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Abstract— A joint learning approach is described that meets
a major challenge with social robots — developing a method-
ology for learning communicative behaviors. We focus on
interaction rule that is relationship between a robot’s action and
a partner’s response. In this approach a robot is simultaneously
a learner and proposer of interaction rules. The human partner
and robot continuously search for and co-create new rules as
inspired by the social games played between an infant and
a caregiver. A simple and universal scheme with response
prediction and habituation/dishabituation was developed, and
a robot model was built using the scheme. The robot generates
actions, observes the partner’s response, and get to predict
them. It identifies relationships between its actions and the
responses, and generates actions designed to elicit particular
responses from the partner. After it is habituated to the
responses, it generates other actions to search for other rules.
In experiments of human-robot interaction based on this model
and using a ball, different patterns of interaction emerged, such
as passing the ball back and forth, rolling and catching, and
feint passing. Response prediction and appropriate habituation
supported the emergence of interactions, indicating that the
scheme and the model are effective. This joint learning should
lead to natural communication between human partners and
social robots beyond teach/taught relationship.

I. INTRODUCTION

A. Background

Social robots, such as pet, elderly-care, child-care, mu-

seum tour-guide, and alternative remote, are now being

introduced into daily life environments. For example, AIBO

is a dog-shaped commercial robot for pet [1]. It has abilities

of image and voice recognition, and can chase after a colored

ball and respond to voice commands. Paro is a baby-seal-

shaped robot for mental commitment, and is used at elderly

day homes and hospitals [2]. It has touch sensors and ability

of voice recognition, and can feel being held and recognize

greeting voice.

If action and response of social robots are all prepro-

grammed, we cannot expand the relationship and get bored

as a long-term companion. AIBO has parameters of playing

preference and degree of growth. These parameters have been

adjusted and the behavior has changed through interaction.

The scenarios of the changes are, however, defined in ad-

vance. The process of growth is a trace and choices of the

scenarios. Paro identifies its name as the name is repeatedly

called. The response to the calling is, however, hard-coded.
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In human-robot interaction, it is a major challenge with

social robots to develop a methodology for learning commu-

nicative behaviors for sustainable relationship.

B. Related Work

Several researches introduce further learning ability into

robots to adjust and acquire social relationship. Mitsunaga

et al. utilized reinforcement learning for adjusting inter-

action distance, gaze meeting, motion speed, and timing

in interaction, through watching minute body signals of a

partner [3]. Breazeal et al. made a robot that recognizes and

identifies correspondence between perceived feature and its

own, and realize facial imitation [4]. Ishihara et al. focused

on sensorimotor magnetic effect in which a partner uncon-

sciously acts in one’s familiar way when the partner imitates

a robot [5]. The robot finally acquired vowel through vocal

mutual imitation. Taniguchi et al. focused on scheme of role

reversal imitation [6]. At the first learning phase, the robot

observes partner’s demonstration. At the second learning

phase, the robot demonstrates actions, and the partner gives

a corresponding word to the robot, then the robot finds the

correspondences between the actions and the words. At the

recognition phase, the robot presents a word corresponding

to the partner’s demonstration.

As stated above, conventional approaches are basically

based on teaching, and also suppose convergence of the rela-

tionship. In the real relationship between humans, however,

social relationship is between stable and fluctuating, and also

not one-directional but co-creative. Both are simultaneously

a learner and proposer, and search for a good relationship

for each other. Conventional ways, such as teach/taught

paradigm and optimization for a single state, have limitation

to meet human.

C. Goals and Approach

We aim to realize a robot which continues to search for

and co-create relationships with a human partner. Human

can build social relationships with human, so the process

where human gets to communicate is considered to serve

as a useful reference for building a social robot. We focus

on social games such as peek-a-boo, ball game, give and

take, gonna get you, point and name and so on [7]. They

are considered to be proto-communication, and are played

between a caregiver and an infant in the first two years [8].

Bruner et al. pointed that social games are consisted of

rules [8][9]. Stern pointed that Infant-elicited social behav-

iors plays a significant role in social games [10]. We focus on

interaction rule that is relationship between a robot’s action
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Fig. 1. Interaction rule: Correspondence between a robot’s action in a
context and a partner’s response

in a context and a partner’s response (Fig.1). A partner’s

social cue to a robot is included as a context of the rule.

