
  

  

Abstract—This paper describes the hardware and algorithms 
for a realtime social touch gesture recognition system.  Early 
experiments involve a Sensate Bear test-rig with full body touch 
sensing, sensor visualization and gesture recognition 
capabilities. Algorithms are based on real humans interacting 
with a plush bear. In developing a preliminary gesture library 
with thirteen Symbolic Gestures and eight Touch Subtypes, we 
have taken the first steps toward a Robotic Touch API, showing 
that the Huggable robot behavior system will be able to stream 
currently active sensors to detect regional social gestures and 
local sub-gestures in realtime. The system demonstrates the 
infrastructure to detect three types of touching: social touch, 
local touch, and sensor-level touch. 

I. INTRODUCTION 
he physical nature of robots necessarily dictates that 
detecting different levels of touch is an important area of 

research. As robots become social actors with the ability to 
physically engage human bodies, we must develop a social 
touch taxonomy to describe the new realms of interaction. 
Social touch is defined as touch that contains social value. 

Touch plays a key role in human interaction [1]. 
Waitresses who unobtrusively touch their customers receive 
larger tips [2] and babies need touch for healthy, balanced 
development [1]. Prior work demonstrates that a robot which 
can respond to affective displays (such as petting in pet 
therapy [3][4], or in playing with children [5][6]) can 
increase sociability, reduce stress levels and evoke social 
responses from people. 

Touch researchers have demonstrated that the social value 
of touch varies depending on the body location and various 
other factors (duration, relationship of people) [7]. Our work 
looks to populate a social touch taxonomy by observing 
social gestures demonstrated by humans, and implementing 
pattern recognition.  The closest algorithmic match is [8], 
which uses both region and manner of touch to automatically 
group common clusters of touch.  

We note that much of the prior work falls into detecting 
sensor-level touch rather than detecting the symbolic value 
of touch. Pressure-based robotic skin systems include [9] 
and [10]. We apply similar algorithmic strategies for local 
touch to capacitive sensing, which senses both human 
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contact and close proximity touch.  
Our hypothesis is that a body-awareness of touch, 

combined with the gesture profile of the touch, can allow a 
robot to detect a socially laden gesture (like a hug) as well as 
local gestures (like a poke).  This creates a system that can 
infer social meaning from the contact between a human and 
a teddy-bear body. 

We define sensor-level touch as the robot’s knowledge of 
the activation and location of each individual sensor. Local 
touch allows single-sensor discrimination of a tickle from a 
poke. Prior work has demonstrated the detection of local 
touch sub-gestures using tactile resolution and gesture 
profiles to detect affective content. In this work, we attach a 
social value to touch at different body locations to determine 
symbolic touch, which posits that there is a locational 
significance to touching an anthropomorphically shaped 
robot body. 

This paper describes our development of a system of real-
time touch classification for full body touch sensors.  We 
track gestures across the geometry of a teddy bear using an 
initial touch gesture library gleaned from behavioral studies 
with adults. In ongoing work, the sensor system and 
architecture presented in this paper are being incorporated 
into the Huggable robotic teddy bear [11], [12].  

II. ROBOTIC PLATFORM 
A. The Huggable 
The immediate application for this research is to equip the 

Huggable personal robot platform with sensate touch.  It will 
use touch to better perform its roles in healthcare, social 
communication, education and entertainment applications 
[13]. In prior work with the Huggable, we classified a 
diverse set of affective touch interactions for a paw segment 
with pressure, temperature and capacitive sensors using off-
line techniques [11].  

B. The Sensate Bear 
In order to further develop the tactile taxonomy, we 

created a separate hardware test system for stand-alone 
touch processing.  This platform is called the Sensate Bear, 
and has a lower-density of electric field sensors spread 
throughout a teddy bear body [14]. The creation of a 
separate rig allowed us to make our somatic processing 
system full-body and real time while the current 3rd 
generation Huggable robot was still being developed and 
built.  The algorithms developed with the Sensate Bear test 
system will be used in the 3rd generation Huggable robot for 
real time affective and social touch processing.  Figure 1 
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shows a diagram of how the social touch processing system 
outlined in this paper will interface with the Huggable robot 
software. 

 

 

III. SYSTEM OVERVIEW 
Our algorithms mirror the structure and connotations of 

human touch, and we develop a simplified hardware to 
implement our system.  The advantages of full-body social 
touch are differentiation of regionally significant gestures, at 
the expense of heavier computational load.   

