
  

  

Abstract —A global pose estimation method of an Unmanned 
Aerial Vehicle (UAV) by matching forward-looking aerial 
images from the UAV flying at low altitude with down-looking 
images from a satellite is proposed. To overcome the limitation 
of significantly different camera viewpoints and characteristics, 
we use buildings as a cue of matching. We extract buildings 
from aerial images and construct a 3D model of buildings, using 
the fundamental matrix. We estimate the global pose of the 
vehicle by matching 3D structure of buildings with satellite 
images, using a particle filter. Experimental results show that 
the proposed approach is a promising method to the global pose 
estimation of the UAV with forward-looking vision data. 

I. INTRODUCTION 
OSE estimation of an aerial vehicle is a fundamental and 
challenging issue in the aerospace community. A global 

positioning system (GPS) is usually used for the localization 
of a vehicle. However, the GPS is unstable when there is 
jamming around the vehicle. Even though an inertial 
measurement unit (IMU) system can be applied to estimate 
the pose of the vehicle, The IMU system accumulates errors 
as time goes on. Also, the system can only estimate a local 
pose of a vehicle with reference to an initial pose. A camera 
system can be a complementary solution to overcome the 
above limitations. Although a camera system also has its 
limitations, such as an aerosol, a weather condition and an 
illumination, it is not affected by jamming around the vehicle 
or the accumulation of errors. In addition, it is the global 
localization method, if we can match aerial images with 
satellite images, which are geometrically referenced. 

Various works have been presented for the UAV pose 
estimation using a camera. Sinopoli et. al. proposed a 
localization algorithm, using a GPS, an IMU and a camera 
system [1]. They estimated an initial pose of the vehicle with 
the GPS and IMU system and refined it with a camera. 
Although their results were good, the GPS and IMU have 
their limitations, as described above.  A localization method 
matching digital elevation maps with aerial images has been 
suggested [2], and  relative and absolute UAV localization  
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(a)                                                 (b) 
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Fig. 1. Advantages of forward-looking camera: (a) down-looking aerial 
image; (b) forward-looking aerial image; and (c) Amount of ground 
information for each camera system. 

 

 
Fig. 2. SIFT matching results (green rectangles are the SIFT descriptors and 
red lines represent corresponding points). 

 
methods by matching between satellite images and 
down-looking aerial images have been studied [3]. Caballero 
et. al. estimated a relative position of the UAV by calculating 
homographies among down-looking aerial scenes with the 
assumption that the ground is a plane[4][5]. All these 
methods showed good results with down-looking camera 
systems because matching between satellite images and 
down-looking aerial images is feasible as a result of using 
similar viewpoints. However, images taken by a 
down-looking camera tend to have blurred effects and little 
ground information when a UAV navigates at low altitude 
and high speed, especially as shown in Figure 1a and 1c. 
Although short exposure time can reduce the blurred effect, 
images can be too dark to obtain adequate information from 
them. A forward-looking camera system, however, can take 
well-focused and bright images with more ground 
information (Fig. 1b and 1c). 

We propose a method of UAV global pose estimation by  

UAV global pose estimation by matching forward-looking aerial 
images with satellite images 

Kil-Ho Son, Youngbae Hwang, and In-So Kweon 

P

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3880



  

 
Fig. 3. An illustration of a matching system for global pose estimation of a 
UAV. 

 
matching forward-looking aerial images with satellite images. 
The main problem of the matching is the significant 
difference in characteristics, such as type of cameras and a 
wide baseline between forward-looking images and 
down-looking satellite images. Conventional matching 
schemes by the scale invariant feature transform (SIFT) [6] 
algorithm using appearance information does not work well 
because of the wide baseline between two images, as shown 
in Figure 2. We detect SIFT descriptors in an aerial image and 
find the best corresponding points in a satellite image. It 
shows that most correspondence is false. Matching two 
images only using appearance information is difficult because 
forward-looking aerial images contain sides of buildings, 
whereas down-looking satellite images have only rooftops of 
buildings. 

