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Abstract— In this paper, the kinematic model of a quadruped
robot is derived. The model is equivalent to that of a parallel
manipulator, in that each leg can be seen as a manipulator.
However, the model is extended to consider that in one gait
cycle some legs are in contact with the ground and others
are not. In order to obtain the inverse kinematics model, this
paper presents as contribution the use of the extended Kalman
filter as optimizer in two different situations of the leg motion:
unconstrained case, for the swing leg(s), and constrained case,
for the leg(s) in contact with the ground. This method was
evaluated for locomotion in plain and inclined surfaces. The
results obtained with the kinematics model were satisfactory
when implemented in a point-to-point trajectory in simulation,
and also in an experiment with a four-legged platform with
three degrees of freedom in each leg.

I. INTRODUCTION

Wheeled robots are limited in the types of terrain that

they can navigate. In contrast, legged robots can navigate a

much wider type of terrain. However, achieving kinematic

or dynamic stability for most of the gaits of these robots is a

complex process that needs to address multiple Degrees Of

Freedom (DOF), specially when considering multiple con-

straints, gait optimization and adaptation to terrain. Hence,

kinematic modelling represents a particularly important issue

when dealing with legged robots.

In recent years, given the difficulties of traditional de-

signs for legged robots, biologically-inspired approaches are

considered. In these approaches, robots are designed to

crawl, gallop or even trot, and some of them are capable

to shift between two different gaits using a hybrid motion

model [1]. According to Xu et al. [2] and Fukuoka et al.

[3], dynamic walking simulations on irregular terrains show

that biologically-inspired control has the potential ability of

autonomous adaptation.

In order to generate rhythmic movements and control the

locomotion of legged robots, the biological Central Pattern

Generator (CPG) approach based on oscillators is the most

popular in the literature. A CPG based on Matsuoka’s

oscillator was developed in [4] and [5] to create rhythmic

motion for a quadruped robot. Other CPGs based on the

phase of the oscillators and sensory feedback were also

treated in [6] and [7]. A different architecture based on a

hierarchical control system is presented by Kolter et al. [8]
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and extensive experiments were made to verify whether the

controller proposed is able to robustly cross a wide variety of

challenging terrains. Even master-slave quadruped walking

robots using radio control devices were showed to work

by experimental results, although they have problems with

stability and direction control [9]. An approach using sensory

feedback for the observation of gravity load and stimulus-

reaction mechanism provided several significant tips on the

control of the quadruped walking robot, as shown in [10].

There are many more ways to control the locomotion of

legged robots, e.g, Variable Constraint Control [11], Graph

Search Method [12], [13], Fuzzy Control [14], [15], [16],

[17], among others [18], [19], [20]. However, all these

biological inspired robots still have many limitations related

with their locomotion when compared to living creatures, in

general a consequence of their lower degree of freedom.

In the particular case of four legged robots, despite the

complexity of control, the stability is not difficult to be

achieved in static gaits, since at all times three legs can

be lowered to a stable tripod while the other leg moves. In

dynamic gaits, such as gallop, it is possible to maintain the

stability even when for short periods of time none of the legs

touches the ground. Many researches deal with these aspects

of stability in gaits [21], [22], [23] and attitude control [24],

[25]. However, this is out of the scope of this work, which

focuses on the motion generation in a low speed walk, that

is, a static gait. Actually, we are interested in the interactive

and real-time solution of the inverse kinematic model of a

four-legged robot with three DOF in each leg. Such solution

must consider the constraints in supporting legs.

Recently, some development was done in kinematic mod-

elling. Al-Zaydi and Amin [26] and Gasparetto et al. [27]

developed algorithms for solving the forward and inverse

kinematics problems and simulated the locomotion of legged

mobile robots. The algorithms are based on a geometric

approach where the solution is obtained by trigonometric

relations between the leg geometry parameters and the angles

related with the joint variables. Nevertheless, the task of

calculating all of the joint angles that would result in a

specific position of one foot of the robot is not so simple due

to the singularities involved. Thus, some authors preferred to

solve the inverse kinematic problem through artificial neural

networks [28], [29] or reinforcement learning [30], [31].

