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Abstract— We study radio signal propagation in indoor
environments using low-power devices leveraging the Zigbee and
Bluetooth specifications. We present results from experiments
where two robots equipped with radio signal devices and
enabled to control and localize autonomously in an indoor
hallway and laboratory environment densely sample RSSI
at various times over several days. We show that simulated
RSSI measurements using existing radio signal models and
experimentally gathered RSSI measurements match closely,
suggesting that for robotics applications requiring predicted
RSSI, low-power radio signal devices are a well-posed sensing
modality.

I. INTRODUCTION

Wireless communication is requisite in most multi-robot
scenarios and devices for enabling wireless communication
protocols through radio signals, such as Zigbee, Bluetooth,
and 802.11, are readily available and economically priced.
It is well-known that environmental effects on radio signal
propagation are significant and several models of radio signal
propagation are discussed in [1]–[3], including: statistical,
empirical direct-path, empirical multi-path, and ray optical
models. In the robotics community, several works exploit
the fact that radio-propagation is environment dependent
by leveraging received signal strength indication (RSSI), a
measurement of power present in a radio signal, as a model
for localization, including [4]–[6]. By predicting the RSSI for
an environment based on experimentally gathered or modeled
data, this research suggests that it is possible to localize a
robot in an environment. In each of these works, the authors
study communication via 802.11 b/g, with sampling in indoor
environments via autonomous [4] or sparse manual [5, 6]
methods. RSSI also plays an important role in multi-robot
control algorithms which require inter-robot coordination
via communication [7]–[9]. The relationship between radio
signal strength and bit error rate (and thus communication
capability) is well studied and shown to be heavily correlated.
Therefore, RSSI prediction is vital to the success of control
algorithms requiring inter-robot communication.

In this work, we study radio signal propagation in indoor
environments using low-power devices leveraging the Zigbee
and Bluetooth specifications. In particular, we are interested
in using RSSI for sensing and control applications where a
model of RSSI behavior acts as a measurement model in
estimation tasks and as an accurate prediction of possible
data transmission capabilities in multi-robot scenarios. We

present results from experiments where two robots enabled
to control and localize autonomously in an indoor hallway
and laboratory environment densely sample RSSI at various
times over several days using off-the-shelf radio devices.

The contributions of this work are as follows. (1) We
present experimental results for low-power Zigbee and Blue-
tooth devices that confirm existing results from prior liter-
ature developed via 802.11 b/g devices. (2) A comparison
between a radio signal propagation model and experimental
data affirms the model correctness for low-power devices and
suggests its applicability for predicting RSSI for a known
indoor environment description assuming a quantifiable noise
model. (3) We provide a characterization of the effects
of non-trivial environmental changes on RSSI as predicted
via the radio signal propagation model and observed in
experimentation.

The presentation of the paper is as follows. In the next sec-
tion, we place our results in context with existing studies in
the robotics and sensor network communities. We detail the
simulated radio signal propagation model and pertinent spec-
ification information for Zigbee and Bluetooth in Sect. III. In
Sect. IV we review the approach to experimentally analyzing
RSSI in an indoor environment including radio hardware se-
lection and robot control and localization. The experimental
results and associated discussion are provided in Sect. V. We
conclude in Sect. VI.

II. RELATED LITERATURE

Due to the fundamental role of RSSI as a quality measure
in wireless communication, the estimation and exploitation of
RSSI is well-studied in the mobile robot and sensor networks
literature. We highlight several works focusing on a similar
analysis to our own.

The problem of RSSI estimation as an enabling sens-
ing modality in the robotics community is presented in
the context of localization and control. In [4], Howard et
al. experimentally study the use of RSSI measurements
for robot localization. The authors address the localization
problem in two steps; by first generating an RSSI map
through experimental sampling, using interpolation methods
for regions without data samples, then applying Monte-Carlo
Localization [10] methods for pose estimation based on
the previously generated RSSI maps. The authors conclude
that the RSSI map representation is more appropriate for
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localization than a simple parametric model such as the
statistical model discussed in Sect. III. A similar analysis is
provided in [5], where Ferris et al. show the application of
Gaussian processes as a means of generating a likelihood
model for signal strength measurements. The choice of
model parameters is determined through learning methods
applied to experimental data sets. The authors comment on
the complexity of model learning for large data sets.

