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Abstract— A humanoid robot must recognize a target speech
signal while people around the robot chat with them in real-
world. To recognize the target speech signal, robot has to
separate the target speech signal among other speech signals
and recognize the separated speech signal. As separated signal
includes distortion, automatic speech recognition (ASR) per-
formance degrades. To avoid the degradation, we trained an
acoustic model from non-clean speech signals to adapt acoustic
feature of distorted signal and adding white noise to separated
speech signal before extracting acoustic feature. The issues are
(1) To determine optimal noise level to add the training speech
signals, and (2) To determine optimal noise level to add the
separated signal.

In this paper, we investigate how much noises should be
added to clean speech data for training and how speech
recognition performance improves for different positions of
three talkers with soft masking. Experimental results show that
the best performance is obtained by adding white noises of 30
dB. The ASR with the acoustic model outperforms with ASR
with the clean acoustic model by 4 points.

I. INTRODUCTION

Robust automatic speech recognition (ASR) is important

for efficient and friendly human computer interaction (HCI).

There are many aspects for accurate ASR. We focus on

speech robustness, that is, robustness against interfering non-

target speech signals. The reason of focusing the issue is a

robot must recognize the target speech signal while people

around the robot chat with them. Several talkers may simulta-

neously speak to a robot capable of audition. If it is possible

for a robot to recognize all speech signals simultaneously,

the robot can understand who is speaking to the robot and

who is NOT speaking to the robot. In [1] , it is shown

that human can understand two or three simultaneous speech

signals. The robot capable of audition can provide clues for

the dialogue manager, which can determine a target speech

signal from the recognition results and smoothly maintain

each talker’s utterance in the dialogue history. Otherwise,

the dialogue manager has to determine which talker is the

target talker by means of other ways such as using dialogue

history. Then, it determines the target talker and separates

his/her utterance from mixed speech signals. The problem

with simultaneous listening in robot audition is to recognize

speech against other interfering speech signals. Such speech
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Fig. 1. Simultaneous speech recognition and speech inteference

interference is stronger when a robot interacts with multiple

talkers.

We have developed the HRI-JP Audition for Robots with

Kyoto University (HARK) [2], simultaneous speech recogni-

tion system based on the missing-feature theory (MFT) [3],

[4]. ASR system based on HARK can recognize simultane-

ous speech signals. HARK can separate mixed speech signal

into each speech signal because components of mixed speech

are received from different directions. It is possible by steer-

ing the directivity of microphone array to the localized sound

direction. In this process, each speech signal is distorted as a

side-effect of sound source separation. As distorted acoustic

features are mismatched with clean acoustic model, strongly

distorted time-frequency position is estimated and input

speech feature is masked at the position. Simple masking is a

hard mask, that is, either 0 or 1 for estimating the reliability

of each acoustic feature of separated speech signals. We

attained further ASR improvement by using soft masks. The

soft mask is represented as a continuous value between 0

and 1 [5]. Additional improvement was attained by using the

acoustic model of which parameters were trained by adding

white noises at the signal-to-noise ratio (SNR) of 30-40 dB

to the Japanese Newspaper Article Sentences (JNAS) clean

speech corpus attains speech robustness.

In this paper we investigated how much white noises

should be added to clean speech data for acoustic model

training to improve word correct rate when there are three

talkers. The rest of the paper is organized as follows. In

section 2, we describe our simultaneous speech recognition

system. In section 3, the experiment setup and results are

shown. In section 4, we discuss the experimental results, and

finally conclude the paper.

II. SIMULTANEOUS SPEECH RECOGNITION SYSTEM

The system is developed to recognize simultaneous speech

signals by multi-talker. The general architecture in Fig. 2
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Fig. 2. MFM-ASR system overview.

consists of five components:

1. Sound Source Separation,

2. Attenuation rule base postfilter,

3. Acoustic feature extraction,

4. MFT-ASR, and

5. Automatic missing-feature mask (MFM) generation.

A. Multi-talker interference

To capture simultaneous speech by multi-talker, our sys-

tem uses an 8-channel microphone array. After source local-

ization, geometric source separation is applied to emphasize

each source. In this process, one source is interfered with

others. When talkers close each other, interference increases.

There is distortion in separated speech feature shown in

Fig. 3 and 4. P1 and P9 conditions correspond to three

talker aligned 10 and 90 degree apart, respectively. Detailed

condition describes in experiment section. These features

contain separated distortion compared to clean speech feature

in Fig. 5. P1 separated distortion level is higher than P9

separated distortion level because distance between talkers

in P1 condition are closer than distance between talkers

in P9 condition. The separated distortion is multi-talker

interference. Multi-talker interference causes temporal vari-

ation of acoustic feature. Recognition results are affected by

the temporal variation. Strongly affected acoustic features

are unreliable. This is because automatic generated MFM

is introduced after sound source separation. By masking

unreliable acoustic feature, it is possible to avoid getting

high likelihood of the input feature with unreliable feature

by chance.

