-centered terrain spatiograms for each 

landmark was constructed as follows: 

1. The depth was sampled in an area of 20 pixels
2
 around 

the image window center, and average depth established 

as the z origin of the landmark-centered frame.  

2. The data was filtered by extracting only points within 

depth threshold zth of the origin, z <  zth. 

3. The RGB color values of these points were normalized 

to rgY values, since the lighting conditions under which 

the three experiments were run were markedly different.  

4. Each landmark was used to produce three color channel 

spatiograms as described before.  

B. Single-View Mixture of Gaussian by Clustering Results 

A mixture of Gaussians terrain spatiogram was 

constructed for each landmark. The average time to calculate 

each color channel spatiogram for a 32 bucket, 4 mixture 

model was 0.051 seconds on a 1.4 GHz Pentium laptop.  The 

four terrain spatiograms generated for the AT3-2 platform, 

R1 to R4, were compared to the outdoor landmarks OL1 to 

OL4 and to the landmarks taken from the DX2-1 platform, 

R5 to R8. The results are shown in Figure 6. R1 to R4 

compare well to each other and to landmarks taken by the 

DX2-1 platform, R5 to R8 and are matched poorly to the 

outdoor landmarks. This again supports the thesis that terrain 

spatiograms are an effective way to share landmark 

information between different robot platforms. Note that the 

R1-R8 similarities in Fig. 6 are in fact lower than the single 

Gaussian similarities reported for the same landmarks in our 

previous work [9], where we reported that all robot 

landmarks match each other quite well (>0.9) and match the 

outdoor landmarks quite badly (<0.44).  However, this is a 

reasonable result of the fact that the mixture of Gaussian 

spatiograms represent the individual landmarks more 

accurately and hence allow for less generalization (and lower 

similarities) between robot landmarks. 

C.  Multiple-View MOG by Clustering Results 

The R1 to R4 landmarks were combined into a single MOG 

spatiogram. The 12 landmark MOG spatiograms were 

compared to the combined MOG spatiogram. The results are 

shown in Fig. 7 (dashed line). While the robot landmarks are 

still distinguishable from the other landmarks, only R1 and 

R5 give good results. This is because all the other landmarks 

were rotated when added to the combination, and hence are 

less similar. When the rotations are restored (Fig. 7. solid 

line) the matches are much better. The important implication 

is that the matching process may be able to yield landmark 
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Figure 6: Similarity of the four AT3-2 MOG 

spatiograms to all landmark MOG spatiograms. 
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Figure 7: Similarity of the combined MOG spatiogram 

for R1-4 to all landmark MOG spatiograms. 
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Figure 8: Similarity of the fused MOG spatiogram for 

R1-4 to all landmark Gaussian spatiograms. 
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orientation information. Problematically, however, the range 

of similarity values covering all landmarks is quite small. 

D. Multiple-View MOG by Fusion of Aspects Results 

The Gaussian spatiograms for R1 to R4 were rotated and 

added as mixture members to a fused MOG spatiogram. 

Each of the 12 landmark Gaussian spatiograms was 

compared to the MOG (treating a Gaussian spatiogram as a 

special case of a mixture with one member). The results are 

shown in Figure 8 (dashed line). There is good separation 

between the robot landmarks and other outdoor landmarks, 

but again R1 and R5 are the best matches. When the 

comparison is made with rotated landmark spatiograms, we 

get the solid line in Fig. 8.  

VI. DISCUSSION 

Terrain spatiograms combine 3D spatial information from 

the environment with image information for landmark 

recognition of map places, loop closure in SLAM and for 

sharing information between mobile platforms working 

together to map a site. Previously we have shown that terrain 

spatiograms using on a single Gaussian per bin allowed 

effective communication of landmark information between 

two differently configured robots viewing the landmark 

under different conditions. In this paper we have introduced 

a terrain spatiogram with a mixture of Gaussians model per 

bin. This is arguably a more useful way to uniquely identify 

outdoor landmarks. We looked at two ways to populate this 

more complex model: a fast K-means based-clustering, and 

an aspect graph inspired approach. Our results show that 

1. The MOG by clustering approach also allows effective 

sharing of landmark information between robots, but the 

increased specificity of the MOG representation means 

there is less generalization between views of a landmark 

that for the single Gaussian case.  

2. The combination of many views into a single MOG 

spatiogram remained effective, and indicates that it may 

be possible to get not only similarity but also orientation 

from the comparison. However, the range of similarity 

values was small. 

3. Surprisingly, the aspect graph inspired fusion approach 

retained all the same value as the clustering approach, but 

generated a wider range of similarity values. 
 

There are a number of areas of future work suggested by 

these results. The ability to get both similarity and pose 

information begs a comparison with SIFT approaches using 

a much larger landmark set. A key part of such a study must 

be the robustness of both approaches to landmark occlusions; 

whereas occlusion might cause some SIFT micro-landmarks 

to drop out, reducing accuracy, will occlusion cause a macro-

landmark terrain spatiogram to fail to be recognized at all? 

We propose to study how well the depth information 

available in a terrain spatiogram can be used to filter 

potential occlusions. 

 All the landmarks used in this study and in [9] were 

manually windowed and centered. Future work will add an 

automatic landmark extraction phase. Existing image-based 

approaches to selection include the sum of absolute 

differences [17] and turn and look back [1] methods, and 

methods that combine image and range data include [10]. 

 Future work will also investigate the construction of 

terrain spatiograms from laser data as well as stereo data and 

the comparison of these with each other and with stereo. 
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