
CoMutaR: A framework for multi-robot coordination and task

allocation

Pedro M. Shiroma Mario F. M. Campos

Abstract—In multi-robot systems, task allocation
and coordination are two fundamental problems that
share high synergy. Although multi-robot architec-
tures typically separate them into distinct layers,
relevant improvement may be expected from solutions
that are able to concurrently handle them at the
same “level”. This paper proposes a novel framework,
called CoMutaR (Coalition formation based on Multi-
tasking Robots), which is used for both tackle task
distribution among teams of mobile robots, and to
guarantee the coordination within the formed teams.

Robot capabilities are modelled as actions, inde-
pendent modules whose inputs do not depend on the
robot that generated it. Solutions to tasks are devised
as coalitions of actions, that can be spread amongst
the available robots. We also define the concept
of share-restricted resources, which are periodically
checked and updated by the actions in the system. In
contrast to prior approaches, this mechanism enables
to quickly determine if two actions can be executed
simultaneously, allowing a single robot to execute
multiple tasks concurrently. A single-round auction
protocol is used to automatically discover and form
coalitions. Once a coalition is formed, coordination
among robots is modelled as constraints imposed over
the share-restricted resources. Finally, we have suc-
cessfully implemented and applied CoMutaR in typi-
cal scenarios like object transportation, area surveil-
lance, and multi-robot box pushing. Experimental
results demonstrate that the system is able to provide
good solutions even in the case of severe failures in
participating robots.

I. INTRODUCTION

Multi-robot systems is a challenging field that has been
receiving increasing attention in robotics over the past
years ([1], [8], [9]). Among the advantages that such
systems presents over single robots, we can highlight the
increased robustness, efficiency, and higher range of tasks
that can be accomplished.

However, if one wants such desirable features to appear
in multi-robot systems, it is fundamental that such a
system should be able to efficiently handle unforeseen
issues. There are, at least, two main problems in multi-
robot scenarios: (i) how to distribute tasks among robots,
and (ii) how to coordinate their actions in order to suc-
cessfully accomplish the assigned tasks. Although there is
a significant synergy between these two problems, most
of related work separate them into layers, in order to
make them more tractable. However, it is expected that
approaches able to handle both problems together may
provide better solutions.

Also, if one expects robots to become ubiquitous in our

society, such solutions must be able to handle the dy-
namical insertion and removal of possibly heterogeneous
robots. According to the taxonomy proposed in [1], our
work can be classified as a MT-MR-IA approach.

ALLIANCE [2] uses a distributed behavior-based ar-
chitecture where tasks are performed by selecting a
behavior set. Impatience and acquiescence attributes are
used to trigger the process of taking over tasks from
other robots or giving up one’s own current task. M+ [3]
is a decentralized protocol divided into three layers: A
task allocator, based on the Contract Net Protocol [4];
a fault-tolerance module; and a task executor module,
responsible for the coordination. However, all robots
must receive the same mission description and there
is low synchronization between the allocator and task
executor modules. The CNP was also the starting point
of several successful works, like MURDOCK [5], which
uses a greedy algorithm and a time-limited contract to
provide fault-tolerance, and Traderbots [6], a distributed
architecture which form local centralized coalitions.

In multi-agent systems (MAS), a common concept
present amongst most works is coalition, a temporary or-
ganization of agents that are brought together in order to
solve a specific task. Theoretical results were conducted
by [7] to study coalition formation on software agents,
and were the inspiration of several works, like ASyMTRe
[8], and RACHNA [9]. In ASyMTRe, robot capabilities
are modelled as schemas, and all inputs and outputs
are based in the information types [10] allowing them
to share a common vocabulary. A task is defined as a set
of motor schemas, for which solutions are automatically
generated by forming a coalition of schemas. According
to [9], a great number of works developed in MAS cannot
be directly transferred to multi-robot scenarios, because
they do not consider restrictions that arise with real
robots, like lossy communication, device failure, situated
agents, dynamical environments, and non-transferability
of resources. Also, the position constraint imposed by
physical devices implies that information produced has
only local meaning, and an agent cannot immediately
establish an anytime communication channel with other
agents without having to reposition itself.