Pechev [32] solved it without matrix inversion, although the

work by P. Lin et al. [33] bears the most similarity to the

current work.

The main contribution of this paper is the use of the

Extended Kalman Filter to solve the constrained inverse kine-
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matic problem during gait generation. This filter, commonly

used to state estimation, is applied as an optimizer. In this

sense, the computation of the joint variables is made by filter

measures and the supporting leg constraints are explicitly

considered as pseudo-measures.

This paper is organized as follows. In section II, we

describe the kinematic model and the structure of the robot,

stressing our notation and the convention adopted. In section

III, it is presented the gait generator. In section IV, it is

proposed the optmizer using the Extended Kalman filter.

Simulation and experimental results are discussed in sections

V and VI, respectively. At last, conclusions are drawn in

section VII.

II. KINEMATIC MODELLING OF THE

QUADRUPED ROBOT

In order to derive the kinematic and differential kinematic

models, we model each leg separately and then the whole

body. In the Forward Geometric Model (FGM) method, each

leg was considered a robotic manipulator with three links,

connected through rotational joints and one effector, thus

forming the kinematic chain. The end effector corresponds

to the final piece of the chain, in other words, the foot. The

other end (base) corresponds to the shoulder, and connects

the i-th leg to the robot body (i = 1, . . . ,4). Axis orientation

of each coordinate system follows the Denavit-Hartenberg

convention, as shown in Figs. 1 and 2.

Fig. 1. Denavit-Hartenberg convention for the i-th leg.

Fig. 2. Convention for the joint variables for the i-th leg.

The set of variables representing the joints of the i-th leg

is written as

qi = [ qi,1 qi,2 qi,3 ]T = [ θi,1 θi,2 θi,3 ]T , (1)

where θi,n, n = 1,2,3, represents the actuation angle of the

n-th joint on the base. Thus, the platform has a total of 12

actuation degrees of freedom.

Position and orientation of a foot relative to the shoulder

is then represented through the following homogeneous

transformation matrix H0
3(qi):

H0
3 = Hi,1(qi,1)Hi,2(qi,2)Hi,3(qi,3), (2)

Hi,n(qi,n) =

[

Rn−1
n tn−1

n

01×3 1

]

. (3)

Matrix Hi,n depends on one joint variable only, qi,n, and

relates the position and the orientation of the n-th joint

coordinate system with the previous (n− 1)-th joint in the

kinematic chain. Submatrix Rn−1
n corresponds to rotation of

the n-th joint coordinate system relative to the (n−1)-th joint

coordinate system, while vector tn−1
n indicates the relative

position between its origins. Not apparent in this simplified

notation, the matrix Hi,n also depends on geometric variables

of the manipulator, denoted by Li,n.

Considering the geometry of the robot under study, we

have:

Hi,1 =









cos(θi,1) 0 sin(θi,1) Li,1cos(θi,1)
sin(θi,1) 0 −cos(θi,1) Li,1sin(θi,1)

0 1 0 0

0 0 0 1









,

Hi,2 =









cos(θi,2) −sin(θi,2) 0 Li,2cos(θi,2)
sin(θi,2) cos(θi,2) 0 Li,2sin(θi,2)

0 0 1 0

0 0 0 1









,

Hi,3 =









cos(θi,3) −sin(θi,3) 0 Li,3cos(θi,3)
sin(θi,3) cos(θi,3) 0 Li,3sin(θi,3)

0 0 1 0

0 0 0 1









.

The FGM provides foot position relative to the shoulder

from joint variables, according to

ξ o
i = g(qi,λ i) = H0

3 [0 0 0 1]T (4)

where ξ o
i = [ xi yi zi ]T are the coordinates of the i-th foot

extremity and λ i = [ Li,1 Li,2 Li,3 ]T describes the physical

dimensions of the i-th leg.