We previously proposed a scheme and a robot model

where a robot learns interaction rule through imitation [11].

While a partner demonstrates, a robot imitates the partner.

While a partner responds to a robot, the robot is motivated to

elicit the partner’s response. The robot adaptively identifies

communicative actions in imitated numbers of actions and

responses. It is, however, teach/taught relationship.

In this paper, we propose a scheme and a robot model

where a partner and a robot are simultaneously a learner and

proposer, and continue to search for and co-create interaction

rules.

II. SCHEME FOR CO-CREATION OF RULES

A. Development of Social Games

Development of social games progresses through the four

stages described below [9][12]. An infant gradually moves

from a passive role to an active one over course of playing.

1) observing passively: The infant merely observes the

caregiver passively; the caregiver may physically assist

the infant to play.

2) taking part in one of the game’s elements: The infant

takes part in one of game’s elements and eventually

grows to initiate more of elements.

3) sharing of the game’s activities: Each player takes a

turn in a well-organized fashion based on the conven-

tion of the game.

4) generating modifications: The infant generates varia-

tions within the rules of the game. The infant has a

sufficient understanding of the game’s rule structure to

be able to add new rules.

B. Proposed Scheme

We reinterpret the developmental stages of social games

for co-creation of rules. In our proposed scheme, a partner

and a robot co-create rules within an interactional sequence.

These phases are not clearly separated or repeated in the

sequence.

1) The robot simply tries various actions. The partner

waits for or assists the robot’s interpretable action. The

interaction is not incorporated into the rules.

2) The robot performs an interpretable action by chance,

and the partner readily responds to the action. The

robot has thus got to predict the response and found

a rule. This is “making response prediction”, and the

way a rule is co-created.

Fig. 2. The proposed robot model with the two indices, response-
predictability ruled(c, a) and response-habituation habit(c, a)

3) The robot repeats the action and, if the partner’s

response is in accordance with the rule, the robot un-

derstands that the rule is reliable (i.e., the partner’s re-

sponse is not by chance). This is “confirming response

prediction”. The partner’s response is then a social cue

for the robot. Turn-taking occurs in accordance with

the rule, and the interaction is reciprocated as a result.

4) The robot inhibits and avoids the confirmation of well-

confirmed rules, and instead it performs actions for

which the corresponding response is not well known.

As a result, the robot generates modifications of the

interaction, and creates room for new rules to be

found. The result is co-creation of new rules. This is

“habituation/dishabituation of predicted response”

III. ROBOT MODEL FOR CO-CREATION OF RULES

A. Model Constitution

We propose a robot model for co-creation of rules, based

on the scheme through “making response prediction”, “con-

firming response prediction”, and “habituation/dishabituation

of predicted response”.

We describe a as a robot’s action, r as a corresponding

partner’s response, c as a context which is situation when the

robot begins to act. We define two indices described below.

• response-predictability ruled(c, a): degree of how much

partner’s responses are ruled (predictable) with a robot’s

action a under a context c.

• response-habituation habit(c, a): degree of how often

partner’s responses were correctly predicted with a

robot’s action a under a context c.

The model is illustrated in Fig.2. Robot observes at an

appropriate timing after action. The robot acts and observes

in the following way.

• acting: The robot calculates ruled(c, a) according to

past observed partner’s responses, and acts a in which

ruled(c, a) is large and habit(c, a) is small.

• observing: The robot memories (c, a, r) and updates

habit(c, a).

B. Expected Behavior of the Model

We describe how the proposed model works. In Fig.3,

the left is the phases of the scheme, and the right is

corresponding states of the two indices on the act space.

The red frame and the blue frame are the same act space. In
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Fig. 3. The phases and the scheme of co-creation of rules, and correspond-
ing states of the two indices on the act space.

the red frame, the red spread is the area where ruled(c, a)
is large on the act space. In the blue frame, the blue spread

is the area where habit(c, a) is large on the act space. The

yellow arrow points to the action a to be selected. On a,

ruled(c, a) is large and habit(c, a) is small. We describe

how the two indices correspond to the phases.