In [11] the task allocation problem is modelled as a
hybrid automaton. Task assignment is treated as discrete
events and the controllers are represented as continuous
states. Therefore, it can potentially share the benefits
of formal analytical machinery developed for hybrid au-
tomata.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4817

A. Our approach

The development of our framework was based on the
observation that, although any modern computer sys-
tems provide multitasking capabilities, only few robotic
architectures are truly multitasking. One possible reason
is that a robot cannot freely “change context” from one
task to another without incurring in the possibility of
wasting all the progress it may have reached up to that
point in time. Hence, any attempt to allocate multiple
tasks to mobile robots will face the spatial constraint,
which is specific to the robotic scenario. Also, it is clear
that no solution exists and multitasking is not feasible
if two tasks require the same robot to be at different
places at one given instant in time. However, this is not
the general case, and there is a large number of tasks that
impose less restrictive requirements to robot location,
allowing for the sharing of several of the existing robotic
resources present in a team.

For this class of tasks it is feasible to come up with
solutions where a robot can execute two or more tasks
simultaneously, if the admissible configuration space of
the tasks overlap. This idea can be extended to a more
general concept of share-restricted resources which em-
bed, along with robot’s pose, other features like process-
ing power and communication bandwidth.

Our approach is based on the CNP to form coalitions
of actions and is similar to the ASyMTRe [12] approach
in many aspects. However, unlike [12], where the output
of motor schemas are summed to generate the overall
behavior, our approach tries to find out a motor output
that will always be admissible for all current tasks.
Our concept of action is strongly based on information
invariants [10], sensor-databases [13], and schemas [14]
which will allow us to divide a task into smaller robot-
independent modules that can efficiently reuse past in-
formation gathered by the system and will require the
production of new information.

However, our approach is distinct of others in that
it enables the design of multiple concurrent coalition
solutions, each one assigned to a task, which can include
actions belonging to overlapping robots. This means that
a robot can be assisting the execution of multiple tasks
concurrently through the actions, and thus be classified
as a multi-task (MT) robot. Also, our approach is able
to handle the coordination problem that arises in such
systems.

II. PROBLEM DEFINITION

Given R = {r1, r2, ..., rm}, a set of m heterogeneous
mobile robots, T = {t1, t2, ..., tp}, a set of p tasks to be
executed, which can be randomly inserted. Let τi ⊂ R be
a team of robots, and R = 2R be the set of all subteams
that can be formed. The problems addressed in this work
can be stated as:

Problem definition 1 (Task allocation): Find a func-
tion A : T 7→ R such that A(tk) is a team of robots
capable of performing the task tk.

Problem definition 2 (Team coordination): Given a
set of robots R, a set of tasks T, and a task allocation
A : T 7→ R, coordinate the actions in τi during its
persistence, such that they are able to accomplish the
task ti, and they do not interfere in the execution of the
other tasks.

III. METHODOLOGY

A. Action

We model the robots capabilities or skills, such
as read laser, detect obstacles, avoid obstacles,
push box, as a set of actions which are, to some extent,
similar to the schema concept [14]. Formally:

Definition 1: An action is any computational module
that can either produce data, consume data, or accomplish
a task.

We define ai,j as the j-th action in robot ri. Also,
ni is defined as the total number of running actions
in robot ri. In order to avoid plurality of data types,
we adopt, similar to [12], a set of information types
F = {f1, f2, ..., fp} and restrict all actions inputs and
outputs as a subset of F.

A key feature of defining the robot capabilities as a set
of independent actions or schemas (like in [12], [15]) is
that it makes it possible to transparently handle failures.
Once there is no central planner, when a sensor fails,
only the capabilities (actions) that depend on that sensor
output are affected. Moreover, if another robot is able to
provide the same information of the failed sensor, then
higher level actions will still be able to be executed after
the proper reconfiguration.

In contrast to approaches based on schemas, which
only checks for the inputs to determine if they can be
activated, we define sets of resources that has limited
sharing possibilities. Resources like communication link,
processor, battery power and the robot pose have physi-
cal restrictions that limit the amount of actions that can
be concurrently running. For example, a communication
link cannot exceed the device’s maximum bandwidth,
and hence, higher demands would not be acceptable.
Therefore, our model should refuse new connections
while the link is not capable to adequately handle new
requests. We capture this concept by the following defi-
nition:

Definition 2: A share-restricted resource is any prop-
erty in the environment that cannot be freely shared
among the actions.