Real-time recognition requires tiered processing and rapid 
sensing. We selected capacitive sensors because they are 
fast, differentiate people from most objects, and sense 
proximity in addition to contact. The Sensate Bear uses a 
circuit design based upon [15], and is configured into a 
network of 56 modular sensors covering the entire bear. 
Figure 2 depicts the system components and flow.  

The sensors connect through Midplane boards   to a 
central Somatic processing board for calibration.  From 
there, signals pass via USB to the computer where gesture 
recognition takes place. The microcontroller can stream 
signal data with 10-bit resolution.  Even when treated as on-
off sensors, however, our studies showed high correlation 
for the tested subset of Symbolic Gestures. 

Once on the computer, the Sensate Bear software, created 
with Microsoft Robotic Developers Studio in C#, reads the 
associated COM port data and performs thresholding, 
gesture recognition, and processing, then displays active 
sensors and gesture classifications on a locally hosted 
website visualization. 

During processing, we track social touch gestures, i.e. 
tactile communication or affective gestures between the 
human and bear.  These gestures play a key role in robot 
social touch, which contrasts traditional robot functional 
touch research, e.g. object manipulation.  In particular we 

identify Symbolic Gestures that have social significance 
across individuals and associated regional touch 
distributions (e.g. hug, footrub), and touch subgestures, 
which are smaller scale and are independent of location (e.g. 
pat, poke).  

 

IV. HARDWARE DESIGN 
A. Tiered Hardware Architecture 
Within the bear, all communication and calibration takes 

place on a centralized Somatic processing board.  It gathers 
data in a tree structure from eight Midplane board channels, 
each of which processes the signal from up to eight 
capacitive sensors, Figure 3.  We tune our sensing circuits to 
detect human touch to a height of approximately 1 inch.   

The micro-controller on the Somatic processing board 
streams data using serial over USB. It gathers information 
by iterating through the eight Midplanes. A more detailed 
description of the electronics design can be found in [15]. 

 
B. Physical Structure 

The Sensate Bear has a rigid foam body, constructed to 
house the sensors under the fur of a commercial teddy bear. 

 
 
Fig. 1.  Target System for Huggable: The Social Touch Processing 
developed on the Sensate Bear will be used in conjunction with 
multimodal sensors to feed information and take commands from 
the Huggable Behavior system.  A visualization of sensor and 
gesture activity is also available  

 
 
Fig. 2.  System Overview:  Subcomponents include sensors and 
electronics on the Sensate Bear, followed by on-computer 
processing and classification  

 
 
Fig. 3.  Bear Electronics: Sensor board attached to foam ‘foot’ 
connects to an 8-channel Midplane, which itself plugs into one of 
the eight Midplane connectors on the Somatic board. 
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Its 56 sensors are installed on the surface of a foam 
superstructure with body segments and shapes that mirror 
the physical structure of the Huggable, as shown in Figure 4. 
The electronics for processing are inside the head and torso. 

 
C. Optimizing Sensor Density  
The identification of salient locations was based on a 

behavioral study where subjects role-played social 
interactions with a teddybear on videotape.  The initial 
Huggable sensate skin design called for 1200 sensors of 
three different types, however, this bear simplifies the 
hardware design. 

The previous Huggable paw had 2”x1” boards, each 
equipped with eight QTC pressure sensors, four temperature 
sensors and one electrode, which was tied to the electrodes 
of three other boards for region sensing.  

The Sensate Bear uses capacitive sensing exclusively with 
two sensor sizes, 1.5”x2” and 3”x2”. Sensor size and layout 
is designed for social touch.  

D. Capacitive Sensing for Social Touch 
Capacitive sensors are well suited to social gestures as 

they are fast, inexpensive and can use conductivity to 
differentiate human from object-based touch. The change in 
signal level increases with proximity, contact area and 
person/object conductivity. Direct touch results in the 
maximum change, saturating detection. To capture these 
edge cases (such as when a person is touching through layers 
of clothing), calibration is necessary. 

To detect the presence of a person near the Sensate Bear 
we use Motorola/Freescale Semiconductor 33794 integrated 
circuit chips, which convert the touch’s net effect on the 
electric field to an output voltage at a rate of five 
milliseconds per channel. This chip is located on the 
Midplane board and controls eight sensing channels.  Thus, 
all sensors on the bear can be read in 40 milliseconds.  

