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Abstract— We address the motion planning problem for a

manipulator system with base pose uncertainty, e.g., when the
manipulator is mounted on a mobile base. Using a particle
based representation for the uncertainty, we extend the PRM
(probabilistic roadmap) approach to deal with this base uncer-
tainty. Because of the uncertainty, a path for the manipulator
is associated with a probability of being collision-free, which
fundamentally changes the nature of the PRM’s query phase.
We plan for a shortest path such that the probability of the
manipulator being collision-free is higher than a user defined
threshold, were the manipulator to follow the path. The path
query problem becomes a collision probability constrained
shortest path problem (CP-CSPP), and is shown as NP-hard
w.r.t. the number of the particles [1]. We then present a lazy
query algorithm, called Lazy-CPC-PRM (collision probability
constrained LazyPRM), based on a k-shortest path algorithm in
conjunction with a labeling algorithm. Lazy-CPC-PRM exploits
a key insight that if a portion of a path considered by the
algorithm is invalid (the probability of it being collision-free
is less than a threshold) or is dominated by another sub-path,
then all the longer paths containing this portion can not be
the solution path. This leads to significant efficiency gains in
practice. Although, worst case complexity is exponential in the
number of particles, we empirically show the effectiveness of
our query algorithm with 30 particles for a simulated 3-dof
manipulator mounted on a mobile base.

I. INTRODUCTION

This work is motivated by planning motion for a mobile
manipulator system. One of the major advantages of a mobile
manipulator system is the mobility introduced by the base,
which is capable of bringing the on board manipulator into
a designated work area for carrying out manipulator tasks.
For example, a camera mounted at manipulator’s end-effector
can be used to inspect areas behind obstacles. However,
the mobile base’s true position w.r.t the environment is not
perfectly known due to localization uncertainty [2]. The key
focus of this paper is to incorporate this uncertainty within
a sampling based motion planning algorithm. We consider
the problem where the base is kept still while the on board
manipulator is required to move from a start configuration
to a goal configuration in a known environment. Coupled
with the assumption that manipulator motion is precise, a
key aspect of this problem is that the uncertainty does not
grow and remains the same as the manipulator moves.

Past works on motion planning for mobile-manipulator
systems have often ignored the base uncertainty and assumed
perfect base motion [3]. Motion planning with robot position
uncertainty (often assuming a point robot) has been studied
earlier, and has regained attention recently for mobile robots.
Different formulations of the problem, different representa-
tions of the uncertainty of the sensing actions/sensor models,
and different planning methods have been used. There is not
enough space to review all of these here, but comprehensive
treatments can be found in [4],[5]. We only mention the work
most relevant to ours. The position uncertainty is represented

either by geometric bounding sets [4], or by probability
distributions, which can be either analytical, say gaussian
[6],[7], or particle filters [2].

Earlier planning algorithms have used back projection
(with bounding sets for uncertainty model) [4] and gradient
descent (with probabilistic Gaussian uncertainty model) [8].
In addition, partially observable Markov decision processe
(POMDP) has been proposed as a general framework for
planning with uncertainty, however it is computationally
intensive [9].

Many recent works in planning (with uncertainty) model a
robot’s localization uncertainty probabilistically and incorpo-
rate it into a motion plan. In [10][11][12] [13][14][15] (with
probabilistic Gaussian uncertainty model) and [16][17] (with
particle based uncertainty model), the authors extend stan-
dard motion planning approaches which search in C-space,
by incorporating an extra uncertainty dimension. Among
these works, sampling based planning approaches such as
RRT or PRM have been extended to deal with uncertainty
[15][16][17]. Besides robot’s localization uncertainty, map
uncertainty has also been addressed in [18][19][20], and
leads to “similar” issues as for localization uncertainty,
although specifics differ.

A key issue in extending PRM/RRT to deal with uncer-
tainty is the cost of computation of probability of collision at
a configuration (and along a path, which can be thought of
as a sequence of configurations). [16] showed, for the mobile
robot case, that representing uncertainty by a set of particles,
a common representation used in SLAM (simultaneously
localization and mapping) algorithms for mobile robots [2],
and hence a natural choice for representing uncertainty,
leads to succinct formulations for evaluation of collision
probabilities, which is rather difficult with Gaussian models
[19]. [18] uses a nearest point approximation technique (to
compute the probabilities) which is difficult to quantify. [19]
proposes an interesting approach that computes bounds on
probabilities with gaussian models.

