
  

  

Abstract— Aiming to real easy application in several 
quadruped robot platforms, this paper introduces a new method 
of modeling central pattern generators (CPG) to control 
quadruped locomotion. Not only can this new model generate all 
the primary gaits of quadrupeds stably with limit cycle effect, 
but it also has the ability of tuning the periodic outputs with 
arbitrary waveforms. The core idea is to combine strong points 
of two mathematical tools: Fourier series and Recurrent neural 
networks. In addition, a new biomimetic controller is also 
introduced using the proposed CPG model and several reflex 
modules. Finally, dynamic simulations are performed to 
validate the efficiency of the proposed controller.  

I. INTRODUCTION 
ECENTLY, many previous studies on legged robots 
locomotion control based on biologically inspired 
approach have been performed [1]-[5]. As the core of 

these approaches, Central Pattern Generator (CPG) has 
become the vital part in any biomimetic controller [1]-[6]. 

 The problem in modeling CPG to control legged robots is 
usually expressed as searching some autonomous dynamic 
system of coupled oscillators that generate all the primary 
gaits of quadrupeds [4][9]-[11]. The general equation for 
these oscillators is:  

( )i ix F x=           (1) 

where n
ix ∈ R is the state variables of oscillator i and the 

vector field : n nF →R R models the dynamics of the whole 
system. The basic assumption is that the waveforms of xi are 
similar but shifted in different phases as shown in table 1 
[4][5][9]. The main goal is that the CPG model should 
maintain these phase relations stably even in the presence of 
external perturbations. It means that some stable limit cycle 
should be generated. There have been research works to solve 
this problem. Matsuoka proposed a self-sustain oscillator [4] 
that can generate several basic gaits for quadruped robots. 
This model is used and improved by adding several reflex 
modules later by Kimura in control of a real robot named 
Tekken [1]. Another great work is done by Buono et. al. by 
proposing a network of eight dynamic cells with a special 
structure that can generate stable gaits for the wide range of 
quadrupeds [9]-[11]. Similar research in insect locomotion is 
also introduced by Bailey [5]. Some other work is done using 
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neural networks [7]. However, it is still not clear how these 
proposed models can be applied, in general, for all the real 
quadruped robots effectively. The difficult point is that these 
models just can satisfy the requirements of gait generation but 
not the leg motion planning problem. Currently, to control 
quadruped robot locomotion means to handle simultaneously 
the motion of several manipulators. Furthermore, to control 
these legs’ joints, we need to plan some trajectories in 
position level, velocity level, or torque level, etc. It means, 
somehow, that we need well defined patterns. It is, however, 
difficult for these previous approaches to ensure to have such 
outputs as predefined waveforms. 

In this research, our motivation is aiming to useful 
applications in wide range of quadruped robot platforms. The 
main contribution is to propose a new CPG model that not 
only preserves the ability to generate all primary gaits for 
quadruped robots but also overcomes the mentioned problem. 
The proposed model can produce any predefined patterns 
regardless of the complexity of their waveforms. In addition, 
the stable limit cycle is also created. The main idea is to use 
Fourier series and recurrent neural network simultaneously. 
Besides, to show how it works in real robot, we introduce a 
biomometic controller using several reflex modules. Finally, 
several dynamic simulations are performed to validate the 
efficiency of the proposed controller. 

This paper is organized as follows. The detail of the 
proposed CPG model is presented in Section II. Then, Section 
III introduces the structure of biomimetic controller and 
reflex modules. The dynamic simulation and results are 
discussed in Section IV followed by conclusion in Section V. 
Appendices provide details of our recurrent learning 
algorithm and examplary parameter values of the proposed 
CPG model. 
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TABLE I 
PRIMARY GAITS FOR QUADRUPEDS 
 ϕ1 ϕ2 ϕ3 ϕ4 

Walk 0 T/2 T/4 3T/4
Trot 0 T/2 T/2 0 
Pace 0 T/2 0 T/2 
Jump T/4 T/4 0 0 
Bound 0 0 T/2 T/2 
Pronk 0 0 0 0 
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II. CENTRAL PATTERN GENERATOR 

A. Problem definition  
We consider a general problem as follows: given an 

arbitrary desired pattern q(t,k) : m× →R R R that is a periodic 
function of time t with a period of T. In a practical sense, this 
pattern usually represented desired joint trajectories 
calculated from some predesigned leg motions. The vector k 
is composed of some characteristic parameters to change the 
waveforms of q. For example, this k vector is used to control 
the stroke length, velocity or other variables related to the 
motion of each leg.  