MFMs are automatically generated from estimated leak

noises, separated sounds, and refined sounds which are

filtered by attenuation rule base postfilter. Acoustic feature

vector is extracted from refined sounds. Additional spectral

feature distortion is added to speech by postfiltering. This

is because noise added acoustic model is used in ASR.

The acoustic feature vector is recognized by hidden Marcov

model base recognizer.

B. Acoustic model mismatch

A problem is mismatch between separated speech feature

and acoustic model, when likelihood from separated speech

feature and acoustic model is calculated. Input speech feature

is distorted by sound source separation. It cannot be matched

with clear speech model. Separated speech feature is matched

with non-clean speech model. In addition, reliable feature is

Fig. 3. Separated speech feature (P1 condition).

Fig. 4. Separated speech feature (P9 condition).

more matched with clearer speech than unreliable feature.

If noise level of acoustic model is determined by reliable

feature, contribution of unreliable feature to total likelihood

decreases.

We investigated that the robustness of ASR is improved

by using an acoustic model trained by speeches with added

white noises. It is possible to defuse mismatch between

acoustic feature of separated sounds and acoustic model. It is

reported that the addition of a colored noises is effective for

noise-robust ASR [6]. We tried to add white noises because

characteristics of temporal variation are unknown in advance.

MFT-ASR results using acoustic models trained from various

SNR speeches and MFMs are compared in this paper.

C. MFT-ASR

In conventional ASR systems, estimation of a path with

maximum likelihood is based on state transition and output

probabilities in the hidden Markov model (HMM). An output

probability estimation process is modified in the MFT-ASR

system as follows: let M = [M(1), · · ·M(F )] be an MFM

vector and M(f) represent the reliability of the f -th acoustic

feature. The output probability bj(x) is given by

bj(x) =
L

∑

l=1

P (l|Sj) exp
{

F
∑

f=1

M(f) log g(x(f)|l, Sj)
}

,(1)
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Fig. 5. Clean speech feature.

where P (·) is a probability operator, x = [x(1), · · · , x(F )]
is an acoustic feature vector, F is the size of the acoustic

feature vector, Sj is the j-th state, and g(x(f)|Sj) is a

mixture of Gaussian distribution in j-th state. This defini-

tion is natural extension of output probability because the

equation of output probability is equivalent to the equation

of conventional output probability when all mask values are

one. If reliability is not available, all mask values are one.

Note that this output probability definition is formed when

all off-diagonal elements of covariance matrix in the output

probability is zero.

III. ACOUSTIC FEATURE AND MFM

A word correct rate of ASR is improved by using a

MFM. That kind of ASR is called MFT-ASR. The mask

corresponds to a reliability of acoustic feature. MFT-ASR

can cover feature mismatch between input acoustic feature

and an acoustic model with the masks. When the reliability

of acoustic features is known in advance, the only reliable

acoustic features without the unreliable acoustic features are

used to recognize. If the unreliable acoustic features are

regarded as reliable, those features cause degradation of a

word correct rate.

An acoustic feature vector is calculated in the MFTASR

component before being recognized by the MFT-ASR sys-

tem. An acoustic feature vector consists of static and dy-

namic features. The static acoustic feature is extracted from

separated speech and includes separation noises. We used

Mel-scale logarithmic spectrum (MSLS) [9] as an acous-

tic feature although the Mel-frequency ceptral coefficient

(MFCC) is commonly used because spectral distortion in

band limited frequency is confined to a limited order of

MSLS coefficients. For the MFCC, the distortion spreads

over all MFCC coefficients by the discrete cosine transform

of the spectral parameter.

MSLS coefficient vector based on N channel filter banks

is defined as

p(t) = [p(1, t), p(2, t), ..., p(N, t)]. (2)

This also represents static acoustic feature. Dynamic acoustic

feature is defined as

δp(t) = [δp(1, t), δp(2, t), ..., δp(N, t)],

=

∑2

k=−2
kp(t + k)

∑

2

k=−2
k2

. (3)

The acoustic feature vector is defined as

x(t) = [p(1, t), p(2, t), ..., p(N, t),

δp(1, t), δp(2, t), ..., δp(N, t)]. (4)

(5)

MFM vector corresponds to acoustic feature vector.