1) At beginning of interaction, there is no action to which

partner’s response is predicted or habituated. The robot

just tries some actions.

2) The robot performs an interpretable action by chance,

and the partner readily responds to the action. Then

corresponding ruled(c, a) increases on the act space.

This is “making response prediction”.

3) The action a in the rule is selected to act because

ruled(c, a) is large. As a result, the robot acts to

elicit the partner’s predicted response. Through this

repetition, the robot understands the rule is reliable, not

by chance. This is “confirming response prediction”.

Then ruled(c, a) increases and habit(c, a) does due

to response prediction.

4) habit(c, a) of the confirming action is now large

enough, then the action is inhibited and the robot gets

to perform an action that is a different from the con-

firming one. As a result, the robot seems to search for

another rule. This transition of focused response from

well-known to unknown is “habituation/dishabituation

of response prediction.”

In this way, with ruled(c, a) and habit(c, a), the robot

follows “making response prediction”, “confirming response

prediction”, and “habituation/dishabituation of response pre-

diction”, and the partner-robot dyad co-creates rules.

C. Mathematical Formulation of the Model

We mathematically formulate the conceptual model. The

robot selects an action of which response-predictability

ruled(c, a) is large and response-habituation habit(c, a) is

small. We define degree, that is how large ruled(c, a) is and

how small habit(c, a) is, as motivation motiv(c, a) in (1).

The robot selects an action that maximizes motiv(c, a).

motiv(c, a) = ruled(c, a) × e−habit(c,a) . (1)

ruled(c, a) is calculated as (2).

ruled(c, a) = I(c, a; R) trust(c, a) . (2)

where I(c, a; R) is correlation between a and all the part-

ner’s responses R. If I(c, a; R) is large, partner’s response

is ruled by and predicted from a. It is calculated as (3).

I(c, a;R) =

∫

r∈R

p(c, a, r)

p(c, a)
log

(

p(c, a, r)

p(c, a)p(r)

)

dr . (3)

This is a deformation of the Mutual Information [13]. In

(3), there is time gap between the time the robot acts and

the time the robot observes a partner’s response, thus this

is equivalent to simplified the Transfer Entropy which is a

causality measure [14]. I(c, a; R) of unexperienced (c, a) is

over-estimated. trust(c, a) is degree of how often the robot

experienced (c, a), and it is a constraint function for domain

of I(c, a;R). trust(c, a) is calculated as (4).

trust(c, a) = (p(c, a))
β

, 0 < β < 1 . (4)

When the robot observes a partner’s response, habit(c, a)
is updated as (5).

∆habit(c, a) = h(H(R | c, a) − I(r | c, a)) . (5)

Initial value of habit(c, a) is 0, and constrained to be

greater or equal to 0, not to be over dishabituated. (5)

judges whether an observed response is predicted or not.

I(r|c, a) is information of a present observed response, and

H(R|c, a) is average of information (entropy) of a response.

(5) compares these. If I(r|c, a) is smaller, the response is

same as prediction. If I(r|c, a) is larger, the response is

out of prediction. H(R|c, a) is the baseline for evaluation

of I(r|c, a). h(x) is a translation function from information

to habituation. h(0) = 0 and h(x) should be monotone

increasing.

IV. EXPERIMENT

We test that, in an interactional sequence, the partner

and the robot can co-create and reciprocate interaction rules

which are not defined in advance.
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Fig. 4. Simulation environment

Fig. 5. Game pad Fig. 6. Grasping ball Fig. 7. Grasping

A. Setup

The task is a free play with a ball because it is a simple

case of triadic interaction and the partner can easily interpret

robot’s actions in the play. Time when the robot acts and

observes is discrete. The robot acts at every second. The

robot observes when a target (the partner or the ball) turns

or stops. The robot also observes when one second elapsed

after a previous observation.

We experiment with a simulation environment (Fig.4).