The task is to build a dynamic CPG model whose the output 
signals should satisfy the following requirements: 

1. The outputs should be qi(t,k)=q(t+ϕi,k) with the set of 
phase shifting value ϕi that can realize all the 
quadruped primary gaits as shown in table 1. 

2. The model should cover all of the possible predesigned 
trajectories. It means that if we want to change the 
waveforms of q(t+ϕi,k) by controlling vector k or 
change the period T, we just need to change some inner 
parameters of the model without rebuilding the whole 
system again from the scratch.   

3. These outputs have to be stable and robust to external 
perturbations. 

4.  The waveforms and the phase relations among 
q(t+ϕi,k) should be reformed after some transient time 
of cancelling the effect of external inputs. 

It is important to notice that all the parameters related to 
q(t+ϕi,k) are still assumed to be arbitrary to ensure that this 
model can be easily applied for wide range of quadruped 
robot  platforms.  

In nonlinear dynamics, a stable periodic solution of a 
dynamic system is referred to a stable limit cycle. To generate 
some arbitrary predesigned set of stable limit cycles seems to 
be an impossible task if we stick directly into finding some 
differential equations as in Eq. 1. However, if we have some 
pre-analysis of the desired patterns q(t+ϕi,k), then we can 
build a nice CPG model that can satisfy all the above 
requirements. The detail of the idea is introduced in the next 
section. 

B. Proposed CPG Model 
There are two main difficulties in designing a CPG: one is 

to ensure a set of arbitrary waveforms of the desired patterns 
qi(t,k) and their phase relation, and the other is to maintain 
these characteristics stably even in the presence of external 
perturbations. To solve these problems, we use two 
mathematical tools: Fourier series and Recurrent Neural 
Network (RNN). The core idea is to use Fourier series to 
decompose the arbitrary patterns q(t,k) into simpler dynamic 
sine wave oscillators and generate these oscillators using 
RNN. The detail structure of the proposed model is shown in 
Fig. 1.  

First, we start with the only assumption of the desired 
pattern where q(t,k) is a periodic function of time with some 

period T. It is well-known that any periodic function can be 
easily approximated using Fourier series: 

{ }
0

( , ) ( )cos ( )sin ( , )
N

i n ni n ni i
n

t k a k b k q t kθ φ φ
=

= + ≈∑
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We just use N=6 first terms in the Fourier series to 
approximate q(t,k). By this way, any arbitrary, even 
complicated, periodic pattern q(t,k) will be decomposed into 
a sum of N simple sinφni and cosφni oscillators with different 
frequencies ωn and phase ϕi. In addition, Fourier coefficients 
an(k) and bn(k) (n=1..N) are functions of vector k such that it 
preserves the ability of controlling the waveform of θi(t,k) by 
tuning k directly. Henceforth, to complete the task, we need to 
find some nonlinear autonomous dynamic system that 
generates these sine and cosine functions with the limit cycle 
effects.   

Without lost of generality, we choose only the first 
frequency cosine function cosφ1i as the target to be generated 
by some nonlinear oscillators, the other sine and cosine are 
simply produced by linear oscillators. For doing this, we use 
Recurrent Neural Network. This network includes eight 
neurons as depicted in Fig.1. There are four input-output 
neurons (1 to 4) and the other four hidden calculating neurons 
(5 to 8).  

In this work, we use eight one-dimensional neurons fully 
interconnected so that the total dimension of the network 
reduces by a half in comparison with Buono’s model [11]. We 
use nonlinear connection with the typical dynamic equation 
as follows. 

( )
8

1

1 ( ) ( ) tanhk k k kl l k
k l

x t x t w x R tα
τ =

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑    (3) 

 
Fig. 1.  The proposed CPG model structure. 
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where xk(t) represents the inner state of neuron k; τk is time 
constant of neuron k; wkl is the weight connection from 
neuron l to neuron k; tanh is squash activation function; αk is 
additional scaling parameter to enhance the accuracy of the 
training process and k=1..8. The Rk(t) is the total input signal 
to the neuron k.  

