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Abstract— This paper proposes an adaptive node sampling
method for the probabilistic roadmap (PRM) planner. The pro-
posed method substitutes the random sampling in the learning
phase of the PRM planner and improves the configuration of
the roadmap. This method uses two phase to determine nodes
in order to construct the roadmap. First, the proposed method
extracts initial nodes using the approximated cell decomposi-
tion and the Harris corner detector. Second, the positions of
these nodes are optimized using a construction process of the
centroidal voronoi tessellation (CVT). The proposed method
determines the adequate number and positions of the nodes to
represent the entire free space, and the PRM planner based
on the proposed method finds out efficient paths even in
narrow passages. These properties have been verified though
experiments.

I. INTRODUCTION

Path planning is becomming more important as the appli-

cation field of mobile robots extends to outdoor environment

such as rough terrain, air and underwater. So, it is important

to search the optimal path in complex and extensive envi-

ronments for a safe and efficient navigation.

The exact methods based on the grid representation of the

environment are generally used to search the optimal path

[1] [2]. These methods search the optimal path considering

the travel cost and safety, and have the ability to deal

with dynamic changes in the environment. However, the

computational efficiency of these methods is deficient in

complex and extensive environments because the number

of grids increases rapidly as the size of the environment

expends. To improve the computational efficiency, several

researchers have proposed sampling based approaches. The

probabilistic roadmap (PRM) planner is one of the typical

sampling based approaches [3]. The PRM planner creates a

roadmap that represents the connectivity of the free spaces

in the environment. The PRM based planner searches for

the collision free paths using two phases: a learning phase

and a query phase [9]. In the learning phase, a roadmap is

constructed by generating nodes and connecting them using

the local planner, while considering a straight-line motion

without any collision. After that, multiple queries can be

answered to search the path without collision. Although the

efficiency of the path from the PRM palnner is not better

than that of the exact methods, the PRM planner has better

computational efficiency than the exact methods because the

entire free space in the environment is abstracted to a set
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of nodes and edges. However, the PRM based planner has

a problem in the learning phase. Nodes are not distributed

wide enough to connect the entire free space because nodes

are generated by random sampling. This problem causes the

following issues:

• Sufficient nodes are required to build the roadmap that

connects the entire free space in the environment.

• The PRM planners have trouble when searching paths

in narrow passages .

• The efficiency of the path searched by the PRM planners

is not always guaranteed. The PRM planners always

have a chance to find an inefficient path.

Several methods were proposed to sample adequate nodes

to build the roadmap. Kabraki et al. proposed the sampling

method that generated additional samplers in the neighbor-

hood of nodes which were connected to a few nodes [3]. The

approximated cell decomposition was used to determine the

positions of nodes [4]. The other methods were proposed

to search paths in narrow passages. The obstacle-based

PRM(OBPRM) generated nodes in long and narrow passages

based on the candidate points that were uniformly distributed

on the surface of each obstacle [5]. Boor et al. proposed the

gaussian random sampling method to substitute the uniform

random sampling method [6]. This method generated nodes

in narrow passages. The MAPRM generated node based on

the medial axes of the free part of the environment to create

nodes in narrow passages [7]. The non-uniform sampling

method was proposed by van den Berg and Overmars [8].

This method assigned weights to labeled regions which were

classified by the approximated cell decomposition and the

watershed segmentation, then sampled the nodes based on

assigned weights.

In this paper, we propose an adaptive node sampling

method to construct the roadmap for the PRM planner.

The proposed method substitutes the random sampling in

the learning phase of the PRM planner and improves the

configuration of the roadmap. This method uses two phase

to determine nodes in order to construct the roadmap. First,

the proposed method extracts initial nodes. Second, the

positions of these nodes are optimized approximately. In

the first phase, we use the approximated cell decomposition

and the Harris corner detector to extract the initial nodes

considering the geometric configuration of the environment.

The approximated cell decomposition determines the initial

nodes in broad regions of free spaces, and the Harris corner

detection algorithm is applied to extract initial nodes in

narrow passages. In the second phase, the positions of the

initial nodes are optimized approximately by the construction
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Fig. 1. Initial nodes determined by the approximated cell decomposition:
(a) Red boxes are decomposed cells, (b) Blue plus signs are initial nodes.

process of the Centroidal Voronoi Tessellation (CVT) in

order to improve the configuration and the connectivity of

the roadmap.