We therefore use particles to represent the base uncer-
tainty, where each particle represents a base pose associated
with a weight, which indicates the probability of this particle
being the true base pose. A path for the manipulator is
no longer simply either in-collision or collision-free, but is
associated with a probability of being collision-free, were
the manipulator to execute the path. As for the mobile robot
case, the particle based uncertainty representation facilitates
a concise expression for the probability of being collision-
free for a manipulator path.

We then extend the probabilistic roadmap (PRM) [21] ap-
proach to plan for manipulator motions with base uncertainty.
Given a roadmap, our formulation of the query phase is
to search for a shortest path with the added constraint that
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its probability of being collision-free is higher than a given
threshold, an instance of constrained shortest path planning
(CSPP) problem [22]1. We call our path query version
collision probability constrained shortest path problem (CP-
CSPP), and the resulting framework, CPC-PRM (collision
probability constrained PRM), and the single-query lazy
version, Lazy-CPC-PRM. The latter is a key focus for us,
since the mobile base may often need to be moved to other
working areas, hence the roadmap needs to be reconstructed
often. We show that CP-CSPP is NP-hard w.r.t number of the
particles (Proof omitted here; see[1]). A labeling algorithm
[22] can be used to solve CP-CSPP.

Please note that an alternative formulation, such as in [19]
that combines the two independent criteria of path length
and collision probability into one weighted linear objective
function, is simpler to solve, however can yield short paths
with unacceptably low probabilities of being collision-free,
depending on the predefined weights, the trade-off between
the two weights being somewhat arbitrary to start with.
Another alternative [8] uses bounded sets to represent un-
certainty and “enlarges” the robot by this amount. This is
clearly a very conservative approach that will miss paths in
narrow regions.

The path query problem in Lazy-CPC-PRM is fundamen-
tally different from the simple shortest path in the standard
Lazy-PRM [23] in that roadmap edges cannot simply be
deleted since the edge status is not simple collision-free/in-
collision, instead a collision-free probability is associated
with it. Instead, one could use a k-shortest path algorithm
[24] to generate alternative paths for verification in conjunc-
tion with a labeling algorithm. However, a naive implemen-
tation will lead to an efficiency problem, because the number
of paths over the roadmap is exponential w.r.t the number of
nodes in the roadmap. We present an efficient algorithm,
i.e., Lazy-CPC-PRM that exploits a key insight that if a
portion of a path considered by the algorithm is invalid (the
probability of it being collision-free is less than a threshold)
or is dominated (precisely defined later) by another sub-
path, then all the longer paths containing this portion can be
ignored from further consideration. This eliminates a large
number of paths for subsequent verification, hence leading
to significant efficiency. We show in our simulations some
typical motion planning problems solved by Lazy-CPC-PRM
for a simulated 3-dof manipulator on a mobile base, with 30
particles representing the robot uncertainty, a typical number
used for particle based robot localization algorithms [2], and
a roadmap size of up to around 1000 nodes and 10000 edges.

In summary, the key contributions of our work are: (i)
a collision-probability constrained formulation of path plan-
ning problem for a manipulator with base uncertainty, (ii)
a particle filter representation of base uncertainty that facil-
itates collision probability formulation for the manipulator,
(iii) complexity results for the problem in terms of number
of particles used to represent the uncertainty, and finally (iv)
a key insight (mentioned above) that leads to an efficient
lazy algorithm.

1Please note that the algorithms presented in [13][14][10][15] are also an
instance of CSPP.

II. PROBLEM FORMULATION

We assume the manipulator’s motion can be precisely
controlled. Also, the environment is assumed to be known (or
acquired via previous sensing). However, the manipulator’s
base pose (position and orientation) is not precisely known,
and is represented with a set of N weighted particles. Each
particle indicates a possible base configuration qb = [x, y, θ].
Let q

[i]
b be the ith particle. The weight of the ith particle,

i.e., ω[i], represents the probability of q
[i]
b being the true base

configuration [2], with
∑N

i ω[i] = 1. Let q = [θ1, · · · , θd] ∈
Cm, the C-space of the manipulator, be a configuration for the
manipulator w.r.t the base frame, where d is the number of
degrees of freedom of the manipulator. We use q[i] = [q[i]

b , q]
to represent a configuration for whole mobile manipulator,
corresponding to the ith particle q

[i]
b and the manipulator

configuration q. Ideally, we should have used q
[i]
bm instead

of q[i], but it becomes cumbersome. So superscript [i] on
q (or path π mentioned later) will always indicate mobile
manipulator configuration corresponding to the ith base
particle, with manipulator configuration at q.