M(t) = [M(1, t), M(2, t), ..., M(N, t),

δM(1, t), δM(2, t), ..., δM(N, t)]. (6)

(7)

Hard [7] and soft mask [5], [8] generation methods were

developed to generate such reliabilities. Hard mask repre-

sents binary status as 0 and 1. Soft mask represents values

between 0 and 1. Reliability of acoustic feature is represented

as a continuous value. We revealed that the MFT based ASR

with soft masking outperforms with hard masking (0 or 1) by

5 points. In this paper, the soft mask is used for MFT-ASR.

The hard mask is calculated from the reliability r using a

mapping function.

M(f, t) =

{

1 r > θhard

0 r ≤ θhard
, (8)

The soft mask generation is described in [5]. We briefly

described the soft mask in this subsection. The soft mask

is calculated from the reliability r using a mapping function.

The function is defined as a sigmoid function which has three

tunable parameter, i.e., weight w, tilt k, and threshold θsoft.

M(f, t) =

g(r(f, t)|w, k, θsoft) =
{ w

1 + exp(−k(r(f, t) − θ))
, r(f, t) > θsoft

0, r(f, t) ≤ θsoft

,(9)

where 0.0 ≤ r ≤ 1.0. f and t are frequency and time,

respectively. The reliability r is determined in a postfilter

processing.

r(f, t) =
Ŝm(f, t) + B(f, t)

Ym(f, t)
, (10)

A block diagram of GSS with postfiltering is shown in Fig

6. ym(f, t), ŝm(f, t), and b(f, t) are the input, the output,

and the estimated background noise. There parameters are

calculated from the multi-channel input speech with object

related transfer function (ORTF). The variables filtered by

the Mel filter bank are Ym(f, t), Ŝm(f, t), and B(f, t),
respectively. The key idea of determining the reliability is

that frequency bands where spectral shape is refined by the

postfilter are unreliable and frequency bands where spectral

shape is not refined by the postfilter are reliable.
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TABLE I

NINE LOUD SPEAKER LAYOUT PATTERNS

Pattern f101 m101 m102

P1. -10 degree 0 degree 10 degree
P2. -20 degree 0 degree 20 degree
P3. -30 degree 0 degree 30 degree
P4. -40 degree 0 degree 40 degree
P5. -50 degree 0 degree 50 degree
P6. -60 degree 0 degree 60 degree
P7. -70 degree 0 degree 70 degree
P8. -80 degree 0 degree 80 degree
P9. -90 degree 0 degree 90 degree

IV. EXPERIMENT

To determine the best level adding white noise to training

speeches for acoustic model, six types of acoustic models

were compared. An evaluation of simultaneous speech recog-

nition was conducted. Word correct rates were calculated

using HMM recognition system with soft MFMs based on

Julius [10], [11].

A. Experimental setup

Six types of acoustic models based on the HMM were

trained from phonetically balanced speeches of JNAS which

is sampled at 16 kHz. Each acoustic model was trained from

clean and noisy speeches. Noise models were trained from

speeches with added white noise at 0 dB, 10 dB, 20 dB, 30

dB, and 40 dB levels. We call these models C, N0, N10,

N20, N30, and N40 Parameters of three states of a triphone

HMM were trained from the speeches. The total number of

states was about 2000 by state sharing.

Instead of talking three talkers at once to a robot, recorded

speeches are played through three loud speakers. Three

talkers are two male and one female signified as “m101”,

“m102”, and “f101”. We installed our system into a robot

(SIG2) is placed in the center of a circle. SIG2 has eight

microphone on its body as is shown in Fig. 7. Loud speakers

were placed in a circle with a radius of 200 centimeters.

One of the talkers was placed in front of our system, and

the others were placed on both sides of the robot. Figure 8

and 9 shows the layout of our system and the loud speakers.

The word correct rates for nine loud speaker layout patterns

(P1,P2,...,P9) were compared. All patterns are detailed in

table I.

We used Mel-scale logarithmic spectrum (MSLS) [9] base

acoustic feature. The acoustic feature vector is composed of

48 spectral-related acoustic features, i.e., mean normalized

Fig. 7. Eight microphones on the robot SIG2.

m101

f101 m102

200cm
Robot

-60deg. 60deg.

Fig. 8. Pettern 6 (P6) : A position of robot and loud speakers .

MSLS 24 spectral features and 24 differential features.

Analysis frame length and frame shift length were 25 ms

and 10 ms, respectively.