We suggest a semantic matching method between 
forward-looking aerial images and down-looking satellite 
images based on information of buildings to estimate a global 
pose of a UAV, as shown in Figure 3. First, we detect 
buildings in aerial images based on cues that columns of 
buildings are normal to the ground and buildings include 
man-made regions and repeated patterns. Next, we construct 
a 3D model of the detected buildings and find the relative 
pose of the camera, using structure from motion (SFM) [7]. 
Then, we project the 3D structure of buildings to make 
images, using the azimuth and elevation angles of the satellite. 
Finally, building information from the aerial images and 
satellite images is used to match the images, and we estimate 
the global pose of a UAV. 

The paper is organized as follows: Section 2 explains the 
details of the building detection method in aerial images; 
Section 3 describes a method for 3D construction and 
reprojection of buildings; Section 4 discusses the matching 
method by considering errors of estimating intrinsic and 
extrinsic camera parameters; Section 5 presents the 
experimental results; and the conclusion is discussed in 
Section 6. 

 
(a)                                                        (b) 

Fig. 4. Results of vertical line detection: (a) constructed ground quasi-plane 
and its normal vector; and (b) vertical lines about the ground planes. 

 

II. BUILDING DETECTION 
To detect buildings from aerial images, we generate 

candidates with a cue that columns of buildings are normal to 
the ground plane. Buildings are then detected based on the 
observation that buildings are parts of the man-made regions 
and have repeated patterns. 

A. Detection of the ground plane and its normal vector 
We cannot construct an accurate 3D model of buildings 

with a series of aerial images by using an SFM method 
because the distance between the camera and the building is 
too long compared with the size of the building. However, we 
can construct the 3D points of the ground as a quasi-plane 
through the SFM method, as shown in Figure 4a [7]. Let 

0ax by cz d+ + + =  be the ground plane equation. Then, 
( , , )a b c is a normal vector of the ground plane. 

1 2, ... ... ( [ , , ])k N k k k kP P P P P x y z= are the N number of 
constructed 3D points of the ground plane using the SFM 
method. Then, all points have to satisfy the following 
equation: 
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Equation (1) is the over constrained case of simultaneous 

equations. We can solve the equation using singular value 
decomposition (SVD). Once we estimate the normal vector of 
the ground plane, we can find the direction of vertical lines to 
the ground plane in aerial images by projecting the normal 
vector to the image plane. Some 3D points from the buildings 
will result in erroneous results for detecting the normal vector 
of the ground plane, because the constructed 3D points of the 
ground plane are not plane but quasi-plane. We therefore 
include a ± 5-degree error when detecting vertical lines in 
aerial images. Figure 4a shows the SFM results with aerial 
images that contain 3D points of the ground (blue points) and 
pose of the camera (red points) and a normal vector of the 
ground plane. If we estimate how the normal vector of the 
ground plane projects to the aerial images, we can find the 
vertical lines about the ground plane in aerial images, as 
shown in Figure 4b. Our method detecting a direction of  
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(a)                                                     
Fig. 5. Training data for man-made detection: (a
orientation histograms of training data for man-made 
representative orientation histograms of training data 
nature. 

 
vertical lines to the ground plane in aeria
applied to the roll movement of the UAV bec
a direction of vertical lines through finding 
aerial images 
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Fig. 7. Rectangle-shaped building candidates within man-made regions. 

 
Score = # of corners whose main direction is similar to the main 
direction of the sum of the orientation histogram around corners 

-  
              # of corners whose main direction is different to the main 
direction of the sum of the orientation histogram around corners. 

 
Figure 8a shows corners and their main orientation after 

excluding the ground normal orientation direction within the 
rectangle candidates, and Figure 8b shows the sum of 
orientation histograms around the corners. The rectangle 
candidate is determined as a building because the main 
orientations of the corners are similar to the main direction of 
the sum of orientation histograms around the corners. Figure 
9 shows the outlier case. Not only the sum of orientation 
histograms is randomly distributed but also the main 
orientations of the corners are almost random. 