Fig. 1. For a manipulator path, there are correspondingly N possible
sequences of configurations swept by the whole mobile manipulator.

A path π consists of a sequence of manipulator configura-
tions: π = (qs, ...qg), which connects the start configuration
qs and the goal configuration qg. Were the manipulator to
execute the path π (the base remains stationary), as shown
in Fig. 1, with the base pose uncertainty represented by
particles, there are correspondingly N different volumes
in workspace swept by the manipulator corresponding to
π[i] = (q[i]

s , ...q
[i]
g ), i = (1, · · · , N).

The probability of π[i] being the true path traversed by the
whole manipulator is ω[i], and the collision status of π[i] is
binary, denoted by c[i] = 0 (collision) or 1 (collision-free).
Let Ππ be the binary random variable that represents if the
manipulator would be in-collision or free (Ππ = 0 or 1),
were the manipulator to execute the path π. The probability
of path π being collision-free, i.e., p(Ππ = 1), then is:

p(Ππ = 1) =
N∑

i

(ω[i] ∗ c[i]) (1)

We would like to extend PRM to plan a path for the
manipulator with the base pose uncertainty. To construct a
roadmap G in Cm, we generate samples of the manipulator
configuration q ∈ Cm, and connect samples within a distance
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threshold, as in the standard PRM construction [21]. A node
n of G is a configuration for the manipulator (denoted as
qn), and edges between two nodes ni,nj (denoted as e[ni,nj ])
are line segments in Cm. Note that the collision status for
samples and edges of G are not binary, but are associated
with a probability of being collision-free, which can be easily
calculated in a way similar to Equ. 1.

For a roadmap G, a path π that connects the start node
ns and goal node ng is feasible, if p(Ππ = 1) ≥ δ, where
δ ∈ [0, 1] is a user defined threshold. The problem, called
collision probability constrained shortest path problem (CP-
CSPP), in the query phase is to return an optimized solution
path π∗:

π∗ = argmin
π

C(π)

s.t. p(Ππ∗ = 1) ≥ δ
(2)

where C(π) is the length (or cost) of the path π.

Fig. 2. Roadmap G in Cm, and the corresponding graph set G =
{G[1], G[2], G[3]} constructed in Cbm (N = 3).
A. Underlying structure of PRM with base pose uncertainty

The graph G is constructed in Cm. But it has an underlying
structure, because of base uncertainty. Corresponding to each
node n and edge e of G, we use n[i], e[i] (e[i]

[nj ,nk]) to denote a
node or edge in the configuration space for the whole mobile
manipulator (denoted as Cbm), with the base pose indicated
by the ith particle. G[i] denotes the graph composed of nodes
n[i] and edges e[i], and let G = {G[1], · · · , GN}. Therefore,
for a roadmap G in the Cm, there exists correspondingly a
set of N graphs in Cbm. Fig. 2 shows an example, where
N = 3, the weight of each particle is set equal to 1

3 . The
dashed lines in G[1], G[2] and G[3] are edges in-collision,
and the solid line are collision-free.

Let Πe be the binary random variable that the mobile
manipulator is in-collision or free (Πe = 0 or 1), were the
manipulator to travel along the edge e. Note for a path π in
G consisting of a sequence of M edges (e1, e2, · · · , eM ), c[i]

in Equ. 2 is given by c
[i]
e1 ∧ c

[i]
e2 · · · , c

[i]
eM , where c

[i]
ej = 1(or

0) if e
[i]
j is collision-free (or in-collision). As a consequence,

we have:

p(Ππ = 1) =
N∑

i

(ω[i] ∗ [c[i]
e1
∧ c[i]

e2
· · · , c[i]

eM
])

≤
N∑

i

(ω[i] ∗ c[i]
ej

) = p(Πej = 1)

(3)

where ej ∈ π, j = 1, · · · ,M . Therefore, if p(Πe = 1) is
lower than the threshold δ, the edge e can not be a part of a
feasible path. We call such an edge in the roadmap G, as “N-
edge” (“N” stands for edges that can not be part of solution),
and the rest as “S-edge” (“S” stands for edges possibly be
part of the solution). For example, in Fig. 2, if δ = 0.6, both
e[nc,na] and e[nd,ne] are N-edges and the rest are S-edges.
In a similar way, we distinguish nodes in G as N-nodes and
S-nodes.

