
 
 

 
 

  

Abstract— This paper proposes a novel global localization ap-
proach that uses hybrid maps of objects and spatial layouts. We 
model indoor environments using the following visual cues from a 
stereo camera: local invariant features for object recognition and 
their 3D positions for object location representation. We also use a 
2D laser range finder. Therefore, we can build a hybrid local node 
for a topological map that is composed of an object location map and 
a spatial layout map. Based on this modeling, we suggest a 
coarse-to-fine strategy for the global localization. The coarse pose is 
obtained by means of object recognition and point cloud fitting, and 
then its fine pose is estimated with a probabilistic scan matching 
algorithm. With real experiments, we show that our proposed me-
thod can be an effective global localization algorithm. 

I. INTRODUCTION 
One of the most important functions of a robotic map is 

to provide the robot with clues to estimate its pose. The 
properties of the map vary according to the sensing mod-
ality. Consequently, depending on the type of map, the 
localization methods should be different. Over the past 
years, 2D range sensors, such as laser range finder, sonar, 
and IR sensors, have been used extensively for robotic 
mapping. These maps are simple representations contain-
ing only geometrical information, such as evenly-spaced 
grids, corners, and edge features. When a robot estimates 
its pose, however, it can be difficult to detect correspon-
dences in geometrically non-distinctive environments. 
This problem is due to the fact that most range sensor 
based localization methods have employed simple feature 
matching or map matching approaches [1, 2, 3]. 

In contrast to the range sensors, a vision sensor provides 
richer and more intuitive sensing information, in that it can 
give both geometrical data, such as stereo depth, and other 
visual cues, such as object recognition and place recogni-
tion. In addition, it has been shown that vision-based 
mapping and localization is more stable in dynamic envi-
ronments than other approaches using range sensors [4]. 
This is because the local invariant features in captured 
images are full of information, and so are more discri-
minative than scanned range data. Therefore, a vision 
sensor can be a useful sensing modality to deal with both 
map representation and localization. Most of the recent 
studies on vision-based mapping and localization have 
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been based on either a place recognition approach or object 
recognition approach. Most place recognition-based sys-
tems [5, 6, 7, 8] represent the environment as representa-
tive views captured from the environment, or as a set of 
specific types of visual features, such as local invariant 
features [9], extracted from the environmental images. 
Then, the localization problem can be solved with a place 
recognition method: matching the visual features detected 
in the query image to those contained on a pre-built visual 
feature database, or finding the reference image in a rep-
resentative image database that is the most similar in ap-
pearance to the query image. On the other hand, object 
recognition-based systems [10, 11, 12] represent a specific 
place by means of the object entities that exist in that place. 
The localization is then performed by verifying that the 
recognized object is contained in the place.  

In this paper, we propose a complete global localization 
system: hybrid maps of objects and spatial layouts and 
coarse-to-fine global localization method. The map consists 
of global topological map and local hybrid map, in which 
each local space is connected as a topological graph and its 
detailed information is represented with objects and spatial 
layout. The objects found in each local space give the spaces a 
unique identification, and their positions are described with 
respect to each local space’s reference frame. The spatial 
layout describes an empty area and a geometric shape of local 
spaces, and provides metric information to compute the spa-
tial relationships between neighboring spaces. Contrast to the 
conventional maps, such integration of object and spatial 
layout into a topological map can give the proposed map 
properties of human cognitive map [13] and semantic map 
[14]. Moreover, the computational complexity of metric maps 
can be reduced by separating the environment representation 
into local maps that are connected by a topological graph. The 
localization process consists of three stages: perception, 
coarse pose estimation, and fine pose estimation. The per-
ception is performed with object recognition. It allows a robot 
to infer the candidate nodes where the robot is expected to be 
located in. The coarse pose estimation is to compute the robot 
pose relative to each candidate node. It is conducted with 
point cloud fitting. The fine pose estimation is carried out 
with a probabilistic scan matching which enables both the 
determination of correct node among the candidate nodes and 
the computation of robot pose relative to the correct node.  