The soft masks were generated using developed method

described in [5]. The tunable parameters {w, k, θsoft} = {
0.6, 140, 0.3 } in Eq. (9) for static feature part of acoustic

feature vector, i.e., elements of feature vector from 1st to

24th, were used. The parameters {w, k, θsoft} = { 1.0, 140,

0.3 } for differential feature part of acoustic feature vector,

i.e., elements of feature vector from 25st to 48th, were used.

These parameters are numerically optimized. In preliminarily

experiments, appropriate w, k, and, θsoft are from 0.3 to 0.6,

around 140, and from 0.2 to 0.4.

For speech spectral features, static feature variance is

generally wider than dynamic feature variance. For average

vector, likelihood for a model with wider variance is smaller

than one for a model with tighter variance. Therefore static

features are weighted to equalize contribution for total like-

lihood.

B. Experimental results

First, relationship between model noise level and input

speech noise level is shown. C, N0, N10, N20, N30, and

N40 for data set Tc. All models were evaluated using six data

sets named Tc, T0, T10, T20, T30, and T40. The data set Tc

consisted fo clean speeches. The others consisted of speeches

which white nose were added into. Subscript represents input

noise level in dB which added to clean speeches.

The average word correct rate contour maps is shown in

Fig. 10. Vertical axis shows that input noise level added to

clean speech in dB. Horizontal axis shows that model noise

level added to clean speeches for training speech database.

Word correct rate is high for one noise level model when

input noise level is 10 dB higher than model noise level.

Second, all models were evaluated using two data sets

named Tc and Tn. The former consisted of clean speeches

and the latter consisted of speeches separated from mixed

speech based on geometric source separation (GSS) [12].

These speeches were constructed from phonetically bal-

anced words in Advanced Telecommunications Research
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Fig. 9. Humanoid robot SIG2 and loud speaker location.
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Fig. 10. Word correct rate for noisy models.

Institute International (ATR) speech database. Tc included

200 isolated words from 25 talkers (male: 12, female: 13).

Tn included 200 isolated words from 3 talker’s (male: 2,

female:1).

Figure 11, 12, 13 show word correct rates with N0, N10,

N20, N30,N40 and C for data set Tn. A soft MFM was

applied [5] to calculate the word correct rate. The horizontal

and vertical axes show model IDs and word correct rates,

respectively.

V. DISCUSSION

A. Word correct rate of cleen speech

Figure 10 shows that the word correct rate decreases when

the model noise level is higher and the word correct rate

decreases when the input speech noise level is higher. These

mean that the training speech has to be clean if the test

speech is clean. As the test speech is not clean in real-

world recognition, acoustic model parameters should not be

trained from clean speeches. The reason of the decrease in

the word correct rate shown in fig. 10 is the mismatch of

acoustic features between training and testing speeches. The

test speech is non-clean speech and the type of its distortion

is unknown. If the type of distortion is known in advance,
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Fig. 12. Separated speech WCR based on MFT-ASR for right talker

the model should be trained from speeches with distortions.

We added white noise into training speeches.

B. Word correct rate of separated speech

In Figs. 11, 12, 13, there are peaks of the word correct

rate between SNR 20–40dB. In general, speech separation

based on geometric source separation is difficult when the

distance between talkers is short because space sparseness is

assumed to be separated.

Since smaller angle means that interference between talk-

ers has increased, it becomes more difficult to separate the

target speech from a mixed speech signal. This trend clearly

appears in the center and right talkers. As the acoustic

feature of a separated speech signal is much different from

a clean speech signal, separated speech is non-clean speech.

Therefore a peak of the separated speech correct rate appears

speech around N30 and N40. To obtain a better separated

correct rate, an acoustic model should be trained from non-

clean speeches.

When the distance is great (like P7, P8, P9 conditions),

the word correct rates are relatively high because the speech

interference between talkers is smaller. In these conditions,

the acoustic feature of separated speech is similar to that of
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N40 or C speech because separation of mixed speech works

well. When the distance is short (like P1, P2, P3 conditions),

the word correct rates are relatively low. In these conditions,

the acoustic feature of separated speech is similar to that

of N20 or N30 speech as it is difficult to separate. From

these results, we conclude that it is possible to choose the

best acoustic model among N20, N30 and N40 according to

the talkers position, assuming unknown spectral distortion

caused by separation to be the added white noise. Talker

position is obtained from the GSS process.

To compare the word correct rate of acoustic model trained

with clean speech, the word correct rates are improved in

P1,P2,....,P5 (more than 10 % in P1, P2), as shown in Fig.

11. The word correct rate was relatively low in P1 because

interference of non-target speech from both sides was strong.