B. Query phase: the constrained shortest path problem
CP-CSPP is a particular version of the well known con-

strained shortest path problem (CSPP) [22], which is finding
the shortest path that satisfies a given constraint. In our case,
the constraint over the solution path is the probability of
being free. Another version, the weight-constrained shortest
path (WCSPP) problem has been shown as NP-hard w.r.t the
size of the graph [22]. In our case, the constraint have a
strong underlaying structure, which we exploit to show that
CP-CSPP is NP-hard as well, but in terms of the number of
the particles N (see [1] for proof).

C. Using labeling algorithm to solve CP-CSPP
We now introduce the labeling algorithm, with our specific

variant, to solve the general query problem over a given
roadmap. The detailed algorithm below is mainly based on
what is described in [22]:

Let the roadmap graph be G = (V, E), which consists of
a set of nodes V and edges E. The start node and goal node
are ns and ng, respectively. Let Ii be the index set of labels
on a graph node ni. Essentially, each k ∈ Ii corresponds to
a path πk

i from the start node ns to ni. Let the probability
of being free for the path πk

i , i.e. p(Ππk
ni

= 1), be denoted
as P k

i , and the length of the path πk
i be Ck

i . The kth label at
node ni is then a pair (P k

i , Ck
i ) that is associated with path

πk
i .
Clearly, the number of paths to a node could be exponen-

tial (in terms of number of nodes in the graph) in the worst
case. To help reduce the search, two key concepts are used:

a) domination: We say label (P k
i , Ck

i ) dominates label
(P l

i , C
l
i) if 1) Ck

i < Cl
i , and 2) for two paths πl

i and πk
i , for

all j = 1, · · · , N if π
[j],l
i is collision-free, π

[j],k
i is collision-

free as well. Clearly, if (P k
i , Ck

i ) dominates (P l
i , C

l
i), πl

i can
not be a portion of the optimal solution path π∗, since it can
be replaced by πk

i , which has lower cost. The domination
relationship between two labels can be efficiently determined
in O(N).

b) efficient: We will call a label (P k
i , Ck

i ) as efficient, if it
is not dominated by any other label at node ni and P k

i ≥ δ.
Otherwise we call the label as inefficient.

The general idea is to maintain all possible paths to each
node, and to eliminate paths whose labels are not efficient.
The set of labels is maintained as a tree structure, called
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the label tree. The first label is initialized at node ns, i.e.,
(P 1

s , C1
s ) with P 1

s = 1 and C1
s = 0. Correspondingly, the

root node of the label tree contains [(P 1
s , C1

s ), ns].
The algorithm proceeds iteratively from the start node.

At each iteration, among all the labels that have not been
extended before, a node whose label has minimal cost, say
node ni, with label (P k

i , Ck
i ) is chosen, and is extended

to all the neighbors of ni. This involves, for all neighbors
nj of ni, 1) computing the label (Pj , Cj), associated with
the concatenated path [πk

i , e[ni,nj ]], 2) discarding (Pj , Cj)
if it is not efficient w.r.t existing labels at nj , otherwise, a)
storing it at node nj and creating a new index l for it. b)
updating the label tree with [(P l

j , C
l
j), nj ] added as a child

of [(P k
i , Ck

i ), ni]. This procedure is repeated until the label
tree contains a node [(P l

g, C
l
g), ng], such that ng is the goal

node, and Cl
g is minimal among all the labels that have not

been extended. The solution path can be retrieved from the
tree by tracing back from this tree node [(P l

g, C
l
g), ng] to

the root of the label tree. To check the domination between
labels at a graph node ni, a list of labels Li is stored at ni.
Readers can refer to [22] for more detailed information about
the labeling algorithm. We now adapt this labeling algorithm
to Lazy-PRM.