From the multi-robot control perspective, Hsieh et al.
present in [11] an experimental study of the effects of
radio signal strength on end-to-end communication between
multiple robots in an ad-hoc network. The authors propose
reactive control laws for communication link maintenance
given RSSI measurements. In [12], Lindhé et al. exploit the
effects of multi-path fading on radio signal propagation in the
design of control laws for improving radio signal strength.
The authors consider the necessary sampling population
for given communication performance and design control
strategies for robot positioning to gather samples.

Formulations in the mobile sensor network literature show
similar methods as the robotics community. In [6], Ladd
et al. demonstrate a strategy akin to [4] for solving the
localization problem by generating a map of signal strength
trained from sparsely sampled data in an indoor environment,
which is leveraged in a Baysian inference algorithm for pose
estimation. The authors conclude that commodity hardware is
suitable for accurate pose estimation in indoor environments.

A related problem is self-configuration in sensor networks.
Patwari et al. consider in [13] the localization problem
in a sensor network by measuring received signal strength
and time-of-arrival of messages between neighboring net-
work nodes. The authors formulate Cramér-Rao bounds and
maximum-likelihood estimators assuming free space path-
loss on received signal strength.

While the motivation of these works is common to our own
in that we are interested in studying radio signal propagation
in indoor environments, we wish to differentiate the results
and discussion in the remainder of the paper from prior
work. We are interested in studying RSSI-aware multi-robot
estimation and control algorithms via low-power devices and
for this reason consider only Zigbee and Bluetooth, noting
that there is already an existing body of work studying
802.11 b/g for these applications. 802.11 b/g devices are
employed for analysis in the relevant results presented in the
prior references. We conclude in Sect. V that it is because
of our selection of low-power devices that we see fewer
environmental effects as compared to the results leveraging
802.11 b/g devices which typically have high transmission
power. For this reason, it is possible to accurately predict
RSSI via existing radio-propagation models, which we detail
in the next section. Additionally, in much of the prior work
involving robotic estimation tasks, the approach requires a
sampling of signal strength (often sparse) that spans the
entire configuration space. We seek to develop methods that
provide predicitve capabilities for reconfigurations of the
transmitters in new regions of the environment.

III. MODELING

A. Indoor Wave Propagation

Indoor radio signal propagation is generally considered
to be an extremely uncertain and complex process with
heavy correlation to environmental features ranging from
electromagnetic interference to physical obstacles. However,
due to the pervasiveness of wireless communication needs
in and around buildings, there is an extensive body of
literature devoted to understanding and modeling the radio
propagation process. We seek to draw on this work in order
to develop tools that allow us to fully incorporate radio signal
information into our estimation and control tasks.

Development of models for indoor wave propagation can
be classified into four categories: statistical models, empirical
direct-path models, empirical multi-path models, and ray
optical models [1]. While ray optical models include the
possibility of simulating complex indoor phenomena such
as fast-fading and corridor wave-guiding effects, only some
approaches such as [3] provide efficient computational meth-
ods.

1) Statistical models: The most basic formulation, these
models do not incorporate information about specific ob-
stacles in the environment. Power-loss throughout the envi-
ronment is computed as a function of the distance between
antennas d and fit to the entire environment by a power decay
n so that loss (in dB) is

L = L0 + 10n · log(d)

where L0 is a measured loss at 1 m. The decay parameter n
must be experimentally fit for each environment.

2) Empirical direct-path models: These models consider
the line-segment connecting the source and receiver antenna.
Obstacles along the transmission path are considered and
result in path-loss prediction that is related to the number
and type of obstacles in addition to the total path-length. A
typical model (and one we have currently implemented) is
the multi-wall model from [2] where path-loss is given by

Lmwm = L0 + 10n · log(d) +
N∑

i=1

kiLi

where N is the number of wall-types, ki is the number of
walls penetrated with type i, and Li is the loss factor for a
wall of type i. The model is adjusted to the environment by
tuning n and Li.

