

Abstract—Componentization is an important method to
improve the reusability of robot software and reduce the
difficulty of system design. In this paper, we propose a
component based design framework for robot software
architecture. First, the robot system is functionally decomposed
into reusable components. On this basis, the static model and
run-time model of component are established, and a component
interface definition language based on the model is designed.
Second, a lightweight middleware is proposed according to the
communication mode between robot components, and a
component development tool and a visual component assembly
environment based on the middleware are designed to facilitate
the developers. Finally, an application based on the framework
is introduced to verify the validation of the design framework.

Keywords: Robot Software Architecture, Robot Middleware,
Component, IDL

I. INTRODUCTION
ITH the development of robot technology, the
complexity of autonomous robot systems has

increased dramatically. Besides an increased variety of robots,
sensors, actuators, embedded computers; the architecture of
the robot software has gained crucial relevance. Monolithic
Programming is used in the traditional robot software design.
But a variety of robot systems often use different hardware
platforms, so the robot system software changes with
different hardware platforms and it is difficult to realize the
reusability of robot system software. Modern robot software
uses multiple functional components. The main aim of the
architecture for Robot software is to provide flexible and
reliable communication mechanisms for data exchange
between the components. For todays robot applications,
mostly middleware systems are used to accomplish this
task.[1,2]

To solve the heterogeneity between the controller and
modules in robot system, the hierarchical architectures has
been proposed[3], such as NASREM model proposed by
Albus[4-6] and hierarchical intelligent robot software
architecture proposed by Saridis[7]. With the development of
Component-Based Software Engineering, software
component technology is quickly applied to the design of
robot software to solve the problem of software reusability,
such as OROCOS[6], Miro[7], RT-Middleware[8], MSRS[9], etc.
These component-based robot software architectures are
often built based on the existing network middleware (such as
CORBA, DCOM, etc.). However, these network middleware

are complexity enterprise-class application systems, which
makes the robot software architecture huge and occupies
more system resources. They are not suitable for embedded
robot controller system. For these reasons, some companies
and research institutes have to build their own robot
middleware architectures, such as Open-R[3],
K-Middleware[9], ASEBA[8], MiRPA[9], etc.

Based on the robot software system decomposition and
component communication mechanism, we present a
component-based design framework of robot software
architecture. The software system uses lightweight
component communication mechanism, which is suitable for
embedded robot controller software applications.

The remainder of the paper is organized as follows. Section
II presents a component-based frame structure for robot
software architecture and analyzes the static model and
run-time model of the components. Section III presents a
lightweight middleware communication mechanism between
components, and sets up a visual component integrate
environment. Section IV describes a component-based
application example: a visual procedure to track the ball for
mobile robot. The last section concludes the paper, and points
at the future work.

II. FRAME STRUCTURE

A. System Decomposition
Generally, a robot system can be divided into the control

system and the controlled system. Control system is the robot
control software or algorithms, and the controlled system is
the robot hardware. To achieve modular design of robot
system and the reusability of robot software, we present a
component-based abstract model to separate the coupling
between control systems and the controlled system. In Fig.1
(a), robot middleware divide a robot system into two parts:
software and hardware systems. The lower layer of robot
middleware is the robot hardware system composed of a
variety of sensors, actuators and other hardware devices. The
upper layer of robot middleware is the robot control software
composed of a variety of robot software components, control
algorithms and services. Robot middleware hides the
heterogeneity of lower hardware devices and provides the
component interface independent to the robot hardware
system, for the upper component or application call.

A Component Based Design Framework for Robot Software
Architecture

Wei Hongxing1, Duan Xinming1, Li Shiyi1, Tong Guofeng2, Wang Tianmiao1
1. Robotics Institute, Beijing University of Aeronautics and Astronautics

Beijing, 100191, China
2. Institute of A.I. and Robotics and Key Laboratory of Integrated Automation of Process Industry,

Northeastern University, Shenyang, 110004, China

W

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3429

To improve software reusability, the robot software system
is divided a set of different field and different granularity
reusable software components.

In Fig.1 (b), in horizontal direction, the robot system is
divided into different functional modules. The designer of
various functional modules can focus on the development of
their own functional modules, and package the functional
module into the corresponding components according to the
standard. Robot system integrators can rapidly integrate
various functional modules and develop robot systems
according to standard interface, without the need to
understand the specific implementation details of functional
modules.