III. LAZY-PRM WITH BASE UNCERTAINTY

For a given roadmap, the standard Lazy version first
searches for a shortest path over the roadmap without con-
sidering their collision-free status Then, the path is verified
(checked for collision). If it is collision-free, success is
reported, otherwise, there must exist an edge along the path
that is in collision. This edge is deleted from the roadmap and
the shortest path algorithm is applied again over the modified
roadmap to acquire an alternative path for verification. As
mentioned in the introduction, in our case, we can not simply
delete an edge along the path from the roadmap G. For
example, in Fig. 2, in the roadmap with 3 particles each
equally weighted as 1

3 , the threshold δ for collision-free
probability for a solution path is set as 0.6. Assume that the
first path being verified is ns, nb, nc, ne, ng . It is easy to tell
that the probability of being free for the path is 0, but all the
four edges along the path are S-edges. If we delete the S-edge
e[nc,ne], we will miss the solution path ns, na, nd, nc, ne, ng ,
which is the only path that satisfies the collision probability
constraint in this example. Instead of deleting an edge, we
should use the next shortest path (in the same roadmap
G) that satisfies the collision probability constraint. This
suggests the use of a k-shortest path algorithm [24] to acquire
alternative paths for verification. However, a naive version
of the algorithm, i.e., to iteratively call the k-shortest path
algorithm and verify the path until success is reported or all
possible paths have been exhausted, is not practical, because
the number of paths is exponential w.r.t the number of nodes
and edges in the roadmap.

The key insight of our proposed technique is that certain
path can be eliminated from consideration if a portion of
the path has been identified as not feasible or is dominated
by another sub-path. For instance, in Fig. 2, say the first
shortest path being verified is π1 = {ns, nb, nc, ne, ng}.
We can tell that the probability of being collision-free for
a portion of π1, i.e., {ns, nb, nc} is lower than the threshold.

Then all the paths from ns to ng that contain this portion
will not be the solution path. If the second shortest path
being verified is π2 = {ns, na, nb, nc, ne, ng}, the portion
of which {ns, na, nb} is dominated by the portion {ns, nb},
then all paths that contain ns, na, nb will not be the solutio
path either. Hence, many candidate path can be eliminated
from further consideration, leading to significant efficiency
in the search. We now explain the precise mechanism to do
so.

A. k-shortest path algorithm
We use a recent k-shortest path algorithm [24], with run

time complexity of O(k|V |(|E|+|V |log|V |)), where |V |, |E|
denote the number of graph vertices and edges. Other ver-
sions of k-shortest path algorithm with better performance
might also be considered [25]. The data structure applied
in [24], called the shortest path tree, allows the algorithm
to be easily incorporated into our lazy path query technique
discussed later.

The algorithm starting from the shortest path, iteratively
returns the next shortest path. Let Bi be the set of i shortest
paths returned, and B̄i be the set of rest of the paths in the
graph. Each time a shortest path, say the ith shortest path,
is returned, the algorithm divides all the paths in B̄i into
separate equivalent classes and computes the shortest path
for each one of these classes. Clearly, the shortest among
these will be the i + 1th shortest path.

How B̄i is divided into separate classes is related to how
the paths in Bi branch off from each other. From the start
point, all paths in Bi share a common portion (which may be
null) in the graph. Then, at least one of the paths will branch
off, which divides the i paths into subsets, where paths in
each subset will further share (longer) common portions in
the graph. Each subset will be further divided in a similar
fashion until each subset contains only one path.

The branching off process mentioned above can be topo-
logically encoded in a tree structure, called the shortest path
tree Ti. We use an example to illustrate this. In Figure
3(a), consider three paths π1, π2, and π3. All three paths
share the common portion ns, na. The first branch off is
at node na in the graph, where π3 branches off, and the
three paths are divided into two subsets, {π1, π2} and {π3}.
Correspondingly, in T3 (Fig. 3 (b)), branch [ns, na] encodes
the common portion in the graph shared by all three paths.
Tree node na, has two children, nπ3

g and nc. The tree
branch [na, nc] encodes the common portion further shared
by {π1, π2} from na onwards until nc. Tree node nπ3

g is a
leaf node, because the corresponding subset {π3} contains
only one path. Finally, the subset {π1, π2} is further divided,
due to the two paths branching off at nc in graph, into two
subsets, i.e., {π1} and {π2}. This leads to the two leaf nodes,
nπ1

g and nπ2
g in Ti as children of tree node nc.