Examples of share-restricted resources are robot posi-
tion, robot energy, communication bandwidth, and free
configuration space. A share-restricted resource can ei-
ther belong to a robot (e.g. energy, position) or be
intrinsic to the environment (e.g. the free configuration
space). Formally:

Let iχ = {i,1χ, i,2χ, . . . , i,siχ} be the set of share-
restricted resources in the environment (i = 0) or in
robot ri (i > 0). For each share-restricted resource

4818

i,kχ, we associate a codomain i,kC which “measures” the
availability of a share-restricted resource i,kχ.

We define, for each action ai,j , a constraint function
l,kϕi,j(t) : ℜ 7→ l,kC as a function of time that measures
the amount of the share-restricted resource l,kχ in robot
rl (or in the environment, if l = 0) required by ai,j .

The space l,kC is defined such that it accepts two
operators, a compound operator:

⊕ : l,kC × l,kC 7→ l,kC, (1)

which is used to “sum” the constraints imposed by two
constraint functions, and a comparison operator:

≺: l,kC × l,kC 7→ {true, false}, (2)

used to check if the sum of constraint functions exceed
the maximum capacity, l,kϕmax, of the share-restricted
resource. Define

ni

#

∑

j=1

l,kϕi,j , l,kϕi,1 ⊕
l,kϕi,2 ⊕ ... ⊕ l,kϕi,ni

, (3)

as the constraint imposed by all running actions in robot
ri over share-restricted resource l,kχ in robot rl.

Similarly, define:
m

#

∑

i=1

l,kϕi,j , l,kϕ1,j ⊕
l,kϕ2,j ⊕ ... ⊕ l,kϕm,j , (4)

as the composition of the constraint functions imposed
by all robots over share-restricted resource l,kχ. Thus,

m

#

∑

i=1

ni

#

∑

j=1

l,kϕi,j ≺ l,kϕmax (5)

can be interpreted as “Does the sum of the constraints
imposed by all active actions exceed the maximum ca-
pacity of share-restricted resource l,kχ ?”

Next we define the codomain, ϕmax, and operators ⊕
and ≺ for the most common share-restricted resources in
robotics.

1) Communication link: Communication, and spe-
cially wireless communication, has been fundamental for
the operation of mobile robots. In real environments,
packet loss, data corruption and network disconnection
are usual events. Also, bandwidth limitations of wireless
interfaces may make it difficult to transmit large volumes
of data such as a streaming video.

Bandwidth is the main limitation imposed by com-
munication links, so we define l,kϕmax as the maximum
bandwidth. Thus, the codomain for the communication
bandwidth is the set of real numbers (C , ℜ), and
the constraint function ϕi,j is the required bandwidth to
action ai,j properly execute its operations. In this case,
the ⊕ : ℜ × ℜ 7→ ℜ operator is defined simply as the
algebraic sum, and ≺: ℜ×ℜ 7→ {true, false} operator is
the“less than or equal to”operator. For example, suppose
that action ai,1 requires data size of 100 Kbits at a rate of
100 samples/sec (totalizing 10Mb/s), action ai,2 requires
40 Mb/s, and action ai,3 demands 30Mb/s. Thus, if the

maximum bandwidth, ϕmax, is 100Mb/s then actions
ai,1, ai,2 and ai,3 can share the communication resource
since 10Mb/s + 40Mb/s + 30Mb/s ≤ 100Mb/s.

2) Processor: The dynamical aspect of the real world
coupled with the complexity of data analysis of some
data sources, like cameras, turn the robot into a vora-
cious processor consumer. However, in order to increase
energetic autonomy, a robot should rely only in low
power components, which consequently will restrict the
processing power of the system. The efficient use of the
processor is essential for any architecture that will handle
task allocation. Thus, if the processor limitations are not
obeyed, it can cause degradation on the running process,
specially in those that impose real-time constraints like
low-level controllers.

We define ϕmax as the maximum processing power
allocated to our application. Since computation time for
other processes must also be considered (e.g. operating
system and user interfaces), ϕmax will be, in general,
smaller than the total processing power available. The
constraint function ϕi,j for an action ai,j is the required
processing power for that action.