For training this network, we use the Real-time Recurrent 
Learning method [13]. The detail calculation of this training 
process is shown in Appendix A. The targets for the four 
input-output neurons are cosφ1i functions and we choose the 
targets for the four hidden neurons are sinφ1i accordingly. By 
numerical simulation, for each ϕi, the limit cycle always 
appears and behaves stably at the desired patterns, but it is 
still very hard to prove the existence and stability of a limit 
cycle in eight-dimensional space. A rigorous analysis of this 
network is our on going research. 

Finally, combining all the parts together, we have the final 
outputs: 

( ) ( ) ( )1i i it a x t F tθ = +         (4) 

( ) { }0 1 1
2

sin cos sin
N

i i n ni n ni
n

F t a b a bφ φ φ
=

= + + +∑  

where xi(t) is the output from neuron i; an, bn and φni are the 
same in Eq. 2; sinφni and cosφni are the outputs from linear 
oscillators. Here, xi(t) is to maintain the stable limit cycle 
characteristic and F(t) acts like waveform regulation part to 
ensure the output of CPG model θi(t,k) to be exactly equal to 
the predesigned signal qi(t,k).  
 Even be successfully to generate any complicated periodic 
patterns, but this method fails to generate constant functions. 
Besides, when there is some external perturbation, the RNN 
preserves only the phase relations among xk(t) but not the 
phase relation among xk(t) and linear oscillators. Therefore, 
there would be some delaying time among these signals. For 
solving this problem, we put some phase regulation inputs ri 
to the RNN neurons which have the form: 

( )1cosi i ir c xφ= −         (5) 
where xi is the inner state variable of neuron i (i=1..4); c is 
some constant coefficient. These inputs ri are a part of the 
total inputs Rk(t) in Eq. 3. By this way, the whole system 
phase relation is guaranteed. 

C. Simulation results 
To verify the proposed model, several numerical 

simulations are performed. We choose an example of the 
predesigned patterns as shown in Fig. 2(a), which are actually 
the desired trajectories for controlling the knee joints of the 
quadruped robot simulation model in section V to realize trot 
gait. The period of these patterns is 1 second and the phase 
relations among them are shown in the phase plane depicted 
in Fig. 2(b). Besides, it is easily to notice that the basic 
waveforms of the four patterns are different. For convenience, 
we just show the graphical results of the model. The detailed 
parameters are shown in Appendix B. 

To test the stability of the model numerically, we apply 

several perturbations into the RNN network including sudden 
impact, constant, ramping and some special periodic signals 
separately and simultaneously. The result is shown in Fig. 3. 
In this simulation, we put an impact about 2000 rad/s into 
neuron 1 at t=2s, a constant signals about -20rad/s into neuron 
2, a ramping signal with the rate 40rad/s2 into neuron 3 and a 
special signal 20*exp(sin(2πt/T)) [rad/s] all during 2 second 
from t=1s to t=2s.  

As shown in Fig. 3, in the steady state, the outputs of CPG 
model approximate quite well the desired patterns. Not only 
that, the continuity of the outputs of CPG is always 
maintained right after the external inputs are applied. It takes 
about 1 second (one period) for the model to adapt and return 
to the steady state after the disappearance of the inputs. 
Obviously, not only the desired waveform is maintained but 
also the desired phase relation among the outputs. 

III. BIOMIMETIC CONTROLLER 
 The structure of the proposed controller is depicted in Fig. 
4 and Fig. 5. There are 3 main parts: sensor group, CPG 
model, and the central controller.  

In this controller, we assume that the motion of each joint in 
one leg is controlled independently and the four same joints in 
four legs are controlled by a CPG unit as introduced in the 
previous section. If each leg has m degrees of freedom, then 
the CPG model needs m independent units to control the 
motion of the four legs as shown in Fig. 4. All the sensory 
signals including joint angle, joint velocity, contact force, roll 
pitch yaw (RPY) angle and body acceleration are fed into the 

 
Fig. 2.  An example of predesigned patterns for CPG (a) The desired 

patterns; (b) The phase plane. 

Fig. 3.  The behaviors of the outputs signals of CPG when several 
external inputs are applied. 
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central controller. Then, this central controller will process 
and generate some reflex stimulus signal to feed into the CPG 
model. The detail interaction among these parts is shown in 
Fig. 5.  