The downside of direct-path models is that they do not
model small-scale fading effects that occur due to obstacles
in the environment that reflect or refract the signal so that
multiple components arrive at the receiver out of phase. This
results in fading on the order of 5 − 10 dB occurring over
small length scales and can be modeled probabilistically.

B. Radio Specifications

Since we are not interested in dealing with the low-
level interfaces to radio frequency devices, we rely heavily
on off-the-shelf technologies. Both Bluetooth and Zigbee
are designed to operate in low-power mesh-style embedded
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Fig. 1. Two Scarab robots (Fig. 1(a)). Each robot is equipped with
a MaxStream XBee Zigbee adapter and an Azio Micro Bluetooth adapter
(Fig. 1(b)).

networking solutions operating in the unlicensed 2.4 GHz
ISM (Industrial Scientific Medical) band.

Bluetooth uses frequency hopping technology and every
network has a group ad-hoc network controller that inter-
connects nodes and assigns time slots for communication to
each node requiring the network to operate on a time division
scheme.

Zigbee is a communication protocol built for low-power
radios based on the IEEE 802.15.4 standard which handles all
of the physical and media access control layer operation that
is important to this work. IEEE 802.15.4 dictates that each
node operates in a carrier sense, multiple access/collision
avoidance (CSMA/CA) paradigm.

Important to this work is that both radios must provide
methods for reporting the RSSI. The Zigbee specification
returns this measurement directly as an integer ranging from
−40 dBm to receiver sensitivity (−92 dBm for our radios).
On the other hand, Bluetooth returns RSSI with respect to the
notion of a golden receiver range. An RSSI of 0 corresponds
to a received signal strength within the golden receiver range,
negative for signals below the range and positive for those
above.

IV. EXPERIMENTAL IMPLEMENTATION

In this section we detail the robot hardware, control, and
localization for gathering the data required by the analysis
in Sect. V.

In the experiments, a single stationary robot transmits
data via Zigbee and Bluetooth radios while a second robot
controls autonomously through an indoor hallway and lab-
oratory environment. The mobile robot visits a sequence of
waypoints while avoiding obstacles and sampling received
signal strength. A dense population of waypoints ensures
a rich sampling of the RSSI throughout the environment.
Evaluation of each trial occurred at various times over
several days. In the results we focus on two trials for data
presentation, but note that the data is consistent with the
other trials.

A. Hardware

The two robots and communication hardware used in
the experiments are shown in Fig. 1. The Scarab is a

10 m

(a) (b)

Fig. 2. The map used in laser-based localization (Fig. 2(a)) and a graphic
depiction of localization during a trial (Fig. 2(b)).

20× 13.5× 22.2 cm3 indoor ground platform. Each Scarab
is equipped with a differential drive axle placed at the center
of the length of the robot with a 21 cm wheel base, onboard
computation, and 802.11a wireless communication. Note
that the operational frequency of 802.11a is 5 GHz and all
data logging and experiment monitoring occurred via this
alternative frequency to avoid affecting the measurement of
RSSI.

A Hokuyo URG 04-LX laser range finder and odometry
information provide the necessary sensor information for
laser-based localization in the environment similar to the
maximum likelihood dead reckoning approach in [14]. The
map and a graphical depiction of the localization solution is
shown in Fig. 2.

As the duration of these experiments extended over several
days, power was a concern. All data logging occurred via
SQL database transactions. In this way, data collection was
robust to power failures due to drained batteries and exper-
imentation resumed following battery replacement. Battery
life for the Scarab is approximately 3 h.

The Zigbee device is the MaxStream XBee with 1 mW
(0 dBm) power output and receiver sensitivity of −92 dBm
[15]. The Bluetooth device is the Azio BTD-V201 Micro class
1 adapter with Bluetooth version 2.0 + EDR and maximum
peak output power of 15 mW (11.8 dBm) and antenna gain of
1.0 dBi [16]. Note that nominal output power for this device
is unknown. Both devices are pictured in Fig. 1(b).

V. EXPERIMENTAL RESULTS

The analysis of the experimental results is focused on ad-
dressing several concerns related to the applicability of low-
power Zigbee and Bluetooth devices to robotics estimation
and control applications and the correctness of the models
discussed in Sect. III as compared to experimental data.