In the present paper, we use a mobile robot equipped with a 
multi-sensor system composed of two 180° laser range find-
ers to extract a spatial layout and a stereo camera to perform 
object recognition. In addition, we apply two kinds of visual 
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features for the object recognition and the pose estimation: a 
PCA feature [15] and stereo depth. The PCA feature 
represents a normalized SIFT descriptor by applying the 
principle components analysis, and this representation sig-
nificantly improves SIFT’s matching performance.  

The rest of this paper is organized as follows. Section 2 
presents a method to represent the proposed map. Our global 
localization process and detailed algorithms will be presented 
in section 3. Experimental verifications are presented in sec-
tion 4 and some concluding remarks are given in section 5. 

II.   MAP REPRESENTATION 
The environment is considered to be represented as a set of 

local spaces and the environmental map is constructed by 
human augmented mapping [16]; a user brings the robot to 
some memorable places and commands it to build a map 
around there. The proposed map is composed of a global 
topological map and local hybrid maps. The global topolog-
ical map consists of nodes and arcs as shown in Fig. 5 (b). It 
represents the spatial relationship between the local spaces in 
terms of an adjacent matrix. The local spaces form nodes of 
the topological map. Our previous work [17] presents the 
details of the global topological map and map building pro-
cedure. In addition, the navigation methodology using the 
proposed map is also presented in [17]. The local hybrid map 
describes the detailed information of a local space in terms of 
objects found in the space and the spatial layout of the space. 
It is composed of a spatial layout map and an object location 
map.  

The spatial layout map represents a geometric shape and an 
empty area of each node, and it is described as a laser range 
scan (Fig. 1 (c)). We assume that the geometrical characte-
ristics of a local space can be described from a 360° laser 
range scan obtained at one position. A laser range finder can 
gather high quality range scan data and it suffers from very 
small number of specular reflections. The angular uncertainty 

of the laser sensor is very small and, therefore, it can provide 
a very fine description of the surroundings to the robot. The 
range scan data also provides metric information to compute 
the relative position and orientation displacements between 
neighboring nodes. Various scan matching methods can be 
applied for the purpose of calculating the displacements [2, 
3].  

The object location map is composed of specific objects 
that characterize each node, and it is generated from om-
ni-directional environmental images and depth information 
from the stereo camera. The object location map provides two 
kinds of information about objects: appearance and location. 
Appearance information describes the appearance properties 
of objects seen at a node point in terms of PCA feature models 
for object recognition. Here the origin point of each node’s 
reference frame is denoted as the node point. The location 
information describes the locations of objects with respect to 
the nodes’ reference frames, and it is represented as a point 
cloud corresponding to the 3D coordinates of each object’s 
PCA features (Fig. 1 (b)). 

In this paper, the PCA feature models for the objects in 
each node are built manually. In other words, the training 
images used to build the PCA feature models are selected 
manually from among the omni-directional environmental 
images, and we consider the training images that contain 
objects that are potentially interesting to humans and recog-
nizable by humans. Among these potentially interesting ob-
jects included in the training images, those objects that have 
more PCA features than a specific threshold are defined as the 
visual landmarks in the object location map. In this paper, the 
threshold number was set to 10.  