The proposed adaptive node sampling method has the

following properties.

• The proposed method determines the adequate number

and positions of the nodes to represent entire free space

in the environment.

• The PRM planner based on the proposed method finds

out the path through narrow passages.

• The efficiency of path is improved by the optimization

process.

This paper is organized as follows. Section II and Section

III describe the node extraction algorithm and the node

optimization algorithm. An implementation detail and simu-

lation results are presented in Section VI, and the conclusion

follows.

II. NODE EXTRACTION

We present the initial node extraction that determines the

number of initial nodes and their initial positions using geo-

metric configuration of the environment. The approximated

cell decomposition and the Harris corner detector are used

to extract the initial nodes.

A. Approximated Cell Decomposition

Free space in the environment are divided into a set of

sub-cells to determine the number of initial nodes and their

positions. The number of nodes is the number of decomposed

cells, and the position of each initial node is the center of

each cell. The approximated cell decomposition uses the

quadtree structure, which represents a partition of space in

two dimensions by decomposing each cell into four equal

quadrants, subquadrants, and so on. If there are obstacles

in the region of interest of a cell, then the cell is divided

into four sub-cells until the size of the cell reaches to the

minimum cell size. As shown in Fig.1, if the minimum

cell size is proper, decomposed cells cover most free space

in environment. However, there is a limitation. If there are

some narrow passages that are smaller than the minimum cell

size, the approximated cell decomposition can not determine

initial nodes in those regions as shown in Fig.2. To com-

pliment this limitation, the proposed method uses additional

algorithm to determine initial nodes in narrow passages.
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Fig. 2. Limitation of extraction method to determine initial nodes using
the approximated cell decomposition: There are no initial nodes in narrow
passages.
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Fig. 3. Initial nodes in narrow passages: (a) Blue circles indicate Harris
corners in the environment, (b) Harris corners are located near entrances of
narrow passages.

B. Geometric Points Extraction

The approximated cell decomposition in the previous step

can not extract initial nodes in narrow passages because sub-

cells which have smaller cell size than threshold are ignored.

The proposed method determines initial nodes in narrow

passages by extracting salient geometric points since those

points provide representative information of narrow passages.

To extract salient geometric points, the Harris corner detector

is applied [10]. The Harris corner detector is based on the

local auto-correlation function of the intensity. The local

auto-correlation function measures the local changes of the

intensity with patches shifted by a small amount in different

directions. Salient geometric points extracted by the Harris

corner detector are depicted in Fig.3. These extracted points

can be used as initial nodes since these points are located

near entrances of narrow passages, convex and concave

corners.

III. NODE OPTIMIZATION

The efficiency of paths is not always guaranteed when

the PRM planner uses the roadmap constructed base on

the initial nodes that determined by the approximated cell

decomposition and the Harris corner detector because the

nodes in this roadmap are not distributed regularly to connect

entire free space in the environment. To improve the effi-

ciency of the paths, more regularly distributed configuration

of nodes is required. The proposed method distributes the

initial nodes in the environment with considerations of a

geometric configuration using the CVT construction process.

Fig.4 shows a configuration of nodes in the CVT. In this

figure, the CVT has almost regularly distributed nodes and
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Fig. 4. Example of the CVT

voronoi cells because the CVT construction method updates

the positions of its nodes.

In the construction process of the CVT, positions of nodes

are updated iteratively until each position of the nodes

is equivalent to each centroid of voronoi cells [11]. The

centroid of a voronoi cell is defined as follows:

z∗i =

∫

Vi
xρ(x)dx

∫

Vi
ρ(x)dx,

(1)

z∗i is the mass centroid of a voronoi cell Vi, zi is a voronoi

node, and ρ(x) is a density function. The CVT is only defined

when z∗i = zi for all of nodes in a voronoi tessellation.

The McQueen’s algorithm [12] and the Lloyd’s algorithm

[13] are well known processes to construct the CVT using

the initial nodes. The McQueen’s algorithm does not require

a heavy computational burden. However, it can not construct

the CVT precisely since it is an approximation algorithm.