In vertical direction, there are four levels of granularity of
the components according to different degree of abstraction
and reuse:

• Atomic component: atomic component is the only
direct interaction with hardware components. It is a particular
type of hardware abstraction and provides the unified
interface for the upper component calls. Such as motor
control atomic component, various sensors control atomic
components, etc.

• Composite component: according to some function
requirement and composite rule, several atomic components
can be combined into composite components, which provides
a higher level and bigger granularity components abstract.
For example, robot chassis consists of several motors and
sensors. Then, with the corresponding atomic motor
components, we can compose the composite chassis
component, which provides the specific service interfaces,
such as chassis velocity settings: setVelocity (type left, type
right). Through this abstraction, whether the chassis are
four-wheel drive or two-wheel drive, the superior
components can control the robot chassis through the unified
service interface.

• Algorithm component: Algorithm component is a
platform-independent robot algorithms or generic robot
control algorithms, for example, path planning and Kalman
filter, etc.

• Application component: application components are the
combination of all kinds of atomic components, composite
components and algorithm components to complete the
application functions of the robot system.

In vertical direction decomposition of robot system, each
component relies solely on its subordinate components.
Subordinate components provide services to superior
components, and the superior component achieves specific
functions with the service of subordinate components.
Through the dependence relationship between service
providers and consumers, various components can be
assembled together to form a specific function robot system.

B. Component static mode
After the above decomposition process, component is a

high cohesion and low coupling software module.
Component and its subordinate component have a kind of
relations between dependence and are dependent on. They are
the service consumer and provider. In this relationship, there
are three kinds of communication modes between the
superior and subordinate component:

• Command mode: the superior component issues an
order to the subordinate components. Superior components
issue an order and continue their operation without waiting
for results of the implementation of subordinate components;
subordinate components do not direct feedback to the
superior components in implementation process. When order
execution time is longer or superior components do not care
about the implementation results of the case, the command
mode is suitable. Command mode is mainly used in the
condition that superior components allocate task to
subordinate components and subordinate components decide
the way to complete task.

• Request/response mode: the superior component sends
request to subordinate components, in parallel, and waits for
their return. The type mainly is used in component
pre-operational configuration and the state access. Under
normal operating conditions, it should be as little as possible
to use the mode, which also applies to real-time request with

Field Decomposition

F
un

c
t
i
o
n

D
e
co

m
p
o
s
i
t
i
o
n

Application
Component

Algorithm
component

Service
Component

Atomic
Component

Filed Component

Application

Service

Component

Middleware

Device

Hardware

Robot Component

Component
Assembly

Hardware Bus
Interface

Software Bus
Interface

System
Decomposition

(b) System Decomposition(a) Robot System Architecture
Fig.1 System framework

3430

the higher real-time demand.
• Subscribe/release mode (event mode): For some

information concerning by superior components, such as
sensors to environmental changes, task completed, the system
failure and so on, the subordinate component returns them in
the form of events.

HW
PH

Atomic component Composite component
(customer)

Event
source

Service
Interface

Service
Interface

Provider

consumer - provider
relationship

HW

PH

Request/response
Command
Event
Hardware

Placeholder

(a) Atomic component (b) Composite component

Event
source

Fig.2 Component static model

Considering these three kinds of models, the event-based
programming method is widely used in the robot
programming. A component communication model is
designed. Fig.2 (a) describes the model of atomic components.
Atomic components, as the abstract of robot system hardware
device, provide direct interactive services of hardware
devices to the superior components, and its component
interface includes a service interface and an event source. A
number of components can be combined into composite
components, which provide a new component interface. It is
shown in Fig. 2 (b). In each composite component, there is
the placeholder of component which is dependent on; the
placeholder is as agent credentials of corresponding
components. When composite component is running,
placeholder can hides inter-component communication
details.

C. Run-time component model
In majority of the robot system, accessing sensor

information concerned by the superior component should be
in subscription/release mode, not in request/response model;
task allocation to subordinate component should be in
command mode. And with the command execution error, it
should be back in other ways. There are mainly three reasons:

1) Request/response mode is inefficient and slow reaction,
and superior components can not immediately make a deal on
environment change. This long-distance sampling method
often spends more waiting time than the subscription/release
model, but also more easily lead to system deadlock.