When the angles between the target talker and non-target

talkers were over 20 degrees, the interference softened. In P6,

P7, P8, and P9, the acoustic feature of separated speech was

enough to be similar to the clean acoustic feature because

the distance between talkers is great and SIG2 has high

separability to the center talker.

In Fig. 12, the word correct rates improved in P6, P7,

P8, and P9 (more than 20 % in P8). In contrast, the word

correct rates of the right and left talkers improved at higher

SNR. The acoustic feature of separated speech was different

from the clean acoustic feature because SIG2 has middle

separability to peripheral talkers although distance between

talkers was great.

For the center talker, the acoustic models should be

selected according to talker angles. When the angle is small

and large, the acoustic model is trained from SNR 20-dB and

SNR 40-dB speeches, respectively. For the peripheral talkers,

we can always obtain high recognition performance by

using an acoustic model trained from SNR 30-dB speeches.

Average word correct rate with acoustic model trained from

SNR 30-dB speeches is improved by 4 points compared to

acoustic model trained from clean speeches.

VI. CONCLUSION

We conducted simultaneous speech recognition experi-

ments using six types of acoustic models. Each model is

trained from speeches with added white noises of different

SNR. A soft MFM is also applied based on the MFT. From

the experiments, we found that

(1) for the center talker, acoustic models trained from

SNR 20-dB, 30-dB, and 40-dB, and speech should

be used if the angle between the center talker and

peripheral talkers is 10-20, 30-40, or 50 degrees.

(2) for peripheral talkers, acoustic model trained from

SNR 30-dB speech should be used.

(3) Average word correct rate with acoustic model

trained from SNR 30-dB is improved by 4 points

compared to acoustic model trained from clean.

We used single condition acoustic model, but it also can be

improve using multi-condition acoustic model. It is necessary

to improve the word correct rate for selecting a dialogue

strategy. In future work, we will compare our model to multi-

condition model and develop another soft MFM generation

method. Since it is difficult to prepare various SNR acoustic

models with training from speech database, we will also

develop a method for converting clean acoustic models into

arbitrary SNR acoustic models.

VII. ACKNOWLEDGMENTS

Our research is partially supported by Grant-in-Aid for

Scientific Research and Kyoto University Global COE Pro-

gram.

REFERENCES

[1] M. Kashino, et al., “One, two, many - judging the number of
concurrent talkers,” Journal of Acoustic Society of America, vol. 99,
no. 4, pp.Pt2, 2569, 1996, ASA.

[2] http://winnie.kuis.kyoto-u.ac.jp/HARK/

[3] B. Raj, et al., “Missing-Feature Approaches in Speech Recognition,”
Signal Processing Magazine, vol. 22, no. 5, pp.101–116, 2005, IEEE.

[4] S. Yamamoto, et al., “Design Automatic Speech Recognition and
Understanding,” Proc. of ASRU 2007, pp.111–116, 2007, IEEE.

[5] T. Takahashi, et al., “Soft Missing-Feature Mask Generation for Simul-
taneous Speech Recognition System in Robots,” Proc. of Interspeech

2008, pp.992–995, 2008, ISCA.
[6] S. Yamada, et al., “Unsupervised speaker adaptation based on HMM

sufficient statistics in various noisy environments,” Proc. of Eu-

rospeech 2003, pp.1493–1496, 2003, ISCA.
[7] S. Yamamoto, et al., “Genetic Algorithm-Based Improvement of Robot

Hearing Capabilities in Separating and Recognizing Simultaneous
Speech Signals,” Proc. of IEA/AIE 2006 / LNSA 4031, pp.207–217,
2006, AAAI.

[8] M. L. Seltzer, et al., “A Bayesian framework for spectrographic mask
estimation for missing feature speech recognition,” Speech Communi-

cation, vol. 43, pp.379–393, 2004, ISCA.
[9] S. Yamamoto, et al., “Enhanced Robot Speech Recognition Based on

Microphone Array Source Separation and Missing Feature Theory,”
Proc. of ICRA 2005, pp.1489–1494, 2005, IEEE.

[10] Y. Nishimura, et al., “Noise-robust speech recognition using multi-
band spectral features,” Proc. of 148th ASA Meetings, no. 1aSC7, 2004,
ASA.

[11] T. Kawahara, et al., “Free software toolkit for Japanese large vocab-
ulary continuous speech recognition,” Proc. of ICSLP 2000, vol. 4,
pp.476–479, 2000, ISCA.

[12] L. C. Parra, et al., “Geometric Source Separation: Merging Convolu-
tive Source Separation With Geometric Beamforming,” IEEE Trans.

Speech and Audio Processing, vol. 10, no. 6, pp.352–362, 2002, IEEE.

2735