A. CPG units  
The detail structure of the CPG unit is already introduced in 

the previous section. Here, we discuss how to control the 
outputs of the CPG by tuning the vector k.  

As mentioned in Section II, the vector k is composed of 
parameters to control the leg motion such as stroke length, 
feet velocity and so on. The point is that the integration to 
calculate these coefficients is usually complicated to have 
closed-form answers as functions of k and numerical method 
seems to be a better choice. Therefore, instead of considering 
a continuous space of vector k, we can divide it into a discrete 
set of values in the available range. And then, we process the 
Fourier calculation for all of these values of k and save the 
results in a library. Later, we can load the desired value 
directly from the library into the CPG model. By this way, we 
can save the time consuming for calculating the Fourier 
coefficients including also the inverse kinematics 
calculations. 

B. State analysis module 
This module functions as an observer that monitors all the 

signals from sensors and compares them with some preset 
thresholds. If the sensory values exceed these thresholds, then 
this module will send an activating command to some suitable 
reflex modules. In addition, all the basic calculations 
including forward kinematics, inverse of jacobian matrix, and 
so on are done here in this module. 

C. Roll Pitch Yaw (RPY) balance module 
The changes of RPY angles in small range are balanced by 

this module. We use a detail calculation as follows. 
( )1 desire real ii

rpy rpy
reflex

R R p
r k J

T
− −

= −      (6) 

where ri
rpy is the reflex signal sent to neuron i in CPG; J-1 is 

the inverse of jacobian matrix; Rdesire and Rreal are the desired 
and real rotation matrix of robot body with respect to center 
frame; pi is the position vector of shoulder joint of leg i; Treflex 
is desire reflex time and krpy is a scale constant. 

Obviously, (Rdesire-Rreal)pi/Treflex is the necessary average 
velocity vector to move the shoulders from current position to 
the desired position in Treflex seconds. Pre-multiplying this by 
inverse of jacobian matrix would be the necessary angular 
average velocity for the joints. This is reasonable because the 
reflex vector now is in the same space with the differential of 
inner state variable of the RNN inside of CPG model; it 
means joint angular velocity space.  

D. Collision reflex module 
This module is designed to deal with some sudden collision 

between the feet and the terrains. The idea is to move along 
the direction of reaction force to reduce the contact force 
effect. The reflex signal is calculated as follows. 

1i contact
col

vs reflex

F
r J

k T
−=          (7) 

where ri
col is the reflex signal sent to neuron i; J-1 is the inverse 

of jacobian; Fcontact is contact force value and Treflex is some 
reflex time constant. The number kvs acts like the stiffness of a 
virtual spring attach to the feet in the direction of reaction 
force. Thus Fcontact/(kvsTreflex) would be necessary average 
velocity for the feet to move in the direction to reduce the 
contact force in Treflex seconds. In fact, the contact force value 
in real platform is usually very noisy and unreliable, so we 
can use directly a constant reflex velocity v instead of 
Fcontact/(kvsTreflex) in Eq. 7. Certainly, the effect is not always 
best for all of the cases. 

E. Body balance module 
This module deals with the big changes of roll-pitch angles, 

or a sudden lateral acceleration due to external force. For 
simplicity, we just add some lateral motion to the desired feet 
motion in the direction that cancels down the inertia effects 
created by the sudden external force (opposite rotation 
direction that the robots roll or pitch to, or same direction that 
the body is accelerated). The reflex calculation is: 

1i
body body

reflex

yr k J
T

− Δ
=        (8) 

where ri
body is the reflex signal; kbody is -1 or 1 up to the 

necessary reflex direction; Δy is the distance that robot should 
step laterally, here we choose it to be a half of the robot width; 
Treflex is some time constant.  

 
Fig. 5.  Detailed structure of the central controller. 

 
Fig. 4.  The structure of proposed biomimetic controller. 

132



  

IV. SIMULATION RESULTS  
To verify the proposed controller, a dynamic simulation of 

a quadruped walking robot was developed using Open 
Dynamic Engine [15]. 
 The structure of this robot consists of 20 DOFs, 5 DOFs for 
each leg including 4 actuated hinge joints and 1 passive slider 
joints. The length of this robot is about 84 centimeters. The 
width is about 40 cm and the working height is about 80 cm. 
The total weight of this robot is about 150 kgs. The fiction 
coefficient is about 0.7 in all terrains (we assume this is a 
rubber – concrete contact surface [14]).  