2) In mobile robot programming, behavior-based
programming model is widely used. In the model, for
feedback information on the environment, the system should
respond in the fastest way, and multi-level arbitration is often
used in the realization[10]. It will be convenient for the nearest
processing and multi-level arbitration, if the system is in
command mode and event mode.

3) It is compatible with distributed control and centralized
control. In distributed control, assigning the sampling and
initial process of sensor information to different processors,
and informing the environmental information in form of
event to the superior components, can reduce the burden on
the host processor, and also reduce the network
communication data load.

FSM

Task Decomposition

Event Handler

Event GeneratorService Interface

Task
Allocation

Incident
Priority List

Subordinate
component event

Allocate tasks to subordinate
components or control hardware

Send event to
superior component

Fig.3 Run-time component model

Based on the above analysis, we construct a general
run-time model, as shown in Fig.3. Superior component
assigns task to subordinate component in command mode,
while subordinate component feedback information in
subscription/release mode. In this model, a component
mainly consists of three parts: Finite State Machine (FSM),
Event Handling and Task Decomposition. FSM is the core of
components, maintaining the operational status of the entire
component. Component itself can complete one or more tasks,
corresponding to different task state. FSM schedules
subordinate components to complete the task, depending on
different states, and responses the incident feedback from
subordinate component in time.

D. Component Interface Description Language
To standardize components and hide internal

implementation details, according to robot component model,
we define a simple component interface description language
to describe component interface. According to the static
model, the component interfaces include the service interface
and the event (source) interface. Service interface is defined
by the keyword interface and event interface by the keyword
event. Service interface includes component command
interface and request/response interface, and the command
interface does not require returning value, therefore the return
type is void; and request/response interface contains return
value. To process simply and conveniently, we define all
returned values in the type of return. And if an operation
requires returning multiple values, it will use structure types
(keyword: struct).

The BNF (Backus-Naur Form) of component interface
description language is as follows:

idl_list::= idl
 | idl_list idl
idl::= intf_def
idl::= struct_def

3431

idl::= event_def
event_def::= EVENT IDENTIFIER '{' member_list '}' ';'
struct_def::= STRUCT IDENTIFIER '{' member_list '}' ';'
member_list::= data_type IDENTIFIER ';'
 | member_list data_type IDENTIFIER ';'
intf_def::= INTERFACE IDENTIFIER '{' oper_dec_list '}' ';'
oper_dec_list::= oper_dec_list data_type IDENTIFIER '('
param_list ')' ';'
 | oper_dec_list VOID IDENTIFIER '(' param_list ')' ';'
 | oper_dec_list data_type IDENTIFIER '(' ')' ';'
 | data_type IDENTIFIER '(' param_list ')' ';'
 | VOID IDENTIFIER '(' param_list ')' ';'
 | data_type IDENTIFIER '(' ')' ';'
param_list::= param_list ',' data_type IDENTIFIER
 | data_type IDENTIFIER
data_type::= DATA_TYPE
 | STRING
 | STRUCT IDENTIFIER
 | ARRAY '<' DATA_TYPE '>'
DATA_TYPE::= int | short | char | float | double
ARRAY::= “Array”
STRING::= “String”
STRUCT::= “struct”
VOID::= “void”
INTERFACE::= “interface”
EVENT::= “event”
IDENTIFIER::= <Symbol>

III. MIDDLEWARE DESIGN AND COMPONENT ASSEMBLY
In the framework, inter-component communication is

completed by the middleware. Component assembly is using
middleware to connect various components to form a new
system, according to the functional requirements. The
existing network middleware is too complicated and its
architecture is also too large. According the above
components communication modes, we design a lightweight
middleware to achieve components communication. At
present, the middleware bases on the TCP/IP and the
agreement can apply to any connection-oriented, reliable
transmission network protocols.