Throughout the analysis we make use of figures to depict
data acquired experimentally or through simulation. A color
mapping is used in these figures to represent variations in
RSSI values, where areas of maximum or minimum values or
variations, depending contextually on the figure, are depicted
by red and blue, respectively.

A. RSSI Sampling Suitability of Zigbee and Bluetooth De-
vices

Zigbee, Bluetooth, and 802.11 b/g devices have similar
operating frequencies around 2.4 Ghz. Therefore it is rea-
sonable to expect similar radio signal propagation models
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Fig. 3. Visualization of full Zigbee data set consisting of over 20, 000
samples from top-view and side-view which demonstrates that radio signal
propagation is in fact a stochastic process with uncertainty.
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Fig. 4. Visualization of full Bluetooth data set consisting of over
20, 000 samples from top-view and side-view. Note that by the Bluetooth
specification, RSSI data is 0 when within the golden receiver range, negative
when below this range and positive above. For this reason, Bluetooth offers
coarser RSSI measurements as compared to Zigbee (Fig. 3)
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Fig. 5. Comparison of experimental data with the stationary robot at (0, 0).
Figure 5(a) depicts average behavior when samples are grouped in 0.25 m
cells. Figure 5(b) shows the result of applying the same averaging procedure
to simulated samples. Figure 5(c) shows the error between the simulated
and experimentally determined RSSI as a histogram representation with bins
determined by the average RSSI error between each data point in simulation
and experiment.
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Fig. 6. Demonstration of the predictive capabilities of the model when the
stationary robot is moved to a new location. Figures 6(a) and 6(b) depict
average RSSI behavior across the map in experimentation and simulation
respectively. Figure 6(c) represents the average RSSI error at each cell with
a histogram that indicates accuracy of the model to generally be within
10 dBm.
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Fig. 7. RSSI is clearly not a deterministic process. Figures 7(a) and 7(b)
show the upper and lower bounds for each 0.25 m cell in our experiments.
Figure 7(c) depicts the variance in each cell. With seemingly no correlation
between location in the map and variance, we conclude that a constant
noise model can be considered. Figure 7(d) depicts a histogram of standard
deviation across all cells in the map which indicates Gaussian noise with
σ = 5 dBm is appropriate for the Zigbee device.

between the different specifications assuming similar power
output, receiver sensitivity, and antenna gain. However,
802.11 b/g infrastructure access points typically have maxi-
mum output power ratings of 20 dBm or greater, resulting in
differing performance from Zigbee and Bluetooth in indoor
environments.

Figures 3 and 4 show visualizations of the data sampled
from the same trial via the Zigbee and Bluetooth devices. It
is clear that while both devices provide similar functional
communication capabilities, Zigbee offers RSSI measure-
ments with higher resolution in line-of-sight regions. This
difference is due to the notion of RSSI as defined by the
separate specifications (see Sect. III). Due to the Bluetooth
specification definition of RSSI, these measurements offer a
coarse granularity when reporting signal strength changes.
We conclude that Bluetooth devices provide less suitable
measurements of RSSI for applications such as localization
and focus the remainder of our analysis and discussion on
Zigbee devices for this reason.

B. Simulated RSSI Measurements as a Means of Prediction

In the following discussion, we present experimental re-
sults which suggest that not only can we fit a direct-path
propagation model to our data, but also that it provides
predictive capabilities and continues to perform well for an
alternate stationary robot location.

1) Direct-Path Model Fit: Given a complete description
of our experimental environment and the location of both

Fig. 8. While it is widely known that there is an inverse relationship
between signal strength and packet errors resulting in dropped packets, our
data further supports this fact. In our experiments, packets are transmitted
from the stationary robot at 0.2 s intervals so longer inter-arrival times (top)
indicate dropped packets. There is clearly a correlation in our data that as
RSSI decreases, the number of dropped packets increases, leading to longer
inter-arrival times.

stationary and mobile robot, we can compute a description
of the direct radio signal path including total distance and
wall intersections. By performing spatio-temporal averaging
and tuning the parameters described in Sec. III, we are able
to closely match the model with the average behavior across
our trial as depicted in Fig. 5. The result of tuning is the
following: L0 = −9.83, n = 2, L1 = 6.4 (for these
experiments we assume a single wall-type).