The Lloyd’s algorithm divides the environment into CVT

precisely. However, it has a very heavy computational burden

because the area of each voronoi cells should be calculated in

every iterations. For these reasons, the proposed method uses

the probabilistic Lloyd’s algorithm [14]. This algorithm is an

intermediate strategy based on the McQueen’s algorithm, and

Lloyds algorithm. This algorithm approximately estimates

the centroid of nodes using non-parametric samples instead

of using the area of each voronoi cell. The probabilistic

Lloyd’s algorithm guarantees a fast convergence speed with

less computational burden than that of the Lloyd’s algorithm,

and a better precision than that of the McQueen’s algorithm

and.

As shown in Fig.5, the probabilistic Lloyd’s algorithm uses

random samples to update the position of each node. Z1, Z2

are current nodes and Z∗
1 , Z∗

2 are updated nodes. W1, W2 are

groups of nearest neighbors of Z1, Z2, and the black dashed

line is the voronoi edge. The position of the node are shifted

toward to the centroid of the group of the nearest neighbors

of random samples. Algorithm 1 describes the probabilistic

Lloyd’s algorithm in detail.

The probabilistic Lloyd’s algorithm uses the energy value

Fig. 5. The positions of nodes are updated using random samples in the
probabilistic Lloyd’s algorithm

Algorithm 1 Probabilistic Lloyd’s Algorithm.

1. Choose the random sample number q and constraints

{αi,βi}
2
i=1 and choose an initial set of k nodes {zi}

k
i=1

and set ji = 1 for i = 1, . . . ,k.

2. Generate the random samples {yr}
q
i=1 according to the

probability density function ρ(x).
3. For i = 1, . . . ,k., gather together in the set Wi all the

random samples yr, closest to zi among {zi}
k
i=1. and

set zi ←
(α1 ji+β1)zi+(α2 ji+β2)ui

ji+1
and ji ← ji + 1. ui is the

centroid of Wi.

4. If the positions of the nodes meet some convergence

criterion, terminate; otherwise, return to step 2.

as a criterion to decide convergence of the positions of nodes

and to finish the iterative construction process. The energy

value of the original Lloyd’s algorithm is defined as follows:

K
(

{zi}
k
i=1,{Vi}

k
i=1

)

=
k

∑
i=1

∫

Vi

ρ(x)|x− zi|
2dx. (2)

The original energy value is modified to calculate the crite-

rion based on random samples as

K
(

{zi}
k
i=1,{Wi}

k
i=1

)

=
k

∑
i=1

∑
yr∈Wi

ρ(yr)|yr − zi|
2
. (3)

If nodes are more uniformly distributed in free regions of

environment, this modified energy value becomes smaller.

The proposed method finishes the CVT construction process

when this energy value is bounded. Fig.6 shows an example

of the optimization process. In this figure, the positions of

nodes and random samples are respectively represented by

red dots and green dots. The shift of each nodes is depicted

in Fig.7.

The trajectories of nodes are indicated by black lines;

blue dots represent initial nodes; and red dots mean updated

nodes. If there are many nodes in the same region, some

of those nodes are moved to other regions that do not have

enough nodes. Eventually, nodes are regularly distributed in

free space in the environment with considerations of the

geometric shapes. Fig. 8 shows the change of the energy

value of the probabilistic Lloyd’s algorithm in this example.

The energy value has a declining tendency. Aforementioned

example shows that if nodes have a regular distribution, the

energy value is bounded.
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Fig. 6. The positions of nodes are optimized by the probabilistic Lloyd’s
algorithm. Red dots represent nodes and green dots represent random sam-
ples: (a) Initial nodes determined by the approximated cell decomposition
and the Harris corner detector, (b,c,d,e) Construction steps, (f) The positions
of nodes are updated.
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Fig. 7. Initial nodes are shifted by the probabilistic Lloyd’s algorithm.
Blue dots indicate initial nodes, red dots mean updated nodes, and the shift
of those nodes is represented by black lines.
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Fig. 8. The change of the energy value in the construction process of the
CVT using the probabilistic Lloyd’s algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed method was integrated in the PRM planner

to verify the improvement of the efficiency of planned

paths. All of our experiments were run with MATLAB on

a Core II Duo 3.16GHz with 2GB of internal memory.

Algorithm 2 describes the procedure of the PRM planner

based on the proposed method. It was implemented to the

node sampling step of the learning phase of the PRM planner

to determine nodes for the construction of the roadmap.