To obtain the foot velocity vector from the joint variables,

we just need to derive (4), which results in the Forward

Kinematic Model (FKM)

ξ̇
o

i = Ji q̇i, (5)

where Ji is the Jacobian of the i-th leg:

Ji =
∂g(qi,λ i)

∂qi

.
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The Inverse Geometric Problem (IGP), that is, obtaining

the joint variables from the foot position, represents a hard

analytical problem due to the non-linearities of the matrix

g(qi,λ i) relative to qi. In this work, the joint variables are

calculated in an interactive way as described in section IV.

On the other hand, the Inverse Kinematic Problem (IKP)

can be derived from the inverse Jacobian, as follows:

q̇i = (Ji)
−1 ξ̇

o

i . (6)

This model, the Inverse Kinematic Model (IKM), has

numerical issues when Ji is singular. In this sense, the

Kalman filtering methodology proposed in this paper avoids

this problem elegantly, as described in section IV too.

Fig. 3. Coordinate systems for the shoulders and the body center.

In order to simplify the derivation of the robot kinematic

model, we adopted a coordinate system in the middle of the

body (see Fig. 3). It can be observed that there is just a

rotation and a translational operation between the shoulder

coordinate system Xi,0 ×Yi,0 ×Zi,0 and the robot’s Xc ×Yc ×
Zc. Then, the foot position relative to the middle of the robot

is given by

ξ i = Rc
0ξ o

i + tc
0. (7)

When we write the four foot coordinate systems relative

to the robot coordinate system, we can combine the four

matrices ξ i in a unique matrix ξ T = [ξ 1
T ξ 2

T ξ 3
T ξ 4

T ].
Similarly, the vector q has all the robot joint variables, and

λ is the correspondent to the geometric parameters. So, the

FGM is obtained directly using (4) and the FKM can be

described by one equation, as follows:

ξ̇ = J q̇, (8)

where

J =
∂g(q,λ )

∂q
=









J1 03×3 03×3 03×3

03×3 J2 03×3 03×3

03×3 03×3 J3 03×3

03×3 03×3 03×3 J4









Naturally, this model does not consider the constraints

imposed by the supporting legs. This issue will be considered

more specifically in next sections.

III. GAIT GENERATOR

The gait generator provides at each discrete time k a vector

ξ ∗
k of the desired extremity coordinates of the four legs. In

order to do this, the gait generator distinguishes between

supporting and swing legs. Supporting legs are in contact

with ground and are responsible to provide traction to the

Fig. 4. Change of E matrix according to walk triggering events.

robot. Swing legs move in the air following a sinusoid-

form trajectory in order to reach a given contact point in

the ground. Hence, it becomes important to include into the

model an operator identifying the supporting and the swing

legs. Denote E a diagonal matrix

Ek =









e1 0 0 0

0 e2 0 0

0 0 e3 0

0 0 0 e4









,

with ei = 1 if the i-th leg is a supporting leg, or ei = 0 for

swing leg.

Indeed, E is a time varying, event-driven matrix whose

entries indicate the condition of each leg. In the model, it

should change according to events associated to the touch

of the legs in the ground. These events can be triggered by

touch sensors installed in the extremity of each leg, allowing

an automatic update of E matrix in closed-loop. On the other

hand, open-loop update of E matrix can also be done. In

this case, the events are generated by the algorithm which

generates the trajectory of the swing legs. For instance, a

walking pattern can be generated by the automata shown in

Fig. 4. In this figure, E j, j = 1, . . . ,4, represents the values

to be used in E for the j-th phase of a walking cycle. The

triggering events are also shown in the figure. E matrix

is useful in the Kalman filter-based optimizer, presented in

section IV.

The gait generator computes ξ ∗
k according to the situation

of each leg and the type of trajectory command the robot

is performing. For instance, for a ”go ahead” trajectory

command, the gait generator follows as below:

• For the swing leg(s), ξ ∗
k corresponds to a sinusoid-like

trajectory. Consider d the distance between the start (leg

leaving the ground) and the end (leg arriving on the

ground) contact points of the movement, the height of

the trajectory (sinusoid amplitude) is d/5;

• For the supporting legs, ξ ∗
k corresponds to a straight line

trajectory of length d
3

in the opposite sense of motion

of the robot.