The sensor itself is a shielded electrode, essentially two 
metal plates, separated by a nonconductor. The shield faces 
inward, directing sensitivity outward, amplifying the signal 
and decreasing sensor cross-triggering and electronics 
interference. Because of this simple construction, capacitive 
sensors can be soft or hard and will ultimately be used to 
sense non-direct touch through the fur of the Huggable. 

 

V. ALGORITHMS AND SOFTWARE 
A. Detection Modes for Social Touch  
After analysis of our behavioral study, we targeted three 

classes of touch for social touch recognition; Sensor Level 
touch includes localization and activation levels, Touch 
Subtypes involve detection of base forms of local touch (e.g. 
poke, pat) and Symbolic Gestures, a novel category which 
posits that there are common body-wide social gestures that 
have typical regional distributions (e.g. hug, handshake).  
These processing paths are depicted in Figure 5.  
 

 
In sensor level touch, we read in the sensors, then process 

and scale their signals in calibration to use the full ground to 
supply voltage range.  Next we convert the analog to a 10-bit 
digital signal and send it over USB to software, which uses a 
XML lookup table to map incoming sensor ID’s to sensor 
locations.  

Our detection of Touch Subtypes and Symbolic Gesture 
analyzes sensor activation patterns using a pre-defined touch 
gesture library, developed based on human studies and target 
behaviors of the bear.   We present our first findings of what 
these libraries should include. 

The software creates an object for each sensor that 
consists of: the sensor name, a buffer of sensor values 
reflecting the last twenty cycles, an activation state boolean 
that indicates whether the signal is over 30% on, and a 
location.  Buffer size and activation thresholds are 
configurable. 

 
 
Fig. 5.  Processing Pathways: The Sensor Level outputs calibrated, 
localized signals, which are then processed into local Touch Subtypes  
(time dependent) and body-wide Symbolic Gestures (not time 
dependent).  

 

 
 
Fig. 4.  The passive test-rig Sensate Bear has a foam superstructure that 
fits under a Teddy Bear’s fur. Capacitive sensors span the surface of the 
foam and signal/communication electronics are mounted inside.   
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The local touch subtype pathway uses the buffer of signal 
values for a single sensor to calculate features and then 
iteratively checks for a matching subtype in the gesture 
library.  Only one subtype can be active on each single 
sensor board and the detection speed for new gestures is 
inversely proportional to the size of the buffer.  

The Symbolic Gesture Pathway utilizes the location 
information of multiple sensors, passing those patterns 
through locational filters at each timestep, using a simple 
priority logic to constrain which features can be active at the 
same time, and updating the classification in real time. 

B. Touch Gesture Library 
We observed the gestures listed in Table I during an adult 

behavioral study with nine subjects (mixed gender) and a 
user study with eleven children (age 4-11, mixed gender).  
Study details and procedure are published in [14], [16].  As 
in Figure 5, the processing path for Symbolic Gestures is:  

Locational Filters ⇒  Priority Logic ⇒  Classification 
While the Touch Subtypes path is:  

Fill Data Buffer ⇒  Extract Features ⇒  Classification 
Noted gestures were used to verify the techniques that 
follow for local and body-wide gesture recognition.  This list 
provides a cross-platform starting point for anthropomorphic 
creatures.  Tickle appears in both categories because people 
tend to associate particular regions as being ticklish, but 
there also exists a distinct tickle subgesture that we can use 
to refine final classifications. 

 
C. Sensor Level Touch 
Sensor level touch occurs mainly within the Sensate Bear 

electronics, which scale and condition the analog sensor 
signals before digital conversion. Data is passed into 
software as a list of sensor IDs and 10-bit amplitude levels.  
Each sensor ID is mapped in software to its respective on-
bear location, so this format is sufficient to identify or 

interpolate touch locations.    
Although the sensor IDs coming from the microcontroller 

mirror the Somatic to Midplane to sensor wiring, our 
software uses an XML document that delineates body 
regions and remaps data into human-readable labels, e.g. 
‘head2’. 

Direct access to sensor locations enables social behaviors, 
such as ‘Look At’ in which the bear’s gaze might track a 
touch location, as posited in [2].  