The left is the agent that a participant operates, and the

right is the robot. A participant operates the agent with

DUALSHOCK3 (Fig.5) which is the game pad of SONY

PlayStation3 and expected to be familiar with a participant.

In the environment, the physical simulation (Open Dynamics

Engine) is introduced so that a participant and the robot

can utilize physical phenomena (such as rolling ball) as

communicative actions.

For simplicity, position of their hand and the ball are

constrained to the sagittal plane. Posture of the two is

consisted of hand position (2 dimensions) and degree of hand

grasping (1 dimension), and each dimension is normalized

within 0 to 1. Robot’s action is defined as posture at one

second after the robot begins to act. Context c and response

r are continuous value. Action a is discrete value as (0.1,

0.3, 0.5, 0.7, 0.9) due to computational cost.

Hand position of the agent is controlled with the 2-axes

analog joystick, indicated as “for hand reaching” at Fig.5.

Hand grasping of the agent is controlled with the button,

indicated as “for grasping” at Fig.5. While the button is

pressed, degree of grasping is increasing to 0.8. While it

is not, the degree is decreasing to 0.2. Hand of the two is

colored yellow if degree of grasping is less than 0.5. When

the degree crosses over 0.5, hand is colored red and the ball

is grasped as Fig.6 if the ball is touched. Hand is colored

orange as Fig.7 if not. With this indication, a participant can

see whether the agent and the robot grasp the ball or not.

We utilize the Kernel Density Estimation to estimate

p(c, a, r). The robot memories experience (c, a, r), putting

Fig. 8. 2 types of rule

Gaussian kernels at experienced (c, a, r) in p(c, a, r) space.

p(c, a, r) is calculated as summation of the kernels.

The robot calculates each motiv(c, a) of 2 types of rules

in (c, a, r) (Fig.8). One is for interaction with a partner

using the ball, and the other is for ball manipulation. The

robot selects the action that maximizes summation of each

motiv(c, a). In other words, the robot performs the action

act(c) in (6).

act(c) = argmax
a

(motivpartner(c, a) + motivball(c, a)) .

(6)

where motivpartner is motivation to elicit partner’s re-

sponses, and motivball is motivation to elicit ball’s re-

sponses. With this summation, the robot can explore the

ball especially when partner’s responses are unknown or

habituated.

We experiment in the following conditions.

1) The author and the robot in faster habituation interact

for 1 minute.

2) Each participant A, B, C, D, E and the robot in faster

habituation interact for 3 minutes.

3) Each participant F, G, H, I, J and the robot in slower

habituation interact for 3 minutes.

4) Participant K and the robot in faster habituation inter-

act for 14 minutes.

h(x) is defined as h(x) = γ if x > 0, 0 else.

γ = 3 in faster habituation. γ = 1 in slower habituation.

B. Result

A variety of interactions were observed in our experiment.

First, we describe interactions with the robot in faster habit-

uation. With participant K and the author, the partner and

the robot interacted by passing a ball back and forth two

consecutive times (Fig.9). With participants A and C and

the author, the partner and the robot interacted by the robot

dropping the ball, the partner picking it up, the robot taking

it, and dropping it again (Fig.10). With participant D, the

partner and the robot interacted by rolling a ball back and

forth three consecutive times (Fig.11). With participant B,

the partner and the robot interacted by the robot extending

its arms with the ball, the partner extending his arms to take

it, the robot pulling its arms back without handing the ball to

the partner, and the partner pulling back his arms. This was

done three times and was also done once more six seconds
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Fig. 9. Passing the ball back and forth

Fig. 10. Dropping the ball and taking it

Fig. 11. Rolling and catching

Fig. 12. Feint passing

later (Fig.12). This is considered to be feint passing. With

participant K, a slightly different interaction was performed

six times and then performed once more one minute later.

With participant E, no obvious interaction was observed.

Next, we describe interactions with the robot in slower

habituation. With participant H, the partner and the robot

interacted by the robot extending its arms, the partner pulling

back her arms, the robot pulling back its arms, and the

partner extending her arms. This was done two consecutive

times. This is considered to be complementary interaction.