In the context of localization, the object location map can 
provide efficient means to avoid the problem with symme-
tries in geometrically non-distinctive environments. Since 
most local spaces in indoor environments have unique object 
sets which characterize the spaces, and if these objects can be 

 
Fig. 1. Example of a local hybrid map. (a) Omni-directional environmental images of node N. Direction 4 coincides with the front of the robot, i.e., the 
direction of the x axis. (b) Example of an object location map. (c) Example of a spatial layout map with one point locations of each object. 
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recognized, the robot is able to determine its location. 
Fig. 1 shows an example of a local hybrid map. Fig. 1 (a) 

shows omni-directional environmental images taken from 
node N. Images in which useful objects are seen are 
adopted for object model views. Node N includes objects 
e1, e2, and e3. From the model views of directions 1, 2, and 
4, each object’s PCA features are extracted and registered 
as object feature models. These feature models are used for 
object recognition in the localization process. In addition, 
stereo depth information, which is associated with each 
object’s PCA features, is extracted and transformed into 
3D coordinates relative to the node’s reference frame. 
Thus, the transformed 3D coordinates form a point cloud. 
Fig. 1 (b) shows the object location map built from Fig. 1 
(a). The spatial layout map of node N is shown in Fig. 1 (c). 
We can also identify the one point locations of the objects, 
which are mean values of each object’s 3D point cloud. 

III. GLOBAL LOCALIZATION 
Global localization is to estimate a robot’s pose (position 

and orientation) in a previously learned map when the robot’s 
initial pose is unknown. An accurate estimate of pose im-
proves the initialization process and reduces the chance of 
having a “kidnapped robot.” The proposed global localization 
process is performed in three stages: perception, coarse pose 
estimation, and fine pose estimation. In the first stage, the 
robot perceives objects from the acquired images of its en-
vironment and determines the candidate nodes where it is 
expected to be located. Once the candidate nodes are identi-
fied, the coarse poses with respect to these nodes are com-
puted by using 3D point cloud fitting. In the final stage, the 
correct node is determined and the fine pose relative to this 
correct node is estimated by means of a Monte Carlo method 
based on probabilistic scan matching. 

A. Perception 
Object recognition is performed by matching the PCA 

features extracted from the scene images (i.e. the om-
ni-directional images for localization) to each of the object 
feature models stored in all of the object location maps. By 
doing so, each node can obtain the set of PCA features that 
are matched with the PCA features of the objects recognized 
by the robot. These sets of matched PCA features are then 
used to compute a coarse pose relative to each candidate 
node. 

In this paper, we employ the spectral matching method for 
the object recognition [18]. This graph-based matching ap-
proach presents an efficient spectral method for finding con-
sistent correspondences between two sets of features. This 
spectral matching method differs from existing approaches 
based on similar graph-based matching methods [19], in that 
it has a much better computational complexity, which allows 
it to scale much better to large data sets, while being robust to 
noise and outliers. Compared to approaches based on voting 
and the Hough transform, such as [9], it uses all of the 
available data at once as opposed to generating transformation 

 
(a)                                                        (b) 

Fig. 2. Distance and angular relationships between adjacent objects. (a) 
Objects recognized by the robot. (b) Identical objects included in a node. 

hypothesis from subsets correspondences. Also, it does not 
make an explicit, strong assumption of affine mapping be-
tween the scene and model. 

Candidate nodes are determined based on the object rec-
ognition results. A candidate node contains one or more ob-
jects identical to the object recognized by the robot. In addi-
tion, the set of identical objects included in each candidate 
node should have the same configuration as the set of recog-
nized objects. For each candidate node, we can define a vi-
cinity probability that the robot would be located in that node. 
This probability is applied to remove the useless candidate 
nodes. If the probability of a candidate node is under a thre-
shold value, the node is dropped out from the candidate nodes. 
Experimentally, the threshold value was set to 0.5. In the 
following, we will explain how to compute the vicinity 
probability by using the example shown in Fig. 2. 