At first, we build a slope terrain with 12 degrees inclined 
angle up and down. The height of this terrain is about 2.3 m. 
The robot starts from the plate ground and walks forward the 
slope. It walks up and down the slope very stable at the speed 
0.5m/s. The RPY angles of the robot during walking through 
this slope are shown in Fig. 7. 

Secondly, we test the behavior of the robot when a sudden 
perturbation is applied. In this test, we let the robot walks 
forward at the speed 1m/s. After a while, we give a sudden 
impact force about 2000N to the left side of robot body. 
Certainly, the robot immediately rolls down to the right side 
but the controller also detects this unstable state and moves 
the four legs laterally to compensate the perturbation. And as 
expected, after some time of balancing, the robot succeeds to 
overcome the inertia force created by the perturbing force and 
returns to the stable walking. The recorded RPY angles in this 
test are shown in Fig. 8. 

Finally, we build a simple but challenging rough terrain 
using rock bars. In this terrain, several rock bars with 12 
centimeter width and 2 to 6 centimeters height are arranged 
crossly randomly on the ground to make a grid net. Therefore, 
the terrain becomes very discrete with different height at 
every point. Because it is discrete terrain, there are several 
holes like region insides of this terrain, the robot legs are 
easily stuck in these holes. Thus to maintain the stability 
during walking through this terrain is very difficult. In this 
test, similar to the above cases, we let the robot walks through 
this terrain at the speed 1m/s. Certainly, as in the normal 
rocky terrains, the robot feet collide continuously with the 
bars. Sometime, some foot of the robot sticks into some hole 
for a while. Even so, the robot can still successfully traverse 
this terrain and move forward stably. The RPY angles change 
in this test is shown in Fig. 9. 

A video file records all the simulations above is attached 
with this paper. 

V. CONCLUSION 
In this paper, we introduced a new method to model the 

central pattern generators in control of quadruped locomotion. 
Not only can this new model generate all the primary gaits of 
quadrupeds stably with limit cycle effect, but it also has the 
ability of tuning the periodic outputs with arbitrary 
waveforms. In addition, a biomimetic controller using the 
proposed CPG is presented. This controller also includes 
several additional reflex modules to help CPG to adapt with 
the change of terrains and external perturbation. Finally, the 
efficiency of the proposed controller is validated by 
performing several dynamic simulation of a quadruped robot. 

APPENDIX 

A. Realtime recurrent learning algorithm  
This algorithm originally deals with the discrete variables, 

so we first change the Eq. (2) into discrete form. Let tn=nΔt is 
discrete points in time space with time step Δt and xk(n)=xk(tn) 
for k=1..8.  We use the first order Taylor approximation: 

( 1) ( ) ( )k k kx n x n x n t+ = + Δ  
and substitute into Eq. (2), and then rearrange the whole 
equation, we have: 

( ) ( )( 1) 1 ( ) tanh ( )k k k k kx n t x n t net nτ τ+ = − Δ + Δ  (9) 

Fig. 7.  RPY angles during walking on a 12 degrees slope. 
Fig. 9.  RPY angles during walking on rock bars terrain. 

Fig. 8.  RPY angles during sudden given lateral impact. 
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Let dk(t) is the desired output value of neuron k and the 
training time is up to tN. Therefore, the total error function 
would be: 

( )
8

2

0 0 1

1( ) ( ) ( )
2

N N

k k
n n k

E e n d n x n
= = =

= = −∑ ∑∑  

 From now on, we use gradient descent method to find the 
minimum of the error function. The gradients are calculated 
as follows. 
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 For convenience, we define: 
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 Using Eq. (9), we calculate: 
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 Assuming the inner state are independent with the initial 
state of all parameter of the RNN, then we have: 

(0) (0) (0) 0 , ,k k k
ij i ip q r k i j= = = ∀  

 Using the recursive equations above, we can calculate all p, 
q and r through time. Therefore, the updating step for all 
parameters would be: 

; ;ij w i i
ij i i

E E Ew
w τ αγ τ γ α γ

τ α
∂ ∂ ∂

Δ = − Δ = − Δ = −
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where γw, γτ and γα are descent steps for w, τ and α. 