If we use the paths in Bi, and an extra path in B̄i to build
a shortest path tree, denoted as T ′

i+1, it will have an extra
new branch (possibly together with a non-leaf node) and an
extra leaf node as compared to Ti. This is similar to building
T3 from T2, as in Fig. 3 (b), except that the extra path is not
the next shortest path. We categorize paths in B̄i based on
where the corresponding new branch or the new non-leaf
node would be introduced in Ti. There are two distinct cases
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(a) shortest paths over the graph (b) Updating of the shortest path tree
Fig. 3. Build branching structure T3

here: a) a new branch occurs at node nu; this corresponds to
a set of paths in B̄i, denoted by C(nu); and b) a new non-
leaf node occurs somewhere in branch [nu, nv] together with
a new branch emanating from it, and terminating in a new
leaf node; this corresponds to a set of paths in B̄i, denoted
by C(nu, nv). All paths in B̄i are thus divided into a set
of classes (called equivalent classes) corresponding to nodes
and branches of Ti.

[24] uses an efficient algorithm to acquire the shortest path
for each of the equivalent class. These shortest paths are
stored in a heap. In each iteration, the shortest path in the
heap is popped out, and is the next shortest path. The tree
structure Ti is also updated. We omit these details here for
lack of space (See [24] for detail).

B. Lazy-CPC-PRM

Our Lazy-CPC-PRM algorithm (Alg. 1) works as follows.
We maintain a label tree, using a labeling algorithm that
creates labels but only for graph nodes along the paths
being verified (line-11). Given a path to verify, the labeling
algorithm starts labeling nodes from the start node ns by
extending labels along the path. If the generated label at
a graph node is determined as efficient (as explained in
labeling algorithm in Sec. II-C), it is stored and is added as a
child of the tree node, from which this new efficient label was
extended. Then the next node in the path is considered, and
procedure is repeated. If an extended label is determined as
inefficient, the path verification step stops. The path will not
be the solution path, and the next shortest path is considered
for verification.

Assume that i paths have been verified and failed. To
get the next path for verification, we modify the k-shortest
path algorithm. Let us focus on the equivalent classes cor-
responding to the nodes and branches of Ti. The key is to
identify an equivalent class such that none of the paths in it
can be the solution path. This entire class can be eliminated
from consideration for next shortest path, hence leading to
efficiency.

Given Ti, consider an equivalent class C(nu, nv) (or
C(nu)), which is a subset of all candidates paths in B̄i.
Note that, of starting from ns, all the path in C(nu, nv) (or
C(nu)) share the common portion, that is encoded by the
consecutive branches from ns to nu in Ti. We denote this
common portion as prefixPath(nu). If the label that along
this common portion in graph is inefficient, none of the
candidate paths in the entire equivalent class can be the
optimal solution path and the entire class can be eliminated

from further consideration (line-17, Alg. 1). We refer to these
equivalent classes as inefficient.

To tell whether an equivalent class is efficient or not (line-
17), we check the label tree (created in line-11). For the
equivalent class C(nu, nv) (or C(nu)) that corresponds to a
tree branch (nu, nv) (or a node nu) of Ti, the prefixPath(nu)
is a portion of at least one of previous i shortest paths in G,
which has been verified. The verification information has
been stored as labels in the label tree. For equivalent class
(C(nu, nv) or C(nu)), we track along the label tree from the
root node along the prefixPath(nu). If we encounter a label
tree node (the leaf node included) that contains node nu,
the equivalent class is kept. Otherwise the equivalent class
is inefficient and is discarded.