A. Component communication protocol
Inter-component communication protocol uses the

message as a unit, and message format is shown in Tables 1
and 2. Corresponding to the communication modes between
the components, we define five types of information (Table 2).
Command mode and event mode do not have the direct return
mode. To solve the notification mechanism questions
above-mentioned, in case of the implementation failure of
command mode and event mode, we adopt two methods: for
issues in the components communication process, if
command or event recipient is not found and the command is
not defined, we will send message fifth type CONTROL
message to notify the sender; if the command fails in
implement the process, the implementation components will
send events to superior components to notify.

As shown in Table 1, domain Body corresponds to
message body, different with the message type varies. For
example, REQUEST and COMMAND type message body
composed of the operator logo and the operating parameters.

In order to process simple and convenient, for different length
data types in message body, message recipient and sender
comply with the same byte alignment. Taking the needs of
cross-platform into account, different length data type should
be multi-byte alignment, but resulting increase in the total
length of message; and real-time bus bandwidth, such as
CAN bus, is often not enough. The smaller the message
length, message extension will be smaller, and the network
data throughput will be bigger. Therefore we chose the data
alignment which is compatible with the majority of 32-bit
systems: 8-bit data one byte-aligned, 16-bit data 2-byte
alignment, 32-bit and 64-bit data 4-byte alignment.

Table 1 Component Communication Protocol Format

Domain Length Description

Magic 4 bytes Protocol verification number; to prevent unauthorized
access; always ‘RIDE’

Priority 4 bytes
The message priority. For real-time system, it can be
mapped to the operating system priority and the
underlying communication protocol priority

Type 2 bytes The message type (table 2)
Length 2 bytes The message length
Identifier 4 bytes Message recipient identifier
Body n bytes Message body, defined by message type

Table 2 Message Type

Type Sender Description
COMMAND Superior component Corresponds to the command mode

REQUEST Superior component Corresponds to the request/response
mode

REPLY Subordinate component Corresponds to the request/response
mode

EVENT Subordinate component Corresponds to the incident mode

CONTROL Superior or subordinate
component

Control message, corresponds to all
modes. To report the communication
process errors, such as receiving
messages component is not found,
component and message do not meet
the definition of the operation, or
message format errors.

Through the agreement, three communication modes
between components can be completed with the message
interaction. In this paper, we use the object-oriented design
methods and C++ programming language; implement the
Lightweight middleware based on the TCP/IP. This
lightweight middleware provide interactive encapsulation,
component management, and connection management
functions of the agreement above-mentioned.

B. Component Development Tools
To realize the complex interaction between the agreements

above-mentioned solely by developers according to the
agreement interaction details, the developers have to very
deeply understand the agreements, and it is very prone to
error. To hide the complexity of agreement interaction, we
design component tools rcidl to support component
production. To create a component, we simply use interface
description language to describe the required function
interface of components. We use the component tools to
complete the basic framework of components, without the
need to focus on the interaction details of communication
protocol.

The rcidl tool is a component framework code generator
with the importation of component interface description

3432

document. Using the rcidl tool, the production of components
can complete the framework design. We hide the complex
interaction details of the communication protocols to
developer, which makes the developer can focus on the
functional implementation components, as shown in Fig.4.

IDL File

Lexical Analysis

Grammar Analysis

C++ files

Client framework class
definition header file

Service framework class
definition header file

Public variable
definition header files

rc
id

l
C

om
po

ne
nt

To
ol

Fig.4 rcidl flowchart

According to the definition document of component
interfaces, component tool rcidl separately generates the
components client framework code, service client framework
code and public variable definition file, as shown in Figure 4.
Firstly, through lexical analysis, rcidl divides the IDL file
into several marks (token). Then, through grammar analysis,
it determines the grammar relationship between marks and
generates the grammar analysis tree. Finally it parses of
grammar analysis tree to generate the corresponding C++
framework code. The client framework class definition
corresponds to placeholder framework code, and the service
framework client class definition corresponds to the
framework code of components implementation. These
framework codes implement all the interactive content of the
agreement; the developer can call the corresponding interface
to implement communication between the components.

C. Visual Assembly
In the framework， the components assembly using a

combination or aggregation mode in object-oriented design
patterns. Using object-oriented programming to achieve
component assembly requires more in-depth understanding
on the entire component model and implementation approach.
The robot system integrators, especially the users and robot
enthusiasts, need a simple and convenient assembly way to
achieve the rapidly design of robot application software.