Dijkstra’s algorithm was applied to the query phase to search

the shortest path to connect a starting position and a goal

[15].

Algorithm 2 PRM Planner Based On Adaptive Sampling.

1. Learning Phase

a. Node Sampling

• Extracting nodes Vf in free regions using the ap-

proximated cell decomposition.

• Extracting nodes Vn in narrow passages using the

Harris corner detector.

• Optimize the positions of the initial nodes V (V =
Vf ∪Vn) using the probabilistic Lloyd’s algorithm

for building the CVT.

b. Edge Searching

• Try to connect each pair of updated nodes V ∗.

• Successful connections without a collision become

an edge of the roadmap.

2. Query Phase

a. Connect a starting point and a goal to the roadmap.

b. Search the shortest path to connect start and goals

using the graph searching algorithm.

B. Results

The difference between two roadmaps based on the ran-

dom sampling and the proposed sampling in shown in Fig.9.
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Fig. 9. Comparison of the roadmaps. Green lines represents edges of the
roadmaps: (a)The roadmap based on the random sampling, (b)The roadmap
based on the adaptive node sampling

Each roadmap has 96 nodes. The size of the environment

is 256×256 units. The clearance of a path is 10 units

to avoid collision with obstacles in the environment. The

configuration of the roadmap in Fig.9(a) is irregular because

of an irregular distribution of nodes. Some nodes in this

roadmap does not connected to other nodes in free space.

The PRM planner based on the random sampling is not

able to search a path that passes a narrow regions in the

environment. On the other side, the roadmap based on the

adaptive sampling method, that is shown in Fig. 9(b), have

much better configuration than that based on the random

sampling. There were some edges that pass through narrow

passages in the environment because of the nodes in narrow

passages. These differences increase the efficiency of the path

and the robustness of the path planning.

In the experiments, the PRM planner based on the pro-

posed method searched the shortest paths that connect 10

different goals and the same starting point. We compare the

efficiency of these paths to the paths searched by the PRM

planner based on the random sampling. We used the length

of the path as the travel cost to compare the efficiency of
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Fig. 10. The starting point and 10 different goals in the experiments.

(a) Success Rate

(b) Average Cost

Fig. 11. The efficiently of the paths to 10 different goals: (a) The success
rate of the path planning is increased using the PRM planner based on the
adaptive node sampling method, (b) The PRM planner based on the adaptive
node sampling method searches more efficient paths than the paths searched
by the PRM planner based on the random node sampling. The length of the
path means the travel cost.
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the path. Fig.10 shows the common starting point and 10

different goals. The PRM planner based on the proposed

method was run 100 times to construct the roadmaps.

The experimental results are shown in Fig. 11. The success

rates of the path planning with the PRM planner based on the

adaptive sampling are higher than ones based on the random

sampling. The PRM planner based on the random sampling

failed to search the paths because the roadmap did not cover

entire free space in the environment when the configuration

of the roadmap was irregular. The average travel costs of

paths from the starting point to 10 different goals planned

by the PRM planner based on the adaptive sampling method

are smaller than ones based on the random sampling method

because the adaptive sampling method based roadmap con-

nects the entire free space in the environment and the nodes

of this roadmap were almost regularly distributed. Fig.12

is examples to compare the efficiency of the paths planned

by the PRM planner based on the random sampling and

the adaptive sampling. In this figure, the paths planned by

the PRM planner based on the adaptive sampling method

are shorter than the pathes based on the random sampling

method.

V. CONCLUSION

An adaptive node sampling method for the PRM planner

has been proposed. This method improves the efficiency of

the paths by determination and optimization of the nodes

in the roadmap. The experiential result shows the following

properties of the proposed method.

• The proposed method determines nodes to connect

entire free space in environment. The roadmap has a bal-

anced configurations because the nodes are distributed

regularly in the environment.

• The PRM planner based on the proposed method im-

proves the efficiency of the path.

• The PRM planner based on the proposed method

searches paths robustly even in narrow passages.
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Fig. 12. Examples to compare the efficiency of the pathes planned using the random sampling method based roadmap and the adaptive sampling method
based roadmap. Left column: The planned pathes using the random sampling method based roadmap. Right column: The planned pathes using the adaptive
sampling method based roadmap. Black lines represent the path to connect the starting point to the goal. Red dots mean updated nodes, and green lines
represents edges of the roadmap.
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