Algorithm 1: Lazy-CPC-PRM: Lazy PRM algorithm
with base pose uncertainty

begin1
R = BuildInitRoadMap()2
Initialize T0 to ns; H = ∅3
Calculate the 1st shortest path π1, insert π1 into heap H .4
InitLabeling(), i=1.5
while TimeUp() do6

Extract the shortest path from the heap, which will be the next7
shortest path πi.
if πi == NULL then8

EnhanceRoadMap();9

else10
if verifyPath(πi) then11

return πi;12

else13
Extract the next shortest path πi from H .14
Ti = updateTreeStructure(π, Ti−1)15
for Each new node and branch in Ti do16

if the corresponding equivalent class is efficient17
then

Compute the shortest path π, from ns to ng ,18
in the equivalent class, corresponding to the
new node (or branch).
Insert π into heap H19

i++20

end21

IV. SIMULATIONS

We have run preliminary tests of Lazy-CPC-PRM in a
simulated environment in 2D2. We use the MobileSim[26]
program as our mobile robot simulator to simulate a
PowerBot

TM
[26], with a size of about 80cm by 65cm. A

simulated range sensor, with sensing range of 4.0 meters
(approximately the same range as the Hokuyo range sensor),
is mounted on the front of the mobile base. The simulated
manipulator on board has three degrees of freedom, and each
link is 90cm long. We run our simulation under Linux on an
Intel Core-2 due 3.0Ghz computer with 4GB memory.

We evaluated the Lazy-CPC-PRM algorithm in three tasks
as shown in Fig. 4. We assume the robot is in the middle
of an exploration task. The dark boundaries are sensed
obstacles, light gray regions are unknown and white regions
are free. We simulate an “inspection” task, i.e., a manually
generated desired goal configuration is as if the arm (say,
with a camera mounted on the end-effector) was inspecting

2We have also implemented the Lazy-CPC-PRM in simulated 3D envi-
ronments with a six-dof manipulator mounted on a Powerbot. The initial
results, although promising, are still being compiled.
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an area behind the obstacles in Fig. 4. Fig. 4 (a) shows the
manipulator moving from an unfolded start configuration to
another unfolded goal configuration. Figs. 4 (b) and (c) show
the manipulator moving from a folded start configuration to
an unfolded goal configuration.

We used the true position of the base as the mean and
apply a Gaussian pdf to generate 30 particles (a number that
is commonly used in particle based localization algorithms
[2]). The Gaussian pdf’s co-variance matrix is diagonal with
their values being (0.12m,0.12m,3o) for LARGE uncertainty
and (0.07m,0.07m,1o) for SMALL uncertainty, in x,y and θ
dimension, respectively.

In all our simulations, we set the threshold δ for the
collision-free probability of a valid path as 0.8. We ran the
planner(s) 30 times for each problem. Note that for each task,
we also set a time limit, which is 1000 and 1500 seconds
for SMALL and LARGE uncertainty case, respectively.

(a)

(b)

(c)
Fig. 4. Three different start/goal problems. Left: paths planned with
Lazy-CPC-PRM with base uncertainty (LARGE). Right: paths planned with
classic PRM with no uncertainty taken into account and with the base pose
at the most weighted particle.

Our first observation is how the base uncertainty affects
the planned path. In Fig. 4, the figures in left column
illustrate some typical paths planned with the base uncer-
tainty (LARGE) taken into consideration, while sub-figures
in right column illustrate paths planned with the true base
pose (without any uncertainty) using classic PRM. Note that

paths planned with classic PRM are, at times, closer to the
obstacles, as in the top right figure in Fig. 4(a). For the
three start/goal problems in Fig. 4, the probability of being
collision-free for the paths planned with Lazy-CPC-PRM are
0.985, 0.808 and 0.815, respectively. We also calculated this
probability for the paths planned using classic PRM and
they were, 0.303, 0.740 and 0.825, respectively. This clearly
illustrates that the paths planned with the base uncertainty
tend to be consistently safer and hence the desirability of
incorporating the base uncertainty while planning.

Table-I and II show various average statistics for Lazy-
CPC-PRM. In both tables, “Unc.” is the size of the base
uncertainty, which is marked as “S” and “L”, standing for
LARGE and SMALL uncertainty as mentioned before. The
second column “G: Av. size” is the average graph size,
including number of edges and nodes, used to find a solution.
The third column, “Av. Time” records the average time spent
to find the path (To.), to construct the roadmap (Cons.),
to search the graph (sear.), and to check collisions (coll.).
In the fourth column, i.e. “Av. Search” shows the number
of shortest paths verified before the solution path is found
(“paths”), and the number of the equivalent classes that are
inefficient (“In.Cls.”). Finally, the average number of edges
being checked for collision (“]E”), and the average total
number calls of the collision checker (“]Coll.”) is listed in
the last column (Av. Col.).