The operator ⊕ : ℜ × ℜ 7→ ℜ for the processor may
be defined as the algebraic sum, and the operator ≺:
ℜ × ℜ 7→ {true, false} is defined as the “less than or
equal to” operator.

3) Position: One of the most important share-
restricted resources that we must deal with in robotics is
the robot position. The position of a robot is intimately
related to the motor and actuator resource and for a
given action, the commands sent to the actuators may
cause one of three effects:

• Make the robot advance toward its goal;
• Be irrelevant to the execution of that action;
• Be harmful and provide a negative impact to the

completion of the action.

For example, a surveillance action can define as virtual
obstacles, in the configuration space, the whole area ex-
cept the regions that it has to observe. In contrast, other
actions can define more naturally its constraints in the
velocity space [16], such as a controller based on potential
fields. It is easy to see that, for a given configuration in
SE(3), the mapping from velocity space to the Euclidean
space can be computed with little effort. Also, note that,
given a location in space, a potential field divides the
space into two regions: one with smaller potential and
another with larger potential. Other controllers can be
easily adjusted by including a disturbance around the
optimal output.

The codomain for the position resource is defined as
the special Euclidean space (C , SE(3)). The con-
straints of all actions can then be joined into the con-
figuration space (Fig. 1) and, if their intersections is not
the empty set, it means that there exist a set of motor
commands that satisfies both tasks. Therefore, we have
that ⊕ , ∩, ≺,6= and ϕmax , ∅. Remember that the

4819

(a) 1,1ϕ1,1 (b) 1,1ϕ1,2 (c) 1,1ϕ1,1 ⊕1,1 ϕ1,2

Fig. 1. In light gray the constraints imposed by a surveillance
action. In dark gray the constraints of a controller. The intersection
of the areas (in white) indicates the admissible velocities for both
actions.

constraint function is a timed-function, so the region can
change over the parameter t.

For example, in order to check if actions ai,1, ai,2 and
ai,3 can be executed concurrently, we test if ϕi,1 ∩ ϕi,2 ∩
ϕi,3 6= ∅ is true.

Note that not only actions that produce velocity com-
mands can impose constraints over the position of a
robot, but actions that read sensors can also restrict the
allowed configuration space.

Suppose, now, that an action is querying the obstacles
in a given region (Fig. 2). In order to properly answer the
query, and consequently keep the established contract,
the robot must stay at a maximum distance from the
region (assuming an omnidirectional sensor).

(a) Constraint im-
posed by an omnidi-
rectional sensor.

(b) Constraint im-
posed by a path fol-
lowing action.

(c) Composition of
both constraints.

Fig. 2. A sensor can also constrain the allowed position of a robot.
When the robot reaches the upper boundary of the area covered by
the sensor, it must decide which action it will continue to execute
and which one it will stall.

Table I summarize the constraint functions for the
analyzed share-restricted resources.

Therefore, constraint functions allow us to evaluate if
a set of actions can be concurrently executed by a robot.

B. Query

With the advent of multi-robot systems, many con-
cepts that researchers have inherited from the early years
need to be revisited in order to adapt to a new reality.
One such a concept is the way information flows from
sensors to actuators. While each robot can rely only in
its own sensors, it would be more efficient if it could
share the gathered information to other robots which

sensors are presenting noisy data, malfunctioning, or
being occluded. In this section, we extend the idea of
sensor database [13], which treats sensors as databases
that store all past information and whose data can be
retrieved through the traditional use of queries. Unlike
[13] we define for each database a metadata (mi) that
allows any module to check if the database has the
necessary data for its execution. The metadata included
in each database must be descriptive enough to allow the
decoupling of the data from the source that produced.
Consequently, producer and consumer are not required
to be in the same physical robot and thus we can split
the actions through the robots.

We restrict our actions such that the following meta-
data are enough to determine if an action can be executed
or not:

• type: The class of information type (type ∈ F) being
accessed.

• id: A list identifying the targets, it can assume a
single value, a multiple list, or refer to any object
that matches the other fields.

• position: A spatial area indicating where the data
was produced.

• time: A time interval indicating when the data was
produced. Reactive tasks will require short intervals
which may be gradually extended if the environment
is more static in nature. Deliberative tasks could rely
on longer intervals.

• rate: This field indicates the required output data
rate, making it useful for reactive tasks.