As shown in Fig. 2 (a), if the objects e1, e2, and e3 are 
recognized, the position vectors of these objects are computed 
by averaging the 3D coordinates of each object’s PCA fea-
tures. Each object has a distance relationship li [mm] and an 
angular relationship θi [°] with only two neighboring objects. 
We consider that the vicinity probability should be a function 
of several factors. First, it should depend on the number of 
common objects between the recognized objects and the 
identical objects included in each candidate node. Second, it 
should depend on the spatial relationship between the recog-
nized objects and the identical objects: the distance and an-
gular relationships. Therefore, the vicinity probability should 
be increased based on an increase in the number of common 
objects and a decrease in differences of the spatial relation-
ship. The vicinity probability is then computed by 

1( | , )
1

p z N m
zλ

←
+ ⋅

 (1)

where p(z | N , m) is the vicinity probability that the robot is 
located in candidate node N, and m denotes the object location 
map of node N. λ is a weighting factor for the number of 
common objects, and is defined as λ = exp(nc)-0.5. nc denotes 
the number of common objects between the recognized ob-
jects and identical objects included in node N. z is a similarity 
measure that compares the distance and angular relationships 
between the recognized objects and the identical objects. The 
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similarity measure is therefore defined as follows: 

1 1
| | | |

c cn n

i i i i
i i

z l lα β θ θ
= =

′ ′= − + −∑ ∑  (2)

where α and β are weighting factors due to scale differences in 
the distance (millimeters) and angle (degrees). li′ and θi′ are 
the distance and angular relationships of each of the identical 
objects in Fig. 2 (b), respectively. When nc = 2, the angular 
difference is ignored. However, we cannot compute the vi-
cinity probability for a candidate node that includes only one 
identical object, since it is impossible to define the distance 
and angular relationships with only a single object. Because 
of this, the node that includes only one identical object is 
retained as a candidate node. 

B.  Coarse Pose Estimation 
The coarse poses are computed relative to all candidate 

nodes. This is performed by fitting the 3D point cloud of the 
objects being recognized to the corresponding 3D point cloud 
of identical objects included in each candidate node.  

As a first step, the 3D coarse pose is described in terms of a 
homogeneous transformation matrix [20] such as N

RT . This 
matrix describes the robot reference frame {R} with respect 
to the node reference frame {N}, and consists of a rotation 
matrix and an origin vector. The rotation matrix denotes the 
orientation of the moving frame {R} with respect to the fixed 
frame {N}. The origin vector is a position vector that locates 
the origin of the frame {R}.  

Fig. 3 shows an example of computing the transformation 
matrix. In Fig. 3 (a), Rpi are 3D position vectors of the PCA 
features of the recognized objects, and are defined with re-
spect to the robot’s reference frame {R}. These vectors form 
a point cloud. Nvi in Fig. 3 (b) are 3D position vectors of the 
PCA features of identical objects included in a candidate node. 
They correspond to the PCA features of objects recognized by 
the robot in Fig. 3 (a). Nvi are defined with respect to the node 
reference frame {N} where i = 1 ~ n. n is the number of 
matched PCA features between recognized objects and iden-
tical objects included in the candidate node. Consequently, 
N
RT  fits Rpi into Nvi as shown in Fig. 3 (c), and this trans-

formation is described by the expression 
N N R

i R i=v T p  (3)

In this paper, we employ the parameter estimation method 
used in [21] to compute N

RT . This method is based on the 
singular value decomposition and provides a least-squares 
estimate of the rigid body transformation parameters. The 
homogeneous transform matrix is typically described in a pair 
of the rotation matrix N

RR  and origin vector  NqR  as follows:  

0 0 0 1
0 0 0 1

11 12 13 x
N N

21 22 23 yN R R
R

31 32 33 z

r r r q
r r r q
r r r q

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

R q
T = =  (4)

 
Fig. 3. (a) Point cloud of recognized objects. (b) Point cloud of objects 
included in candidate node. (c) Point cloud fitting between recognized 
objects and identical objects included in candidate node. 