As shown in Table-I, Lazy-CPC-PRM is capable of solv-
ing the single query efficiently. It saves significant time on
collision checking, but does spend, as expected, extra time on
the k-shortest path calculation. We also observe, as expected,
that increasing the base uncertainty tends to make it harder
to find a path. For example, in problem shown in Fig. 4(a)
the number of paths needed to be verified increases almost
10 times, as shown in Av. Search collum, in row A.

Our Lazy-CPC-PRM is efficient because it prunes inef-
ficient equivalent classes. We also ran it without pruning
the inefficient classes, for each of these three tasks, and
show the results in Table-II. Clearly, the number of paths
to be verified is dramatically higher (up to by an order
of 10) as compared to corresponding numbers in Table-I.
Table-III shows the number of times Lazy-CPC-PRM, with
and without pruning inefficient classes, runs over the time
limit, as well as the worst case run time. The time limit is
1000 and 1500 seconds for SMALL and LARGE uncertainty,
respectively. Lazy-CPC-PRM clearly benefits from pruning
those inefficient equivalent classes.

V. DISCUSSION

We considered the problem of manipulator path planning
with base pose uncertainty. We use a particle based rep-
resentation for uncertainty and formulate the problem as a
constrained shortest path problem, the constraint being that
the probability of being collision-free for a path be greater
than a user defined threshold. We show that the problem
is NP-hard (in the number of particles). We propose Lazy-
CPC-PRM, the core of which is a path query algorithm that
smartly uses a k-shortest path algorithm in conjunction with
a labeling algorithm to weed out whole classes of paths.
Effectiveness of the algorithm is shown via results on a
simulated 3-dof planar arm. We would like to explore the
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Unc. G: Av. size Av. Time Av. Search Av. Coll.
Edges Nodes To. Cons. Sear. Col. Paths In.Cls. ] E ] Coll.

A S
L

6838 507
7678 527

13.84 2.52 1.74 9.58
26.51 1.48 12.71 12.32

97 37
1229 1461

79 153531
134 190784

B S
L

6678 503
6801 507

51.38 2.05 22.23 27.10
88.62 2.81 55.08 31.73

1885 2459
4178 5816

232 319204
321 445487

C S
L

6838 507
6767 505

97.74 2.96 49.59 45.19
129.5 2.69 76.41 50.40

3283 4603
5478 7300

395 533990
461 631613

TABLE I: RESULTS FOR LAZY-CPC-PRM WITH PRUNING.
Unc. G: Av. size Av. Time Av. Search Av. Coll.

Edges Nodes To. Cons. Sear. Col. Paths In.Cls. ] E ] Coll.

A S
L

7186 520
7278 505

49.24 2.69 38.47 8.08
156.15 2.35 140.1 13.7

984 0
5533 0

98 140297
124 184839

B S
L

6630 502
6824 507

95.39 3.28 65.20 26.91
184.99 2.33 154.64 28.02

2215 0
5349 0

220 303790
248 343754

C S
L

6996 512
7656 527

185.34 3.29 149.86 32.19
543.50 2.91 509.76 30.83

4340 0
14586 0

334 455713
313 432534

TABLE II: RESULTS FOR LAZY-CPC-PRM WITHOUT PRUNING.
A B C

S L S L S L
Failure times with pruning 0 0 0 0 0 0

without pruning 1 1 2 3 4 10
Worst case time (Sec.) with pruning 25.06 144.58 589.13 311.24 537.81 902.94

without pruning > 1000 > 1500 > 1000 > 1500 > 1000 > 1500

TABLE III: FAILURE TIMES FOR LAZY-CPC-PRM (30 RUNS) WITH AND WITHOUT PRUNING.

effect of threshold δ in Lazy-CPC-PRM. Intuitively, setting
a high threshold will produce safer paths, and would tend
to reduce the computational cost of graph searching, since a
large number of edges may be invalid right away, but at the
same time, it will increase the difficulty level of finding such
a path (more nodes may be required for the roadmap). On
the other hand, reducing the threshold (where applications
allow it, since it would mean more chance of collision)
would increase the computational cost of graph searching
since there would be more valid edges, but fewer roadmap
nodes could be needed to find a solution path.
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