• duration: The duration of the query can be instan-
taneous, which means it will be answered only once,
or time-extended.

• error: The maximum admissible error in the sent
data.

A query in the resource database has the following
syntax:

σtype,id,time,position,rate,error,duration

Examples of queries are:

• σOBSTACLES,ANY,[0:−1s],[x0:x1,y0:y1],15Hz,1cm,20s

This query could be requested by a robot that is
trying to avoid obstacles while moving toward a
waypoint. After the query is accepted, the resource
database will continue to output data for 20 seconds.
Any module that accepts to answer the query should
plan its action to ensure that all requirements will
be met or otherwise not accept it.

• σPOSE,obj1,[0:−1s],ANY,15Hz,1cm,1min

An action trying to track and pursue and object
could use the query above.

Since we restrict the output of an action to be a prede-
fined information type and the date rate is defined by the
contract established by the query, we can determine the
commϕi,j for all actions based on the rate and data type
fields. Also, for actions that produce data, the position

4820

TABLE I

Definition of constraint functions for most common share-restricted resources.

Communication Processor Position

Codomain ℜ ℜ SE(3)

constraint function ϕ required bandwidth required proc. power feasible region

maximum resource capacity ϕmax maximum bandwidth allocated processing time empty set

compound operator ⊕ algebraic sum (+) algebraic sum (+) intersection operator ∩

comparison operator ≺ algebraic comparison (≤) algebraic comparison (≤) difference operator 6=

and duration field in a query are sufficient to specify the
posϕi,j .

Actions and databases form a pair with all data flowing
from an action to a database, located in the same robot,
and then be exported to other actions. This allow us to
query an action, not only on its current output, but also
on previous data produced.

C. CoMutaR - A multi-robot task allocation and coordi-
nation approach

�
�
�
�
�
�
�
�
�
�
�
�
	
�
�

�
�
�
�
�

�
	
�

�����	��
�������

Fig. 3. Architecture overall. Each robot ri has a set of actions (ai,j)
and a set of share-restricted resources (i,kχ). The active actions
can impose a set of constraint functions (l,kϕi,j) over all resources.
Coordination is represented as the constraint functions imposed to
resources in other robots.

The motivation to work on this problem came from
[1] where it is said that “the MT-SR-IA and MT-
SR-TA problems are currently uncommon, as they as-
sume robots that can each concurrently execute multiple
tasks.”

In this section we describe the CoMutaR (Coalition
formation based on Multitasking Robots) approach (Fig-
ure 3 shows the main components and its relationship).
Since it is known MRTA to be NP-hard [1], the de-
veloped solution will not focus in finding an optimal
solution. We define a coalition as:

Definition 3: A coalition is a temporary organization
of actions that are brought together to tackle a particular
task.

Then, a coalition of actions is assigned to each task.
One key difference between the coalition concept adopted
in this work and other approaches, is that here coalitions

are formed by actions and not by schemas. Thus, we
are not restricted to behaviors and we do not “add”
the contributions of each motor schema to produce an
output that, hopefully, will make all behaviors progress.
The share-restricted resource concept guarantees that
the output produced will always have a positive effect
for all actions.

It is expected that an agent will insert tasks into the
environment with a minimum interval of ∆t. When a task
is injected, the CoMutaR framework will handle it in two
stages. In the first stage, an auction is opened and the
set of all coalitions that can handle the task is generated.
Our approach is based on the CNP [4] and uses a one-
round auction process. Among the advantages of such
systems, we can highlight its scalability, fault tolerance
and efficiency. We assume all robots to be truthful and
their bids reflect the real (or expected) revenue. Each
action capable of performing the task starts the data
connection process, followed by a bidding. If the inputs
of an action are not connected, a query is broadcast to
find a suitable connection. This process continues until all
inputs are connected (which means that a coalition can
be formed), or if an input cannot be connected (meaning
that this coalition cannot run). In order to synchronize
the negotiation flow, each subsequent query has a shorter
time interval to be answered than its predecessor. Next,
all potential coalitions send a bid, taking into account
the costs of all elements in the coalition.