From the elements of rotation matrix N
RR  and origin vector 

NqR in (4), we can compute the 3D robot pose. The robot pose 
is expressed by 6 DOF (x, y, z, θx, θy, θz) relative to {N}, 
where (x, y, z) are position coordinates and the same as NqR, 
and (θx, θy, θz) are rotation angles relative to the x axis, y axis, 
and z axis, respectively. From (4), we can compute the rota-
tion angles as follows [20]: 

( )
( )
( )

2 2
31 32 33

23 13

32 31

A tan 2   ,  

A tan 2 / sin( ) ,  / sin( )

A tan 2 / sin( ) ,  / sin( )

y

z y y

x y y

r r r

r r

r r

θ

θ θ θ

θ θ θ

= +

=

= −

 (5)

Note the computed pose is coarse, since it is not only in-
accurate due to the measurement errors of vision sensors 
and matching errors between PCA features; it is also not 
yet possible to establish the correct node. 

C.  Fine Pose Estimation 
In this section, our methodology for estimating 2D fine 

pose and determining the correct node is discussed. This 
methodology involves using a Monte Carlo method [22, 23] 
based on a probabilistic scan matching in conjunction with 
laser range scan and coarse pose information. The Monte 
Carlo algorithm is widely accepted as an inference method 
that can cope well with decision making in the context of 
multimodal uncertainty.  

Fig. 4 shows the graphical representation of the fine pose 
estimation strategy. Let a laser range scan SR = {Rd1, …,Rdn} 
be a set of n points ( R

id  = [ R
ix , R

iy ]) acquired in the robot 

location {R}, and 
kNS  = { 1

kN r , …, kN
mr } another set of m 

points acquired in the node point of {Nk}. Let x = {x, y, θ} be 
the relative pose of {R} with respect to {Nk}. The approx-
imate pose 0x̂ is known from the coarse pose information. 
The problem is therefore to estimate the robot pose x such that 
maximizes the overlap between RS  and 

kNS . The overlap is a set 

of correspondences between points of RS and 
kNS .  

The basic approach is to perform iterative generation of ran-
dom samples (i.e. the hypotheses for robot pose) according to 
their weights until all the samples converge from their initial 
positions, so that the estimated pose maximizes the overlap be-
tween the spatial layout map of the correct node and the laser 
range scan acquired by the robot. In this paper, we employ the  
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(a)                                          (b) 

Fig. 4. Graphical representation of fine pose estimation process. 0x̂ denotes 
the approximate pose which is used as the seed position for initial random 
sampling. x̂  represents the estimated pose after sample convergence. (a) 
Initial boundary of random samples (dotted ellipse). (b) Boundary of random 
samples after convergence (dotted ellipse). 

sampling importance resampling (SIR) [22, 23] approach to 
construct samples at every iteration.  

Establishing the correspondences between two scans is crucial 
problem in this process. This is difficult when using a raw scan 
data in the presence of large errors in the approximate pose and 
noises on the scan data. For solving the correspondence problem 
more efficiently, we transform each scan into a binary grid image 
which partitions the 2D space into grid pixels. Each pixel has a 
binary occupancy value; “1” for occupied with the scan data and 
“0” for free. Then the correspondences can be defined as occu-
pied pixels in the overlap between two grid images. The pro-
posed basic procedure to estimate the fine pose is as follows: 

(1) Initialization 
The initial random samples are evenly generated around the 

coarse poses relative to each candidate node under the as-
sumption that the true position {R} is included in the boundary of 
the samples (Fig. 4 (a) and Fig. 9 (first)): 

( )( ) ( )
0 0 0ˆ kNn nρ= + ⋅s x Bw  (6)

where ( ) ( ) ( ) ( )
0ˆ ( , , )k k k kN N N N

zx y θ=x  is 2D coarse pose relative to 
the reference frame of candidate node Nk. w(n) is a vector of 
standard normal random variables, and B is a 3× 3 diagonal 
matrix of which non-zero elements correspond to process 
noises (ex, ey, eθ), and ρ is a noise scale factor for initial random 
sampling. n denotes the number among the random samples, n 
= 1, … , ns. For this paper, we set ex = ey = 100mm, eθ = 5°, 
and  ρ = 10. 