III. 3D CONSTRUCTION AND REPROJECTION OF BUILDINGS 

A. Estimating intrinsic parameters in aerial images 
We find the intrinsic parameter using images that are 

collected from the UAV. If we assume that the intrinsic 
parameter of the camera is fixed and the UAV moves in 
various motions when it captures images, we can estimate the 
intrinsic parameter using the dual absolute quadric [9]. 

B. Estimating extrinsic parameters in aerial images 
We assume that the UAV navigates at low altitude to allow 

robust computation of the fundamental matrix between 
consecutive aerial images. We find the corresponding points 
among a sequence of aerial images, using the KLT algorithm 
[10]. After estimating a fundamental matrix with the 
corresponding points, we calculate the extrinsic parameters of 
the camera by decomposing the fundamental matrix and 
estimate the 3D structure of the buildings by triangulation [7]. 
Although the corresponding points between aerial images 
have subpixel errors, there are some errors in the 3D 
structures of the building points because the points are 
triangulated using only the fundamental matrix. We therefore 
consider these errors when defining a cost-function matching 
between extracted building information in aerial and satellite 
images. The definition of cost function is explained in section 
4. 

(a) 

  
(b) 

Fig. 8. Building detection result: (a) corner points and their main orientation 
except for the ground normal directions; and (b) sum of orientation histogram 
around the corner points. 

 

 
(a) 

 
(b) 

Fig. 9. Outlier regions: (a) corner points and their main orientation except for 
the ground normal directions; and (b) sum of orientation histogram around 
the corner points. 

 
We construct the 3D structure of extracted buildings and 

relative aerial camera poses, as shown in Figure 10a. The 
origin of the coordinate is the position of the camera. The 
direction of the positive z-axis is the principal axis of the 
camera. Rectangles show the 3D position of buildings. 

C. Projection of constructed buildings and cameras 
We can find azimuth and elevation values of the satellite 

camera from the meta data of satellite images. We project the 
constructed 3D structure of buildings to the ground plane with 
the azimuth and elevation values of the satellite camera so 
that we can extract 2D information of buildings whose 
viewpoints are the same as satellite images, as shown in  
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(a)                                                          (b) 

Fig. 10. Projection of constructed buildings and cameras: (a) constructed 3D 
model of buildings and relative pose of an aerial camera; and (b) image of 
buildings and a camera projected to the ground plane with azimuth and 
elevation of the satellite camera 

 
Figure 10b. The triangle is the pose of an aerial camera and 
lines show the building information extracted from the aerial 
images. 

IV. BUILDING MATCHING BASED ON NONLINEAR 
OPTIMIZATION 

The building information from the satellite images is 
extracted manually. We match two types of images based on 
extracted building information, such as a scale, position and 
orientation of buildings. We also define the cost-function 
considering errors in the 3D construction of buildings and 
minimize it to match the buildings extracted from aerial 
images and satellite images, using nonlinear optimization 
methods. 

A. Cost function, considering 3D construction error 
Once we find the 2D building information from aerial 

images and satellite images, matching problems can be 
translated to 2D–2D registration problems (i.e., all we need to 
estimate is a homograhpy between two scenes that contain a 
scale, a rotation and a translation value). We define the cost 
function to find a homography. 

Although corresponding points between the aerial images 
have a subpixel error, we have to consider that construction of 
3D buildings from aerial images can have erroneous results 
because we do not know the exact intrinsic parameters and 
because the distance between aerial cameras and buildings is 
too long. This means that triangulation results can have 
erroneous results. 

If we assume that there is no skew in an aerial camera, then 
there are two important factors affecting 3D construction in 
intrinsic parameters: a focal length in terms of pixel 
dimension in the x and y direction and a principal point offset 
[7]. Problems in focal length in terms of a pixel dimension 
result in the 3D construction results having a different scale 
error in the x and y direction.  A principal point offset error 
affects all the results of constructed buildings. However, if 
scene depth is too large, principal point error does not have 
much of an effect in constructing 3D models of buildings [7]. 
The distance between aerial cameras and buildings is so great 
that we can neglect the error of principal points. 