In the second stage, the auctioneer determines a win-
ner and announces it. The auctioneer can vary from task
to task and can be either a client connected to a graphical
interface or another robot. The winner coalition adjusts
its share-restricted resources and the proper data connec-
tions are established. Figure 4 shows the execution flow
when a task is announced in the system. In this example,
action a1,1 requires a data that can be produced by either
a1,2 or am,nm

.
After the winner is announced, the coalition starts

to execute the task and a new task can be inserted in
the system. Internally, each action runs two algorithms:
one to respond to the request of new tasks and to form
coalitions (Alg. 1), and another algorithm to respond
queries, similar to Algorithm 1, but with tasks being
replaced by queries.

D. Robot coordination

Robot coordination is modeled as a constraint function
l,kϕi,j , where i 6= l, i.e., actions allocating resources

4821

��������

����	
���

��� �� �

	
����������

��

������

������������

Fig. 4. When a task is announced, each capable action tries to
connect its inputs through the use of queries. Similarly, each action
capable of answering the query tries to connect its inputs, and this
process continues until all inputs can be connected (which means
a coalition can be formed), or one input can not be fed. In the
example above, two coalitions ({a1,1, a1,2} and {a1,1, am,nm}) are
formed.

Algorithm 1: Bidding algorithm in robot ri

Input: a task tk

Output: a set of coalitions C

C = ∅
foreach ai,j ∈ ri that can accomplish the task tk do

for l ← 1 to m do

for k ← 1 to sl do

if l,kϕi,j ⊕
m

#

X

p=1

np

#

X

q=1

l,kϕp,q ⊀ l,kϕmax then

return ∅

if inputs of ai,j are disconnected then
send a new query
wait for the query answer
forall query answers do

c = coalitions in the query answer
C = C ∪ c

else
C = current coalition

return C

in other robots. For example, suppose that we have an
action a1,j that wants to send data from a robot r1 to a
base station through an ad-hoc wireless network, passing
through robot r2 (Fig. 5). To accomplish this task, a1,j

has to constrain 2,poseC to avoid it from breaking the
communication link, and 2,commC must be allocated with
the size of the transmitted data.

E. Assumptions

In summary, we have that if the following assumptions
hold:

• If a robot is executing a task and it stops, the overall
progress for that task does not decrease (all actions
move toward the completeness of the task);

• A task can be subdivided into a set of actions, and
each action has inputs and outputs clearly defined;

• Given a query, an action is able to determine if it
can successfully provide all the required information
or not;

• An action can be activated only if all inputs are
available and its constraint functions do not exceed
any share-restricted resource;

Fig. 5. Coordination among robots arises when one robot interfere
in the share-restricted resources of another robot. In this example,
a robot is serving as a gateway to the data collected by another
robot, which is constraining both the available position and com-
munication bandwidth.

• All robots are trustworthy and their bids reflect the
real (or expected) revenue;

• There is a minimum interval (∆t) between the in-
sertion of two consecutive tasks (IA assignment);

• The environment presents a perfect communication
model;

• When a device fails, it stops the data production.

then the proposed framework is able to allocate the tasks
and coordinate the robot actions.

IV. EXPERIMENTAL RESULTS

A. Simulation setup

To validate our architecture we designed two experi-
ments: (i) a tightly-coupled task where two robots coop-
erate to push a large box, and (ii) a set of three tasks
executed by two robots, namely, transportation, obsta-
cle avoidance, and surveillance. The experiments were
conducted on the player/stage/gazebo [17] simulator,
but each robot is controlled by an independent software
client, which is responsible for listening for new tasks,
bid for new auctions, query for new data, and execute
the assigned tasks. All communication among clients (i.e.
robots) is implemented using the TCP protocol, and the
only centralized portion of it is a custom broadcaster,
responsible to assign ID’s and relay multi-cast messages.
The available actions to the robots are shown in Table II.
Note that some actions require more than one input.
The data-exporter and data-importer are capable of
producing the same type of data present at the input,
but with respect to a different frame. Although similar
to schema-based approaches [12], [15], in our approach,
the sum of motor outputs is replaced by the position
share-restricted resource.