(2) Iteration 
From the old sample set ( ) ( ) ( )

1 1 1{ , , , 1, , }n n n
t t t Sc n nπ− − − =s K  at itera-

tion step t-1, a new sample set ( ) ( ) ( ){ , , }n n n
t t tcπs  is constructed 

for iteration step t. Here, ( )n
tπ  is the weight of the sample ( )n

ts  
at iteration step t, and ( )n

tc  is the cumulative weight. The n-th 
of nS new samples is constructed in a four step approach. 

Step – 1. Select a sample n
t′
( )s  as follows: 

(a) generate a random number u ~ U [0,1] 
(b) find the smallest j for which ( )

1
j

tc u− ≥  
(c) set ( )

1
n j

t t −′ =( )s s  

Step – 2. Propose new poses of the samples as follows: 

( ) ( ) ( ) ( ) ( ) Tn n n n n n
t t t t t tx y θ′ ⎡ ⎤= + = ⎣ ⎦

( )s s Bw  (7)

Step – 3. Compute weights of the new samples: 

( ){ }
( ){ }

( )
max( )

( )
max

exp

exp

n
tn

t n
t

n

G

G

ω ω
π

ω ω

− × −
=

− × −∑
  (8)

where 
( )

( )
( ) ( )

( ) ( )
max( ) ( )

max

,
 , max( ) , 

,

k

k

N n
tn n

t tN n n
t

n

N m m KG
N m m

ω ω ω
ω

= = =
∑

 

We define ( ) ( )( , )kN n
tN m m  as the number of occupied grid pixels 

in the overlap between the grid images ( )kNm of 
kNS and ( )n

tm of 
( )n
RS . K is a weighting factor for sample convergence (in this case 

K = 5). For constituting ( )n
tm , we first transform the scan data RS  

with respect to the location of sample ( )n
ts  by assuming that the 

data are obtained at the sample location as follows:  
( )

( ) ( ) ( )

( ) ( ) ( )

cos sin
  

sin cos

R n R
i i

n n R n
t t i t
n n R n

t t i t

x x
y y

θ θ
θ θ

= ⋅ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
= ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

d R d t
  (9)

where R and t represent the coordinate transformation matrix 
from the reference frame of node Nk to the assumed robot 
pose ( )n

ts . The transformed scan data is denoted as ( )n
RS . ( )n

km  is 

then obtained by transforming ( )n
RS  into the grid image. For the 

next iteration, ( ) ( ) ( )( , , )n n n
t t tcπs  are stored where  

(0)

( ) ( 1) ( )

0 ,  t

n n n
t t t

c

c c π−

=

= +
 (10)

Step-4 : Repeat Step 1 through Step 3 until all of the sam-
ples converge into a candidate node. In addition, the sam-
ple distribution range should satisfy a boundary condition 
such that the mean distance between each sample position 
and the average position of the samples is less than a 
threshold value (Fig. 4 (b) and Fig. 9 (third)): 

( ) ( )2 2

1

sn

n n
n

threshold
s

x x y y
D

n
=

− + −
<

∑
 (11)

where ( , )n nx y  represents the position of the n-th sample 
and ( , )x y  denotes the average position of the samples. 
The threshold value is defined as Dthresold = 150 mm. 

(3) Estimation 
After the iteration process, the correct candidate node, 

determined from the convergence of all the samples, is 
established. The fine pose is then estimated as follows: 

[ ] ( )( ) ( )

1

Sn
n n

t t t
n

ε π
=

= ×∑x s  (12)
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Fig. 6. Omni-directional environmental images of each node. Each object’s 
feature models for object recognition are learned from these images. The 
objects enclosed with the red box belong to each node where the images are 
captured. The horizontal depth map of each node is also built from the 
disparity images corresponding to the above images. Direction 4 coincides 
with the front of the robot, i.e. direction of the x axis. 