D. Touch Subtype Processing 
In this implementation, the recognition of local gestures 

for a single sensor is based on several seconds of data 
history. To classify time dependent gestures, we need 
reasonable but real time accuracy.  

Similar classifiers have been used for the Huggable paw 
segment [11] and in pressure-based skins [10].  Features in 
the first (paw segment) include: direction of motion, average 
sensor value, change in sensor value, number of sensors 
active; and in the second (pressure sensors): absolute values, 
spatial distributions and temporal difference.   

In keeping with our observation-based design, we selected 
and added to these heuristics based on three subjects’ 
demonstration of tickle, poke, and pet. Figure 6 shows the 
raw oscilloscope traces of these subtypes.  

 
For each subtype (Table II), we evaluated peak amplitude, 

base frequency, frequency spectrum and duration, the 
features that best separated our dataset. 

Signal amplitudes are highest in pet and hold. In taking the 

TABLE II 
TRIAL SUBGESTURE FEATURE RESULTS 

AVERAGE Tickle Poke Pet Hold 
No 
Touch 

Peak Amplitude 60% >30% 100% 100% 0% 
Base Frequency 5-10Hz 0-1Hz 0.5-2Hz 0 Hz 0 Hz 

Freq Spectrum 
high 
noise blip 

low 
noise 

no 
noise 

no 
noise 

Duration 
3-20 
sec 1 sec >4 sec >4 sec n/a 

      

STD DEV Tickle Poke Pet Hold 
No 
Touch 

Peak Amplitude 10% 30% 10% 0% 0% 

Base Frequency 5 Hz 0.5 Hz 0.75 Hz 0 Hz 0 Hz 
Freq Spectrum large n/a small 0 0 

Duration 8 sec 0.2 sec  15 sec  20 sec n/a 
      Averaged data and standard deviations based on ten iterations with 
each of three users. 

TABLE I 
INITIAL GESTURE LIBRARY FOR ROBOTIC TEDDY BEARS 

Symbolic Gesture Touch Subtype 
Tickle Pet* 
Footrub* Poke* 

Handshake Tickle* 

Head-pat* Pat 

Shoulder-tap Hold* 
Belly-tickle Tap 

Side-tickle* Shake 
Foot-tickle Rub 
Go-to-sleep  
Wakeup  
Feeding  
Rocking  
Dance   

 *Gesture implemented 
 Gestures are compiled from our behavioral and user studies and  

extend previously identified Huggable affective touch subtypes. 
 

Fig. 6. Typical Touch Subtypes: Raw oscilloscope captures of subject 
demonstrating tickle, poke and pet on a single 3x2” sensor board. 
Testing physical touch, not proximity. Duration is 5 seconds.  
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Fourier transform of those signals, there is variation in the 
dominant base frequency and overall distribution of 
frequencies (noise level). 

As part of the touch subtype processing, a variable in the 
sensor class stores the last several cycles of values for its 
activation level as an array.  We calculate feature values 
from that history. The peak amplitude is the maximum value 
in the set, base frequency can be calculated from lowest 
frequency value in the Fourier Transform, noise level 
reflects frequency spread, and duration is incremented for 
each cycle. Pseudocode for this process follows: 

 
E. Symbolic Gesture Processing 
Symbolic Gestures track regionally-significant touch 

interactions in real time. Touch location on a body is highly 
tied to social intention, as found in [14], particularly given 
the anthropomorphic profile of this robot. Thus, our 
algorithms use a locational filter for each Symbolic Gesture 
(see Figure 7) gleaned from human pattern recognition of the 
adult behavioral study.  

 
At each cycle, the software tests for any matching 

activation patterns, displaying active gestures on screen. The 
processing is probabilistic, a minimum number of sensors 
within the locational filter must be active for at least two 
seconds, an increment informally chosen to parallel human 
recognition time. 

Next, the algorithm enters its priority logic.  It is possible 
to have multiple gestures, but we must capture the cases 
were classifications conflict.  For example, the tickle 
distribution involves many of the same sensors as hug.  
However, hug involves various other unique sensors.  Thus, 

if hug is active, tickle is unlikely to be happening, so hug 
supersedes Tickle.  Priority logic must be based on human 
behavior and recalculated when adding new gestures.  