B. Box-pushing

The box-pushing task consists of moving a large rect-
angular (blue) box for 3 meters in a given direction, so
that the box achieves a desired final pose. The large
size of the box enforces that at least two robots must
coordinate their actions in order to successfully accom-
plish the task. Initially, the two robots are facing the
same side of the box. The position of a box relative to a
robot is given by the detect box action, which consumes

4822

Action input output

push box box-pose robot-pose –
detect box range-data box-pose
read laser – range-data
localize – robot-pose
export data * robot-pose *
import data * robot-pose *
survey robot-pose –
transport robot-pose –
avoid obstacle obstacles –
detect obstacle range-data obstacles

TABLE II

List of available actions.

data produced by a read laser action. The push box

actions generate the control commands based on the box
position read earlier, and the robot position produced by
a localize action.

Fig. 6(a) shows the trajectories of the two robots
and the box. In order to show how our system handles
failures, we intentionally halt the laser sensor of the left
robot. Fig. 6(b) shows the number of running actions
in each robot. Note that when the sensor fails, a new
configuration is formed in order to provide the missing
information to the robot on the left. This robot starts
to consume the box position produced by the right
robot (a new export data action starts to run, and a
import data replaces the halted detect box).

Note that the trajectory is smoother, and both robots
proceed on executing the task, which is an improvement
over others systems.

(a) Box and robots trajectories. (b) Number of running actions
in each robot.

Fig. 6. A box pushing task being executed by two robots. Each
robot uses its laser range-finder to localize the box and compute
the motor outputs. A sensor failure is injected in the left robot in
the middle of the execution.

C. Transportation and Surveillance

In the context of this experiment, a transport task
is defined as waypoints (producer and consumer) that
a robot must continually and sequentially visit. For
instance, the producer waypoints could be defined as a
set of objects in the environment that have to be disposed
and the consumer waypoint as the waste deposit. In this
experiment we set the producer to be at (−5, 0) and
the consumer at (5, 0) (Fig. 7(a)). Figure 7(b) shows the
trajectory described by the robot during task execution.

To illustrate our system’s capacity of handling multiple
tasks simultaneously, a second task is inserted after

(a) Experimental setup con-
sisting of two robots in an en-
vironment with obstacles.

(b) Trajectories described by the
robots.

Fig. 7. Robot 1 executing multiple tasks simultaneously.

awhile. The second task consists of surveying an 6m ×
6m area around the origin. In order to accomplish this
task, the robot must pass, at least once, closer to all
points within the region. The task is allocated to the
first robot, which adjusts its share-restricted resources
(Fig. 8). The amount of available resource is estimated
considering only the positions that can be reached by
the robot up to the next iteration. The surveying task is
defined such that it allows the robot to be at any position
in the environment, and thus its constraint function does
not affect in the available positions. However, it does
affect the determination of the velocity that will be used.
Therefore, in order to accomplish all tasks, the robot
starts to move off the line connecting the waypoints
defined by the transportation task. It proceeds until
it reaches an equilibrium and the robot is no longer
capable of executing the surveillance task adequately,
and eventually it goes on to watch previously visited
areas. At this point in time, the robot detects the lack of
progress and re-opens the task so it is executed over the
remaining area. Then, Robot 2 wins the second auction
and proceeds to cover the unvisited area.

Fig. 8. Availability of the position share-restricted resource for
Robot 1 while transporting, surveying, and avoiding obstacles. The
survey action does not restrict the position share-restrict resource,
but it does interfere with the choice of velocity.

Figure 9(a) shows the progress of the two tasks being
accomplished separately, which is how previous work
would accomplished them. In a second scenario, we use
the proposed framework and the robot execute both
tasks simultaneously (Fig. 9(b)). Notice that although
the completion time for the first task has increased 10
sec, the overall completion time has decrease from 908
to 786 sec). Finally, we allow the robot to give up the
assigned task when it detects the lack of progress allowing

4823

(a) A single robot executing two tasks se-
quentially.

(b) A single robot executing two tasks con-
currently.

(c) Two robots executing two tasks.

Fig. 9. The progress of the tasks in three different scenarios.

a second robot to finish it (Fig. 9(c)).

V. CONCLUSION

We have presented a novel architecture, called Co-
MutaR, that is able to tackle, among several typical
task allocation issues, two important problems in multi-
robot systems: the multi-robot task allocation and co-
ordination. The major contributions of CoMutaR are
(i) the development of a system that enables robots to
perform multiple tasks concurrently, and (ii) to bring
both the requirements necessary to allocate tasks, and
the constraints imposed by the tasks during its execution,
into the same consistent framework.