In this paper, we use QT signal/slot mechanism to
implement the component visual assembly environment. The
QT signal/slot mechanism is an object communication
mechanism designed by Trolltech Company, and it is an
incident programming abstraction. The signal transmission
corresponds to the event trigger, and the slot corresponds to
the event process[11]. The link between signal and slot makes
signal transmission be able to call the corresponding slot[11].

We pack the component placeholder as the QT custom
control, translate the event received by components into the
QT object signal transmission, and map the component
command interface to the QT object slot. At the same time,
we also design several man-machine interfaces and logic the
QT-related controls to support the components assembly,
such as light control, timer control, constant control,

comparator controls, etc. In this way, the process of
component assembly is the process of forming application
through the combination of controls.

We can build suitable applications according to the needs
of different platforms, through the target compiler and C + +
compiler, using the above control to construct the dependence
of various components on the robot visual development
environment.

IV. DESIGN EXAMPLE
To validate the proposed component-based framework for

robot software architecture, we design an application
example: a visual procedure to track the ball for mobile robot.
In the example, the platform includes a PC and a mobile robot
system. PC connects the mobile robot system using wireless
network. The mobile includes vision sensors, mobile chassis,
and so on. The hardware and software configuration of the
robot controller and PC is shown in Table 3.

The camera collects image environment to identify a
specific color ball and guides the robot to track the ball. The
example relates to the visual component and the robot chassis
component.

Table 3 The Hardware and Software Configuration

 OS CPU Memory Wireless LAN
Robot
Controller

arm-linux
2.6.9

Intel X-Scale PXA270A ARM 64M
SDRAM

VIA
VNT6656GUA00

PC Windows
XP

Processor 0: Intel(R)
Pentinum(R) 4 CPU 3.00GHz
Processor 1: Intel(R)
Pentinum(R) 4 CPU 3.00GHz

1001.9Mi
B

TP-LINK
TL-WN322G+ 54
Mbps

A. Visual component
Visual component is the abstract of a certain machine

vision module. In the example, the visual component VS
defines the recognition of a particular object, like robot
soccer recognizes football. It often recognizes relative
coordinate information of objects in the camera in accordance
with the color of objects. And the interface definition of
visual components is shown in Table 4.

Table 4 Visual Component Interface

Interface Function Communication Mode

int initialize() Initialize visual
component Request/response mode

int setThreshold(unsigned int,
unsigned int, unsigned int,
unsigned int)

Set threshold Request/response mode

void start() Start recognition Command mode
void stop() Stop recognition Command mode

ObjectPositionEvent
Return the location
information of
objects

Event mode

The camera in the robot system uses the color recognition
method based on threshold vector to recognize objects. The
recognition process and state transition diagram are
separately shown in Fig.5 and Fig.6.

Image
Acquisition

Image Processing
(RGB->HSV)

Output recognition
results

(centroid coordinates)

Analysis specific color
pixels to recognize object
and calculate the object

centroid coordinates
Fig.5 The color recognition process based on threshold vector

3433

Idle

Running

Initialized

Target PositionEvent

Init

startstop

set HSRange

DeInit

DeInit

Fig.6 Visual component state transition diagrams.

B. Control Program Design
The function of control program is to guide the robot to

make the ball always at the center position of robot camera.
(,)x y is the object location coordinates returned by visual
component, if (,)x y is in the left side of the center 0 0(,)x y ,
the robot should turn left; instead, turn right; if (,)x y is in
the top of the center, the robot should move forward; instead,
move backward. We separately deal with the x and y values
and figure out the velocity of the chassis, and then
superimpose the calculated speed to get the actual velocity of
the chassis. That is:

1 0

1 0

2 0

()
()

()

Lx

Rx

Ly Ry

L Lx Ly

R Rx Ry

V k x x
V k x x
V V k y y

V V V

V V V

= −
= − −
= = −

= +

= +

With adder, multiplier and comparator controls, describing
the above formula can realize the design of visual procedures
to recover the ball.

Fig.7 Result of the example.