Labeled interactions for the initial implementation are 
headpat, hug, tickle, and footrub. These classifications were 
approximations of user behavior from the behavioral study 
and represented the most used expressive gestures therein.  
The logic for each is as follows: 

Tickle: (not Hug) && (active >= two of four sensors)  
Headpat: (active >=one of the three sensors)  
Hug: (both sides)&& (active >= four of ten sensors)  
Footrub: (active >= one of two sensors) 
If needed, the robot can also evaluate the subtypes present 

within any active distribution.   
At a higher level, the robot behavior system will 

eventually associate affective and communication content 
with Touch Subtypes (poke always gets attention) and 
Symbolic Gestures (hug has a positive reassuring effect). 

VI. RESULTS 
A. Timing Results 
Figure 8 depicts the timing delays during data flow from 

sensors over serial then in the software classification paths.  
The total per program cycle time is about 42 milliseconds 
including communications delay – thus locational filters can 
be processed ~20 times a second and subtypes are assessed 
about every second.  Based on the observed gesture lengths 
in the study (see Table II), that is similar to human 
recognition time. 

 
B. Touch Subtype Results 
Our experiments informed the touch subtype classification 

features, using the values from Table II. We used observed 
data to craft an algorithm and verify it piecewise.   

 
 
Fig. 8.  Timing Flowchart for Processing:  Each program cycle has 
a sensor latency, communication delay, and runtime which limits 
to minimum time before categorization complete.   

 
 
Fig. 7.  Locational filter examples for Symbolic Touch:  The 
programmed side-tickle and head pat filters are visualized here.  
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Because the capacitive sensing mux requires time to 
acquire signal after switching channels, all sensors are 
queried in turn with a 5-millisecond delay between each one.   
Thus the true data rate is (58 sensors) x (.005 seconds) = 
0.29 sec or 3.4 Hz, which will eliminate some of the higher 
frequency information, by the Nyquist rate, to a maximum of 
about 7 Hz.  This has the risk, in particular cases of high 
frequency tickle of being misclassified as constant touch.  

Classification of subtypes has been done in prior work 
[11]. What is novel is that we implement this for the first 
time exclusively with capacitive sensing.   

C. Symbolic Gesture Results 
We evaluated the most common Symbolic Gestures to 

verify if the probabilistic locational filters correctly reflect a 
user’s touch during the user study with children.  By 
instructing subjects to demonstrate these gestures in the 
context of a social interaction, we acquired the results shown 
in Table III. 

 
 We observed, in confirmation with [14] that particular 

regions of the bear tended to have associated social content, 
regardless of subgesture.  Thus, anthropomorphic profiling 
may already provide a higher than chance likelihood that 
particular social gestures are present.  

VII. CONCLUSIONS 
This paper is about developing a real time system for 

social and affective touch. Key contributions are, first, that 
our algorithms are based on real humans interacting with a 
plush and then sensate bear.  Second, our research with the 
Sensate Bear test rig will ultimately be incorporated into the 
Huggable personal robot system.  Third, we motivate 
research into regionally symbolic touch research, making 
use of the full-body sensing and anthropomorphic nature of 
the bear. 

We have presented our in-development approach and 
results for realtime classification.  Table II demonstrates  
feature data distributions that distinguish affective touch 
sub-types. Table III describes a study to demonstrate the 
regional nature of social touch. 

Now that we have outlined an approach to real time social 
and affective touch, the next step is to combine the local and 
symbolic touch recognition pathways. We will also use 
training data sets to further evaluate our algorithms and flesh 
out our gesture library.  

The preliminary timing results indicate that our system 
will be capable of real-time touch, demonstrating a tiered 
approach to touch recognition.  

Our taxonomy of touch includes Symbolic Gestures that 
have associated locational distributions, Touch Subtypes that 
are locationally independent, and Sensor Level touch.   Each 
of those can be accessed in software. 

Thus, we have also created the software base for a 
Robotic Touch API, showing that the Huggable behavior 
system will be able to query currently active sensors and 
values, gestures and subgestures.  
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TABLE III 
FIRST TEST OF REGIONAL FILTERS  

  
Activated on 

first try 
Activated with 

explanation 
Regional 
Accuracy 

Headpat 100% 100% 100% 
Tickle 20% 60% 20% 

Hug 40% 80% 80% 

Footrub 100% 100% 100% 
Subjects instructed to demonstrate labeled gestures. High activation 

rate is due to the lack of crossover between locations of touch in the 
highlighted gestures.  
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