2) Model Prediction: In order to test the generalization
of the model we have chosen for radio propagation, we
continue by conducting another large-scale trial with a new
location for the stationary robot. Figures 6(a) and 6(b) depict
average RSSI behavior across the map in experimentation
and simulation respectively while Fig. 6(c) represents the
average RSSI error at each cell with a histogram that indi-
cates accuracy of the model to generally be within 10 dBm.
It is clear that despite fitting the direct-path model to another
location in the environment, the model generalizes well and
provides accurate RSSI estimation.

3) Noise Model: In order to utilize radio signal strength
measurements for estimation and control, it is necessary
to have a suitable model of the noise that is expected on
the measurement 1. Figure 7 depicts statistical properties of
RSSI measurements. With seemingly no correlation between
location in the map and variance, we conclude that a con-
stant noise model may be considered. Figure 7(d) shows a
histogram of standard deviation within all 0.25 m cells in
the map which indicates Gaussian noise with σ = 5 dBm is
appropriate for the Zigbee device. These findings agree with
the noise results presented for 802.11 b/g in [4, 12]

4) Considerations for Multi-Robot Algorithms Requiring
Communication: Of note is the expected correspondence
between RSSI and dropped packets which has significant
bearing to multi-robot control algorithms requiring com-
munication. While it is widely known that there is an

1Given a direct-path model of the signal propagation, we consider small-
scale fading effects to be noise.
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Fig. 9. Environmental changes are generally limited to fringe effects.
Figure 9(a) depicts an experimental repetition of the trial in Fig. 6(a) where
a metal door has been closed between the stationary and mobile robots.
Figure 9(b) acts as a visualization of the difference between the two data
sets – darker red indicates large errors. Note that most significant errors
occur at the edge of the reception range.

inverse relationship between signal strength and packet errors
resulting in dropped packets, our data further supports this
fact. In Fig. 8 there is clearly a correlation in our data that
as RSSI decreases, the number of dropped packets increases,
leading to longer inter-arrival times.

C. Transient Environmental Effects on RSSI Maps
Transient environmental effects are a consideration when

using RSSI measurements as a sensing modality. To study
these transient changes we compared the experimentally
gathered data from two different trials, where in the first
trial a metal door 2 m from the stationary robot location
is open (Fig. 6(a)) and for the second the metal door is
closed (Fig. 9(a)). The difference in RSSI between the trials
is shown in Fig. 9(b). While it is clear that environmental
changes do have an effect on the average signal behavior,
the changes are localized to the region of disturbance.

VI. CONCLUSION AND FUTURE WORK

We study radio signal propagation in indoor environments
using low-power devices leveraging the Zigbee and Bluetooth
specifications. In particular, we are interested in the role of
RSSI as a measurement model for sensing and control. We
present results from experiments where two robots equipped
with radio signal devices and enabled to control and localize
autonomously in an indoor environment densely sample
RSSI at various times over several days. We show that sim-
ulated RSSI measurements using existing radio signal mod-
els and experimentally gathered RSSI measurements match
closely after spatial averaging. This suggests that for robotics
applications requiring predicted radio signal strength, low-
power radios are a well-posed sensing modality. We con-
clude through our analysis that while Zigbee and Bluetooth
devices offer similar communication range capability, Zigbee
devices yield finer granularity in RSSI measurements (due
to specification differences) and are therefore more suitable
for applications leveraging RSSI as a means of estimation.
Additionally, we find that non-trivial transient changes in the
environment resulted in expected RSSI changes consistent
with radio propagation models.

In this work we focused on contrasting experimentally
gathered data to simulation models. The goal of this work
is to develop an understanding of the applicability of low-
power radio signal devices to estimation and control in the
context of multi-robot applications. Based on the positive
results from this work, we are currently pursuing real-
time estimation and control for mobile robot networks with
low-power Zigbee devices. In particular, we are interested
in exploiting these devices for enabling predictive RSSI
capabilities in multi-robot control for network connectivity
and low-cost sensors for pose estimation in environments
with known maps and construction materials.
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