V. CONCLUSION
To achieve the industrial development of robot technology

and reduce the difficulty of robot system design, the modular
design of robot system and component-based design of robot
software is an inevitable trend in robot system design. In this
paper, we presented a component-based design framework of
robot software architecture, set up the static model and
run-time model of robot software component, and defined the
Interface Description Language of robot component. In this
paper, we designed a lightweight robot middleware to
achieve components communication according to the
component model. In order to facilitate the development of
robot systems in the design framework, we also designed the
robot component tools and the robot visual assembly

environment. To verify the feasibility of design framework of
robot software architecture, we used component-based design
methods to realize a visual procedure to track the ball. In the
further work, we plan to transplant the software architecture
into real-time bus and real-time operating system to satisfy
real-time control requirements of robot system.

ACKNOWLEDGMENT
This work is supported by the 863 Program of China

(2007AA041701 and 2007AA041702), National Natural
Science Foundation of China (Grant No. 60525314), and the
973 Program of China (2002CB312204-04)

REFERENCES
[1] Mizukawa M. Robot technology (RT) trend and standardization [A]. In:

Proceedings of IEEE Workshop on Advanced Robotics and its Social
Impacts[C], 2005: 249-253

[2] Gill C, Smart B. Middleware for Robots? [A]. In: Proceedings of AAAI
Symposium Workshop on Intelligent and Distributed Embedded
Systems[C], 2002: 1-5

[3] Fujita M, Kageyama K. An open architecture for robot entertainment
[A]. In: Proceedings of International Conference on Autonomous
Agents [C], 1997: 435-442

[4] Albus J S, Mcain H G, Lumia R. NASA/NBS standard reference model
for telerobot control system architecture (NASREM)[R]. Technical
Report 1235. National Institute of Standards and Technology,
Gaithersburg, MD, 1989

[5] Albus J S. A theory of intelligent machine systems[C]. In: Proceedings
of IEEE/RSJ International Workshop on Intelligent Robots and
Systems IROS’91,vol. 1, Osaka, Japan, 1991: 3-9

[6] Proctor F M, Albus J S. Open-architecture controllers [J]. IEEE
Spectrum, 1997, (6): 60-64

[7] Saridis G N. Architecture for intelligent controls[C]. In: Proceedings of
IEEE Symposium on Implict and Nonlinear Systems, Ft. Worth, TX,
1992: 13-25

[8] Fernandz J A, Genzalez J. The nexus open system for integrating
robotics software [J]. Robotics and Computer Integrate Manufacturing,
1999, 15: 430-440

[9] Choi D H, Kim S H, Lee K K, et al. Middleware architecture for
module-based robot[A]. In: Proceedings of SICE-ICASE International
Joint Conference [C], 2006: 4202-4205

[10] Mizukawa M, Matsuka H, Koyama T, et al. ORiN: open robot interface
for the network - the standard and unified network interface for
industrial robot applications [A]. In: Proceedings of SICE Annual
Conference [C], 2002: 1160-1163

[11] Bruyninckx H. Open robot control software: the OROCOS project [A].
In: Proceedings 2001 ICRA. IEEE International Conference [C], 2001:
2523 – 2528

[12] Utz H, Sablatnög S, Enderle S, et al. Miro - middleware for mobile
robot applications[J]. IEEE Transactions on Robotics and Automation,
2002, 18(4): 493-497

[13] Ando N, Suehiro T, Kitaqaki K, et al. RT-middleware: distributed
component middleware for RT (robot technology) [A]. In: Proceedings
of Intelligent Robots and Systems, IEEE/RSJ International Conference
[C], 2005:3933-3938

[14] JACKSON J. Microsoft Robotics Studio: A Technical Introduction [J].
Robotics & Automation Magazine, IEEE, 2007, 14(4): 82-87

[15] Jones J J. Robot Programming: A Practical Guide to Behavior Based
Robotics [M]. Beijing: China Machine Press, 2006: 63-86

[16] TrollTech Corp. Qt Reference Documentation [OL].
http://doc.trolltech.com/4.3/index.html

[17] Tong Shizhong. The modular principle design method and application
[M]. Beijing: China Standard Press, 2000

[18] Wang Zhijian, Fei Yukui, Lou Yuanqing. Software Component
Technology and Application [M]. Beijing: Science Press, 2005:
195-197

3434