If depth of the scene is too large, results of the triangulation 
method are very sensitive to the error of corresponding points, 
even though the corresponding error is in the subpixel range. 
We must consider triangulation error because the distance 

between the aerial camera and the buildings is extremely long 
in a forward-looking camera system. Therefore, we define the 
cost function, considering the factors that severely affect 3D 
construction, to estimate a homography: 
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il is the extracted building lines from aerial images, where  

1
ix  and 2

ix  are the x coordinates of lines at endpoints and 1
iy

and 2
iy are the y coordinates of lines at endpoints. A 

homography consists of a scale ( Λ ),rotation ( R ) and 
translation ( xT , yT ) factors, as shown in Equation (6). φ  is a 
relative angle of principal axis, and 1λ and 2λ are scale 
factors in the x and y direction, respectively. The scale factors 
complement error in focal length in the pixel range. M is the 
total number of the constructed buildings from aerial images. 

close
il  is a boundary line of buildings manually extracted in 

satellite images and is the closest one to the i-th line of the 
buildings constructed from aerial images. We place the 
weight terms iα , iβ  and iγ  to be dependent on the depth of 
the i-th building so that the cost function compensates for the 
error of the triangulation method. iα iβ  , iγ and the others 
are defined as follows: 
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iZ is the depth of the i-th building. Function S  is used to 
calculate the length of lines and function D calculates the 
distance between lines. Function A  is used to compute the 
relative orientation angle of buildings. Equation (5) consists 
of three similarity measures of two types of buildings, which 
consider the scale, position and orientation of buildings.  The 
first term in equation (5) decreases if the size of the buildings 
is similar to each other. The second and third terms also 
decrease if the position and orientation of buildings are 
analogous to each other.

 
B. Nonlinear optimization 
Our optimization problem has six degrees of freedom. We 

cannot apply gradient methods to find the minimum value of 
the proposed cost function because it is not a convex. 
Therefore, we apply the particle filter method, which is an 
algorithm for sampling the probability distributions to find 
the global minimum of the cost function [12]. 

We initialize the particles according to the buildings, which 
are manually extracted from the satellite image (i.e., we 
construct the same number of particles as the number of 
buildings from a satellite image). Each particle is initialized 
by aligning the constructed building line that is closest to the 
aerial camera with a line of buildings in the satellite image. 
For each particle, we calculate a local minimum value of the 
cost with the gradient method. We then make new particles in 
the form of a Gaussian distribution, where the number of 
particles defined according to the cost and variation of the 
particles is dependent on the number of the iteration of the 
gradient method. We iteratively do this procedure several 
times. We do this iteration five times empirically. Minimum 
value of the cost function in this procedure determines final 
matching results. The uncertainty of in position estimation is 
defined as follow: 

 
#of particles when generating minimum cost value1

total#of particles
U = − . (16) 

V. EXPERIMENTS AND ANALYSES 
We tested our proposed method with QuickBird satellite 

images, which are rectified with shuttle radar topography 
mission (SRTM) as a digital elevation model (DEM) and 
ground control points (GCP) for geo-referencing [13]. We 
applied our system to a set of aerial images that has 561 by 
341 resolutions. Figure 11 shows the results of building 
detection. Rectangles in the image are the detection results of 
buildings from the aerial images. The proposed method 
detects the buildings robustly as long as the buildings satisfy 
the conditions. 