B. Results of CPG model in section II 
The connection weight matrix is: 

S S
W

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where 
0.0602 0.0213 0.0602 0.0213
0.0213 0.0602 0.0213 0.0602
0.0602 0.0213 0.0602 0.0213
0.0213 0.0602 0.0213 0.0602

S

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥− −
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

The time constant τk≅17.7938 and αk≅4.2255 for all 
k=1..8. 

The Fourier coefficients for the q1 and q2 is  

n

2.2941   -0.0982   -0.0916    0.0073    0.0039   -0.0026   -0.0032

b 0   -0.1366    0.0275    0.0332   -0.0030   -0.0003    0.0017
na = ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦
  

 The Fourier coefficients for the q3 and q4 is 

n

2.2941    0.0982   -0.0916   -0.0073    0.0039    0.0026   -0.0032

b 0   -0.1366   -0.0275    0.0332    0.0030   -0.0003   -0.0017
na = ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦
 

ACKNOWLEDGMENT 
This research was supported in part by the project of the 

dual-use technology for military and civilian missions 
("Development of Quadruped Robots") of the Ministry of 
Commerce, Industry and Energy (MOCIE), Korea. 

REFERENCES 
[1] Y. Fukuoka, H. Kimura and A.H. Cohen, Adaptive Dynamic Walking 

of a Quadruped Robot on Irregular Terrain Based on Biological 
Concepts, Int. J. Robotics Research, vol. 22, 2003, pp 187-202. 

[2]  L. Righetti and A.J. Ijspeert, ”Design methodologies for central pattern 
generators: an application to crawling humanoids”, in IEEE Int. 
Conference on Robotics and Automation, Italy, 2007, pp 262-268. 

[3] A. Fujii, N. Saito, K. Nakahira, A. Ishiguro and 
P.Eggenberger, ”Generation of an Adaptive Controller CPG for a 
Quadruped  Robotwith Neuromodulation Mechanism”, Int. Conference 
on IntelligentRobots and Systems, 2002, pp 2619-2624. 

[4] K. Matsuoka, Sustained oscillation generated by mutually inhibiting 
neurons with adaptation, J. Biological Cybernetics, vol.52, 1985, pp 
367-376. 

[5] S.A. Bailey, Biomimetic control with a feedback coupled 
nonlinearoscillator: Insect experiments, design tools, and hexapedal 
robotadaptation results, PhD. Thesis, Stanford University, USA, 2004. 

[6] M. MacKay-Lyons, Central Pattern Generation of Locomotion: 
AReview of the Evidence, J. Physical Therapy, vol. 82, 2002, pp 69-82. 

[7] V. Scesa, B. Mohamed, P. Henaff and F.B. Ouezdou, ”Dynamic 
Recurrent Neural Network for Biped Robot Equilibrium Control: 
Preliminary Results”, Proceedings of IEEE Int. Conference on 
Robotics and Automation, Spain, 2005, pp 4114-4119. 

[8] M. Golubitsky, I. Stewart, P.K. Buono and J.J. Collins, Symmetry in 
locomotor central pattern generators and animal gaits, J. Nature, vol. 
401, 1999, pp 693-695. 

[9] J.J. Collins and I.N. Stewart, Couple Nonlinear Oscillators and the 
Symmetries of Animal Gaits, J. Nonlinear Science, vol. 3, 1993, pp 
349-392. 

[10] P.L. Buono and M. Golubitsky, Models of central pattern generators for 
quadruped locomotion, J. Mathematical Biology, vol. 42, 2001, pp 
291-326 . 

[11] K. Seo and J.J.E. Slotine, ”Models for Global Synchronization in 
CPG-based Locomotion”, in IEEE Int. Conference on Robotics and 
Automation, Italy, 2007, pp 281-286. 

[12] L.R. Palmer III and D.E. Orin, ”Quadrupedal Running at High Speed 
Over Uneven Terrain”, Int. Conference on Intelligent Robots and 
Systems, 2007, pp 303-308. 

[13] R. J. Williams and D. Zipser, A learning algorithm for continually 
running fully recurrent neural networks, Neural Computation, vol. 1, 
1989, pp. 270-280. 

[14] http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm  
[15] ODE, http://www.ode.org. 

134