Experimental results were performed using the
player/stage/gazebo simulator in both loosely-coupled
tasks like area surveillance and transportation, and
tightly-coupled tasks like box pushing, and the results
have shown that our framework was able to successfully
resolve the required allocation issues.

The introduction of share-restricted resources and con-
straint function concepts enabled us to clearly define
when two tasks can be concurrently executed or when
a robot can form a new coalition. It also allows us to
design a system that is robust to failures and which
presents better performance when compared to similar
approaches in the literature. The absence of a central
planner makes CoMutaR particularly well suited for
multi-robot environments.

As part of the ongoing work, we plan to study the
impact of imperfect communication on the architecture.
This can be modelled as a more complex communica-
tion share-restricted resource, which may involve, for
instance, devising different policies that will assist in se-
lecting the best velocity. We are also experimenting with
different types of environments and with a significantly
larger number of robots.

A. Acknowledgments

The authors would like to thank CNPq, CAPES, and
FAPEMIG for their support.

References

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and
taxonomy of task allocation in multi-robot systems,”The Intl.
Journal of Robotics Research, vol. 23, no. 9, pp. 939–954,
September 2004.

[2] L. E. Parker, “Alliance: An architecture for fault tolerant
multi-robot cooperation,” IEEE Trans. on Robotics and Au-
tomation, vol. 14, no. 2, pp. 220–240, April 1998.

[3] S. S. C. Botelho and R. Alami, “M+: a scheme for multi-
robot cooperation through negotiated task allocation and
achievement,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), vol. 2, Detroit - Michigan, May 1999, pp.
1234–1239.

[4] R. G. Smith, “The contract net protocol: high-level commu-
nication and control in a distributed problem solver,” IEEE
Transactions on Computers, vol. C-29, no. 12, pp. 1104–1113,
December 1980.

[5] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods
for multi-robot coordination,” IEEE Trans. on Robotics and
Automation, vol. 18, no. 5, pp. 758–768, October 2002.

[6] M. B. Dias, “TraderBots: A new paradigm for robust and
efficient multirobot coordination in dynamic environments,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, January 2004.

[7] O. Shehory and S. Kraus, “Methods for task allocation via
agent coalition formation,”Artificial Intelligence, vol. 101, no.
1-2, pp. 165–200, April 1998.

[8] F. Tang and L. E. Parker,“ASyMTRe: Automated synthesis of
multi-robot task solutions through software reconfiguration,”
in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Barcelona, Spain, April 2005, pp. 1501 – 1508.

[9] L. Vig and J. A. Adams, “Multi-robot coalition formation,”
IEEE Trans. on Robotics, vol. 22, no. 4, pp. 637–649, August
2006.

[10] B. R. Donald, J. Jennings, and D. Rus,“Information invariants
for distributed manipulation,” The Intl. Journal of Robotics
Research, vol. 16, no. 5, pp. 673–702, 1997.

[11] L. Chaimowicz, M. F. M. Campos, and V. Kumar, “Dynamic
role assignment for cooperative robots,” in Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA), Washington
- DC, May 2002, pp. 292–298.

[12] L. E. Parker and F. Tang, “Building multirobot coalitions
through automated task solution synthesis,” Proc. of the
IEEE, vol. 94, no. 7, pp. 1289–1305, July 2006.

[13] A. Cowley, H.-C. Hsu, and C. J. Taylor, “Distributed sensor
database for multi-robot teams,” in Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), vol. 1, New Or-
leans, LA, April 2004, pp. 691–696.

[14] R. C. Arkin, “Motor schema based navigation for a mobile
robot: An approach to programming by behaviour,” in Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
vol. 4, March 1987, pp. 264 – 271.

[15] L. Vig and J. A. Adams, “Coalition formation: From software
agents to robots,” Journal of Intelligent and Robotic Systems,
vol. 50, pp. 85–118, 2007.

[16] D. Fox, W. Burgard, and S. Thrun, “The dynamic window ap-
proach to collision avoidance,” IEEE Robotics and Automation
Magazine, vol. 4, no. 1, pp. 23–33, March 1997.

[17] T. H. Collett, B. A. MacDonald, and B. P. Gerkey, “Player
2.0: Toward a practical robot programming framework,” in
Australasian Conference on Robotics and Automation, Syd-
ney, Australia, December 2005.

4824