A number of UAV localization papers proposed 
verification methods using GPS or IMU systems [3]. 
However, it is very difficult to obtain various sensor data 
simultaneously, and synchronization of the sensors is not easy. 
Therefore, we manually verified our methods. Figure 12a and 
12c show automatically detected buildings and their labeled 
numbers for each building in aerial images. Rectangles in 
Figure 12b and 12d are the manually detected building data 
from satellite images, and numbers in the image are also the  

  
Fig. 11. Building detection results from a series of aerial images 

 
labeling numbers of each building. Buildings labeled as 9, 15, 
16 and 17 in aerial images are matched with buildings labeled 
as 9, 15, 16, and 17 in the satellite image respectively, as 
shown in Figure12a and 12b. It is apparent that the 
automatically extracted buildings in an aerial image and the 
manually extracted buildings in a satellite image are well 
matched. Red circles in Figure 12b and 12d are the estimated 
pose of the camera and its uncertainties. The bigger circles 
mean the higher uncertainties. 

We applied our algorithms to key frames that are selected 
when corresponding points are firstly below 150 between 
aerial images. Figure 13 shows the final estimated results of 
the camera poses and its uncertainties. Figure 13b–i shows a 
set of aerial images, with numbers in the circles of Figure 13j 
being corresponding camera poses. The closer the buildings 
are to the camera, the more the pose of the camera become 
stable because the triangulation error is reduced as the scene 
depth decreases. In Figure 13(a), uncertainties are decreased 
as the pose of the camera is close to the buildings except for 
the mismatching case in aerial image 7 (Fig. 13). If the 
building detection method does not work well because the 
columns of buildings are not detected, our algorithm fails, as 
shown in aerial image 7 (Fig. 13). Little information on the 
buildings from aerial images also results in method failure. 

Our method compared with the GPS using other aerial 
images that has 320 by 240 resolutions, as shown in Figure 14. 
The UAV flied to the buildings that are detected in aerial 
images and collected key frames from 1 to 10 sequentially. 
Although buildings in satellite and aerial images are matched 
well, a proposed pose estimation method is unstable 
compared with GPS and has offset errors. This is mainly 
because the triangulation errors according to the scene depth. 
We can observe that the closer the UAV is to the buildings, 
the more the pose of the UAV become stable and also the 
errors are reduced. 

VI. CONCLUSIONS 
We designed a semantic matching algorithm between 

forward-looking aerial images and down-looking satellite 
images based on relational information of buildings to 
estimate a global pose of a UAV. We detect buildings in 
forward-looking aerial images by observing that the columns 
of buildings are normal to the ground plane and the buildings 
are part of man-made regions and have a repeated pattern. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Matching results with building information: (a) detected buildings in 
aerial scene 1; (b) matched results between buildings in aerial scene 1 and 
buildings in satellite images; (c) detected buildings in aerial scene 2; and (d) 
matched results between buildings in aerial scene 2 and buildings in satellite 
images. 

 Finally, we proposed a cost function to match the building 
information from aerial images and manually detected 
connections of buildings from satellite images, considering 
errors in 3D construction of aerial images. Our system works 
well with assumptions that the UAV flies around buildings 
and the ground plane is flat. Also, our system is not real time. 
Even though there are limitations to our algorithm, our 
proposed approach shows a promising solution to pose 
estimation of a UAV with only forward-looking camera data. 
For more accurate and robust pose estimation, we will carry 
out additional studies on how to combine road information 
with our current work. 
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(a) uncertainties of pose for each aerial image 
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(b) aerial image 1                               (c) aerial image 2                                 (d) aerial image 3                                (e) aerial image 4 

 
(f) aerial image 5                                (g) aerial image 6                                 (h) aerial image 7                                 (i) aerial image 8 

 
(j) UAV localization results according to aerial images 

Fig. 13. Final results;  (a) uncertainties of UAV pose for each aerial image; (b)~(i) red rectangles are detected buildings and numbers are building label numbers; 
(j) numbers in circles are the corresponding aerial image number and circles show the pose of the forward-looking aerial camera. Red circles are the results of 
the camera pose when the building match is successful, and blue circles are the results of the camera pose when the building match has failed. 

 
            (a)                                                                                                       (b) 

Fig. 14. GPS and proposed results; (a) yellow lines are GPS results and red lines are proposed results. Numbers are key frame number in aerial images;  
(b) errors between GPS and proposed results in Euclidian distance. 
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