The main advantage of using a parameterized gait gener-

ator is that its parameters can evolve according to desired
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speed of the robot. Fig. 5 shows a sequence for E for leg 1.

The other legs present a similar sequence, but in a dephased

order, according to triggering events.

IV. THE MOTION OPTIMIZER

The main task of the motion optimizer consists in estab-

lishing the joint angles of each leg in a way that its extremity

will be at ξ ∗
k . Indeed, the optimizer employs a simple rule

to compute the configuration qk as

qk = qk−1 +δ qk
(9)

where δ qk
is the configuration change also computed by the

optimizer. This is achieved by minimizing the cost function

V (qk) =
∥

∥ξ ∗
k −g(qk,λ )

∥

∥

2
(10)

constrained by

h(qk) = 0. (11)

The constraint is associated to legs which are in contact to

ground. Indeed, it is desired that the body of the robot keeps a

given configuration with the ground, despite the movement

of the legs. For instance, the coordinates (xi,yi,zi) of the

supporting legs extremities should be in the same plane with

respect to robot reference frame. This can be represented by

a plane equation:

axi +byi + czi = 1 (12)

where a, b and c are parameters of the plane, being the same

for the supporting legs. These parameters can even be time

varying. Since this constraint is to be respected only by the

legs with foot in contact with ground, indicated by E matrix,

h(qk) is given by

h(qk) = E(W g(qk,λ )−14×1) , (13)

where

W =









[ a b c ] 01×3 01×3 01×3

01×3 [ a b c ] 01×3 01×3

01×3 01×3 [ a b c ] 01×3

01×3 01×3 0 [ a b c ]









Classical optimizers can be used to solve the problem of

minimizing (10) under the constraint (11). However, such

optimizers are hard to code and need to present feasible

results withing a sampling step. The main proposition of this

work is to use a Kalman filter, commonly used in estimation

problems of stochastic state variables [34]. In this case, it

Fig. 5. The four phases in a cycle of leg 1.

is used as an optimizer. The main strength of using this

algorithm is that its parameters are easy to adjust. Consider

the following state-space stochastic model:
{

qk = qk−1 +wk (process model)

ξ k = g(qk,λ )+vk (measurement model)
(14)

where wk ∼ N(0,σ2
wI) and vk ∼ N(0,σ2

v I) are process and

measurement noises, respectively. The process model corre-

sponding to the assumption that qk changes are Gaussian

variables, with variance σ2
w. The bigger σ2

w, the larger can

be the change from qk−1 to qk. The measurement model

represents the coordinates of the extremities of the legs

according to configuration qk. Therefore, it is the FGM.

The above model has only mathematical meaning. The

use of the Kalman filter for estimating qk according to the

above model is equivalent to applying the unconstrained least

squares normalized gain algorithm [35]. The filter equations

are computed in two steps:

Prediction step:

q̂k|k−1 = q̂k−1 (15)

Pk|k−1 = Pk−1 +σ2
wI (16)

Correction step:

G̃k = Pk|k−1JT
k−1

(

Jk−1Pk−1JT
k−1 +σ2

v I
)−1

q̃k = q̂k|k−1 + G̃k

(

ξ ∗
k −g(q̂k|k−1,λ )

)

P̃k =
(

I− G̃kJT
k

)

Pk|k−1

It should be pointed out that G̃k is computed in the same

way as damped least squares, which minimizes the effects

of singular JT
k−1. In this case, the damping parameter is

given by the model measurement noise variance σ2
v . This

allows more intuitive adjusting of the damping parameter,

since it is directly related to the minimum of V (q̃k). The

smaller this parameter, the smaller will be V (q̃k). Finally, q̃k

is an estimate to q∗
k = g−1(ξ ∗

k ,λ ) which does not consider

the constraint (11). In order to consider the constraint, the

pseudo-measurement concept is used. This concept allows

an elegant solution to constrained estimation using stochastic

filters. Hence, the pseudo-measurement model is given by

0 = h(qk)+uk (17)

where uk ∼ N(0,σ2
u I) represents the pseudo-measurement

noise.