IV. EXPERIMENTAL RESULTS 
The global localization strategy described above were 

implemented in our mobile robot (Fig. 5 (a)) and tested in 
an indoor, home-like environment (Fig. 5 (b)). The robot 
was equipped with a stereo camera and two laser range 
finders. The experimental environment was 10m× 5m in 
size and contained some household objects. The map was 
composed of five nodes. As shown in Fig. 5 (c), there were 
fourteen objects used as visual landmarks, and their posi-
tions are shown in Fig. 5 (b). Fig. 6 shows the environ-
mental images gathered at each node point. The PCA 
feature models for object recognition are trained by su-
pervised learning from all images in which any objects 
used as visual landmarks are seen.  

The localization experiments were carried out with the 
obtained map. To analyze error distributions, ground truth 
poses were measured with a robot pose estimation system 
that used laser range data [2, 3]. Three types of experiments 
were conducted. The first evaluated the proposed global 
localization algorithm in detail. The second evaluated the 
performance of the global localization algorithm in a dynamic 
situation. The third evaluated the accuracy of the fine pose 
estimation. 

 
Fig. 7.  Omni-directional environmental images for localization and recog-
nized objects. Direction 4 coincides with the front of the robot, i.e. the 
direction of the x axis. 

 

 
(a)                                                          (b) 

Fig. 8.  (a) Laser range scan data for localization and the positions of recog-
nized objects. (b) Spatial layout map of node 3 and positions of objects 
included in node 3. 
 

Table 1. Result of coarse pose estimation 
Candidate

nodes 
Common 
objects ( | , )p z N m  2D coarse pose 

X [mm] Y [mm] θ [°] 
2 D, L, N 0.66 -2701.68 1008.14 65.13 
3 D, E, F, K, L 0.82 -897.08 613.88 68.80 
4 E, F, H 0.69 -1178.31 203.15 -105.65
5 H, K 0.61 -1621.92 1283.42 162.05

The first experiment consisted of performing global loca-
lization at a random location. The omni-directional envi-
ronmental images for localization were captured at a random 
position and the images are shown in Fig. 7. Seven objects 
were recognized by the object recognition process: D, E, F, H, 
K, L, and N. The laser range scan data from the test position 
was also obtained. Fig. 8 (a) shows the laser range scan data 
for localization and the positions of the recognized objects.  

Nodes 2, 3, 4, and 5 were selected as candidate nodes. 
Table 1 shows the common objects from those recognized by 
the robot and the identical ones included in each candidate 
node. The vicinity probability in (1) and 2D coarse poses 
relative to each candidate node are also reflected in the table. 
Among the candidate nodes, node 3 obtained the largest 
vicinity probability that the robot would be located in that 
node, and the number of common objects was the greatest.  

       (a)                                                                          (b)                                                                              (c) 
Fig. 5. (a) Infotainment robot, a mobile robot equipped with a stereo camera fixed on a pan/tilt mount and two laser range finders. (b) Layout of the 
experimental environment. The map of the environment is composed of five nodes. (c) Objects used as visual landmarks. 
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Fig. 9. Converging samples into correct node during fine pose estimation. At 
the beginning (first), after 3rd iteration (second), and 8th iteration (third). 

Node 3 was therefore determined to likely be the correct 
node. 

After the coarse pose estimation, the correct node and 
fine pose were determined by using the probabilistic scan 
matching algorithm. Fig. 9 shows how the samples con-
verged during the fine pose estimation process. Three 
snapshots were selected for explanation. The sample dis-
tribution was presented at each step. In the beginning, each 
of the 200 samples was uniformly distributed over each 
candidate node. The 2D coarse pose (X, Y, θ) in Table 1 
was selected as the seed pose for random sampling. After 
the third iteration, most samples were concentrated on 
node 3 (second snapshot). The final snapshot shows all 
samples converged into node 3 when the robot uniquely 
determined the correct node and fine pose. Therefore, node 
3 was determined as the correct node. The fine pose was (X, 
Y, θ) = (-852.35mm, 610.14mm, 71.15°), and the ground 
truth pose was (-848.65mm, 612.38mm, 70.98°). The fine 
pose was defined relative to the reference frame of the 
correct node and it is visually described in Fig. 8 (b).  