With participants F, G, I, and J, no obvious interactions were

observed. In the case of slower habituation mode, the robot

tended to repeat the same actions.
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We show transition of interaction with the author and the

robot’s response prediction (Fig.13). The interaction, passing

the ball back and forth, is reciprocated in 21-31 sec and 31-

40 sec. The interaction, dropping the ball and taking it, is

reciprocated in 40-44 sec and 44-48 sec. We show transition

of response-predictability ruled(c, a) and prediction error

of response in the interaction (Fig.14). ruled(c, a) is larger

in 31-40 sec than 21-31 sec, and in 44-48 sec than 40-44

sec. Prediction error is smaller in 31-40 sec than 21-31 sec,

and in 44-48 sec than 40-44 sec. We also show distribution

of actions for ball/partner in response-prediction/response-

habituation space at 21, 31, 40 sec in the same interaction

(Fig.15, Fig.16, Fig.17). The robot tried various actions and

their response-predictability and response-habituation were

dispersed. Especially, repeated actions’ response-habituation

increased. These included game-relevant rules such as the

partner grasps the ball and pulls back his arms after the

robot extends its arm and releases the ball, but many were

not interpretable. These phenomena were also seen in other

interactions.
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V. DISCUSSION

Several interesting conclusions can be drawn from the

results for the reciprocated interactions. Our finding that

response-predictability was higher at the second time than

at the first time, indicates that the second interaction is

predictable. That is, the first interaction is by chance, and

the second one is intentional.

The results for the effect of habituation also lead to some

interesting conclusions. When the habituation was faster, the

robot tended to vary its actions more easily. This enabled

the robot to basically perform game-relevant actions within

the duration of the experiment. When it was slower, the

robot tended to repeat the same actions. Practically reciprocal

interactions were less likely to emerge because the robot

tended to stick to non game-relevant actions and had diffi-

culty performing game-relevant actions within the duration

of the experiment.

The result of action distribution gives a suggestion. There

were many actions with high response-habituation. They

included the game-relevant rules, but many were not inter-

pretable. This indicates that the rule definition is insufficient

because what the rule realizes is action coordination between

the two. The definition should be revised to support intention.

Various interactions emerged in the experiment. Those

co-created rules were not determined at the beginning of

the interactions but emerged through mutual involvement.

The feint passing interaction in particular went beyond the

expectations of the authors and the participant. A conven-

tional social robot is basically supervised. Therefore, its only

interactions are those that are taught. The proposed robot

model, however, went beyond this limitation. Its interactions

were not only those that were taught but also those that

developed through interactions with the participants.

VI. CONCLUDING REMARKS

A. Summary

We focus on interaction rule that is relationship between

a robot’s action and a partner’s response. We propose a

perspective where a robot is simultaneously a learner and

proposer of interaction rules. The human partner and robot

continuously search for and co-create new rules. A simple

and universal scheme with response prediction and habitu-

ation/dishabituation was developed, and a robot model was

built using the scheme. The robot generates actions, observes

the partner’s response, and get to predict them. It identifies

relationships between its actions and the responses, and

generates actions designed to elicit particular responses from

the partner. After it is habituated to the responses, it generates

other actions to search for other rules. In experiments of

human-robot interaction based on this model and using

a ball, different patterns of interaction emerged, such as

passing the ball back and forth, rolling and catching, and

feint passing. The feint passing interaction in particular went

beyond the expectations of the authors and the participant.

This is significant as a result of the co-creation model.

Response prediction and appropriate habituation supported

the emergence of interactions, indicating that the scheme and

the model are effective. This joint learning should lead to

natural communication between human partners and social

robots beyond teach/taught relationship.

B. Future Work

According to the conclusions about habituation, we believe

that regulation of habituation should be done appropriately.

We point that emotion such as excitement is a key for the

regulation. The robot watches excitement of a partner. If

a partner is little excited, the robot accelerate habituation

and search for rules. If a partner is excited enough, the

robot decelerate habituation and stay with current rules. The

robot should also express excitement, based on knowledge

of infant’s emotion [15]. In this way, a partner and the

robot mutually regulate habituation and then progress of

interaction. We think that this regulation of novel stimuli

leads to sharing enjoyable mood.
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