Considering the pseudo-measurement model, a new cor-

rection is applied to q̃k:

Ak =
∂h(q̃k)

∂ q̃k

(18)

Gk = P̃kAT
k

(

AkP̃kAT
k +σ2

u I
)−1

(19)

q̂k = q̃k −Gkh(q̃k) (20)

Pk =
(

I−GkAT
k

)

P̃k (21)

If σ2
u = 0, the constrained is completely satisfied. For

σ2
u > 0, it acts as a damping factor, and the constrained is

not satisfied, but q̂k is closer to the constraint manifold than
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q̃k. As a result, q̂k is an estimate of q∗
k = g−1(ξ ∗

k ,λ ) and

considers the constraints, and should be used as reference

by the joint controllers of the robot.

V. SIMULATION RESULTS

The proposed algorithm is first evaluated in a simulation

using Matlab. The simulation parameters were adjusted ac-

cording to the real dimensions of our experimental platform

(see Table I). Links Li,n, widht W1 and W2 are defined in

Fig. 1 and Fig. 3. For the forward motion of the robot, it

is considered a slope terrain. Fig. 6 shows an screen of the

simulation with the trajectory generated for all legs. In Fig.

7, it can be seen in detail the supporting leg keeping contact

with the ground although the target points provided by the

trajectory generator were in a straight line above the ground.

This occurs because the optimizer makes correction in the

straight line trajectory in order to satisfy the body configu-

ration constraint (11). Indeed, it is a compromise between

values of σ2
u and σ2

v whether the final leg configuration

will be close to the desired trajectory or to the constraint

manifold. The effect of σ2
w is only on how far q̂k will be

from q̂k−1. A similar effect has been verified in the swing

leg, as seen in Fig. 8.

Fig. 6. Screen of the simulator in the slope simulation.

Fig. 7. Trajectory change of the foot of the supporting leg.

VI. EXPERIMENTAL RESULTS

The presented system was experimentally evaluated in a

robot whose physical parameters match the ones used in

the modelling presented above. The three DOF for each

leg were provided by three HITEC HS-755HB servomotors.

Each servo provides a maximum torque of 11 kg · cm, and

Fig. 8. Foot of the swing leg following the target points.

TABLE I

SIMULATION PARAMETERS

Body (cm) Legs (cm) Variances Values

Width W1 27.0 Links Li,1 3.0 σ2
w 10−3

Width W2 22.5 Links Li,2 8.5 σ2
v 10−8

Links Li,3 7.0 σ2
u 10−3

is capable of turning 60◦ in 0.28s. Its position reference is

obtained through a 50 Hz PWM signal. A local controller

board generates the PWM signals to the three servos of each

leg. A PC is connected to the four local controllers using RS-

485 bus through its serial port. All calculation is performed

in real time by the PC, and data is sent to the local controllers

at the end of each calculation cycle, at 115200 BAUD rate.

The calculation cycle time is 50 ms. The resolution of angular

positioning in each joint is 0.706◦.

The experiment consists in performing a forward move-

ment at a constant height to the ground. A sequence of

movements is shown in Fig. 9. In comparison to simulations,

we observe that the body of the robot does not keep a

constant distance to the floor, even though its legs move

in accordance to the body configuration constraint. This is

expected due to the action of gravity force, a factor not

present in the kinematic modeling. However, the forward

movement was successful, since the swing legs quickly

performed their displacement, thus reducing the effect of

dynamical imbalance.

Fig. 9. Snapshots of one swing leg performing its displacement.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, a gait generator for four-legged robots is

obtained through stochastic filtering. It has a simple and com-
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pact form, and considers leg and ground contact constraints.

The algorithm has been able to solve the inverse kinematic

problem in two different situations of the leg motion: the

unconstrained case (swing leg) and the constrained case

(supporting leg). The Kalman filter efficiency in the solution

of the problem has been verified in computer simulations,

in which the swing legs follows the desired trajectory, while

the legs in contact with the ground obeys the constraints

imposed by terrain slope. The current work consists in

incorporating a constraint for stability, by considering Zero

Moment Point. It will permit to consider gravity into the

simulation. Further, new results in hybrid dynamical systems

are being considered in this model.
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