The second experiment focused on the aspect of global 
localization performance in a dynamic situation: the ro-
bustness of the pose estimation in the presence of people 
and after removing some of the objects included in each 
node. For this experiment, we captured the om-
ni-directional environmental images for localization at the 
same location as used in the first experiment. Fig. 10 
shows the omni-directional environmental images, in 
which three people are shown in directions 3, 6, and 7. 
Furthermore, we can only find object E when comparing 
with Fig. 7. Some of the objects were occluded by the 
people and the others were removed from their positions. 

The object recognition process recognized object E. The 
laser range scan data from the test position was also ac-
quired. Fig. 11 shows the laser range scan data and the 
position of the recognized object. Since only one object  

 
Fig. 10. Omni-directional environmental images for localization in a 
dynamic situation. The images were captured at the same location as Fig. 
7. 

 
Fig. 11. Laser range scan data for localization in a dynamic situation and 
the position of the object being recognized. Dotted circles indicate people 
moving in the robot’s surroundings. 
 
Table 2. Results of pose estimation relative to node 3 in a dynamic situ-
ation. 

 x [mm] y [mm] θz [°] z [mm] θx [°] θy [°]
Coarse pose -861.40 621.48 70.11 15.35 1.17 -2.49

Fine pose -855.03 618.66 70.71 
 Ground truth -848.65 612.38 70.98 

Error -6.38 -6.28 0.27 

was recognized, we could not define the vicinity proba-
bility in (1). Nodes 3 and 4 were selected as candidate 
nodes, and node 3 was finally determined as the correct 
node. Table 2 shows the pose estimation results relative to 
node 3 and the error between the ground truth and fine 
pose. 

The third experiment focused on verifying the accuracy 
of the fine pose estimation in the home-like environment. 
For this experiment, a total of 150 different test positions 
were randomly chosen from the whole experiment envi-
ronment. Unlike conventional Monte Carlo localization 
[1], the robot did not need additional any motion behavior 
to localize. Fig. 12 (a) shows the localization results for the 
test positions, indicating the robot’s estimated position and 
orientation relative to its environment. Fig. 12 (b) shows 
error distribution diagrams, in which the mean and median 
errors were less than (39.1mm, 40.21mm, 4.05°) and 
(30.72mm, 32.48mm, 3.71°), respectively. As these fig-
ures demonstrate, the proposed localization algorithm 
gave a very satisfactory performance in experimental 
testing. 

V. CONCLUSION 
In this paper, a new approach is presented for an object and 

spatial layout based hybrid map representation and global 
localization of mobile robots. The proposed map has a hybrid 
structure which includes global topological and local hybrid 
maps. And, on the basis of the map, it is possible to reliably 
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estimate the pose of the robot. Global localization is per-
formed in three stages: perception, coarse pose estimation and 
fine pose estimation. In extensive experiments carried out on 
a real robot and in an indoor environment, we showed that the 
proposed methods can be an effective and accurate global 
localization process. 

In this paper, the map construction was not carried out fully 
autonomously. A future work is therefore planned involving 
the study of an object and spatial layout based SLAM system, 
i.e. how a mobile robot by itself can make the type of map 
described in this paper. The autonomous node position se-
lection can be realized by using the vertices of the generalized 
Voronoi graph (GVG) [24]. In addition, the Voronoi edges 
can be used as paths to move between adjacent nodes. Based 
on the GVG, the robot can explore an unknown environment 
with a topological exploration strategy [24, 25]. 
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Fig. 12. (a) Localization results for different test positions in the home-like environment. (b) Error distribution for the localization results. 
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