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Abstract— Our aim is to explore the fundamental stability
issues of a robotic vehicle carrying out localization, mapping,
and feedback control in a perturbation-filled environment.
Motivated by the application of an ocean vehicle performing
an autonomous ship hull inspection, our planar vehicle model
performs localization using point features from a given map.
Cases in which the agent must update the map are also
considered. The stability of the controller and estimator duo is
investigated using a pair of theorems requiring boundedness
and convergence of the transition matrix Euclidean norm.
These theorems yield a stability test for the feedback controller.
Perturbations are then considered using a theorem on the
convergence on the perturbed system transition matrix, yielding
a robustness test for the estimator. Together, these tests form
a set of tools which can be used in planning and evaluating
the robustness of marine vehicle survey trajectories, which is
demonstrated through experiment.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) algo-
rithms permit an agent to build and refine a map of its
environment while at the same time using the map to estimate
its position and orientation within the environment [1]. In
many applications, an estimation-theoretic approach is used
and the extended Kalman filter can be employed to carry out
the algorithm [2], [3]. Despite the widespread use of SLAM,
a limited body of work exists on the stability of the integrated
localization, mapping, and dynamic control process. Stability
of the linear Kalman filter in the specialized case of a one
degree-of-freedom monobot was assessed by Vidal-Calleja,
Andrade-Cetto, and Sanfeliu [4], and its observability by
Andrade-Cetto and Sanfeliu [5], leading to the conclusion
that the partial observability of the filter yields marginally
stable estimation error dynamics. Hover [6] analyzed the
stability margins of a localization estimator with closed-
loop control for 1-DOF and planar vehicles with double
integrator plants. This analysis considered the regulation
problem, using a constant-gain controller and estimator only.
In the present work, we will extend the focus to a planar
vehicle with time-varying controller and estimator gains,
allowing travel anywhere in the 2-D plane.

Integrated localization, map-building and control, and the
related problem of localization and control based on a
given map, are important in applications where traditional
odometry and direction sensors are unavailable. One such
example is ship hull inspection performed by an autonomous
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underwater vehicle, in which a prior map of the hull is often,
but not always, available, and underwater operation near a
large steel structure prevents use of compass, GPS, or long
baseline acoustic tracking as consistent sensors. Random
disturbances in the ocean environment necessitate the use
of high-fidelity feedback control, and hence a better under-
standing of integrated localization, mapping, and dynamic
control is desirable. Figure 1 illustrates a recent application
of EKF-SLAM to the task of ship hull inspection, in which
the MIT-Bluefin Hovering Autonomous Underwater Vehicle
(HAUV) [7] constructed a map in real-time of six mine-
shaped features planted on the hull of the USS Saratoga in
May 2008. The use of imaging sonar allows the vehicle-
relative range and bearing of features to be detected [8].
Completion of a feature-based estimation task in real-time
has led to the goal of implementing integrated mapping and
control with the HAUV.

In our approach to integrated mapping and control, it is
important to note that mapping is considered in the context
of use and refinement of a map that is given a priori, and
not the building of an entirely new map. Refinement of
the map entails updating or correcting the features already
present on the map, but does not include the addition of new
features. We also consider the case of map exploitation, in
which the a priori map of known features is used for the
sole purpose of localization, and is not updated or corrected.
Although localization by exploiting an a priori map can also
be achieved using iterative closest point (ICP) algorithms [9]
and a variety of other iterative algorithms prevalent in visual
servoing research [10], our discussion of localization will be
limited to an estimation-theoretic SLAM framework, as this
framework enables a series of stability guarantees relevant
to the problem of autonomous ship hull inspection.

Motivated by the example of ship hull inspection, this
analysis considers a planar vehicle using range and bearing
measurements of a set of point features to traverse a path
expansive enough to require time-varying controller and es-
timator gains. Section II introduces the vehicle model and the
control and estimation strategy. In Section III it will be shown
that integrated map refinement and control can achieve
uniform stability in the sense of Lyapunov using a theorem
on the transition matrix Euclidean norm. A complementary
theorem will be used to show that integrated map exploitation
and control can achieve uniform asymptotic stability. Section
IV considers the effect of perturbations on stability and
introduces a robustness performance metric. This metric can
be used to evaluate the conditioning of the estimator, and in
particular to evaluate the variation in robustness that results
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Fig. 1. Real-time map and vehicle localization data obtained from a survey
of the USS Saratoga in May 2008 using an Extended Kalman Filter. At
bottom, a photo of the HAUV and a sonar mosaic image of the targets
placed on the ship hull (mosaic image provided courtesy of AcousticView
www.acousticview.com).

from a variation in the geometric pattern of features on
the map. Section V introduces experimental results which
validate these predictions of geometry-dependent robustness.
We then discuss how this metric can be used in guiding
the choice of vehicle survey trajectories, using the problem
of selecting an HAUV ship hull inspection trajectory as an
example.

II. A SIMPLE MARINE VEHICLE MODEL
The dynamics of a holonomic marine vehicle operating in

a 2-D plane may be described in discrete time as follows:
uk+1
vk+1
ϕ̇k+1
xk+1
yk+1
ϕk+1

=


uk +∆T bu(uk)/m
vk +∆T bv(vk)/m
ϕ̇k +∆T bϕ̇(ϕ̇k)/J

xk +∆T (uk cosϕk− vk sinϕk)
yk +∆T (uk sinϕk + vk cosϕk)

ϕk +∆T ϕ̇k

 (1)

+
[

I3x3
03x3

] U1/m
U2/m
U3/J

+
[

I3x3
03x3

] w1
w2
w3


xv|k+1 = f (xv|k)+Buk +Γwk

The body-referenced forward velocity, sway velocity, and
yaw rate are described by u, v, and ϕ̇ , respectively, and
x, y, and ϕ represent the horizontal, vertical, and angular
position of the vehicle in the inertial plane. Hydrodynamic
drag b is expressed as a function of velocity in each degree
of freedom, and vehicle mass and rotational inertia are
described by m and J. Surge, sway, and yaw commands
are applied to the channels U1, U2, U3, respectively, and
process noise wi, which is zero mean Gaussian white noise

with diagonal covariance matrix Q, is also applied to each
channel. Throughout the analysis and experiments to follow,
this model specifically describes the holonomic platform
pictured in Figure 2, whose time constant of linear motion
is approximately two seconds, and whose time constant of
angular motion is approximately one second.

A convenient way to permit KF-based SLAM to recon-
struct the vehicle state using the measurement of point
features is the addition of quasi-states representing the hor-
izontal and vertical positions of the features in the plane.
We will assume that the quasi-states are permanently fixed
in space and have no dynamics. The aggregate state vector
appears as follows:

xk =
[

xv|k x1 y1 x2 y2 . . . xn yn
]T (2)

The vehicle states at time k are contained within xv|k. The
contents of this state vector permit the vehicle-relative range
and bearing measurements of each feature to be assembled.

A nominal trajectory is generated for the vehicle to send it
to a desired waypoint from its starting position in the plane.
An open-loop input trajectory delivers a nominal command
at each time step, and a closed-loop control correction is
used to counteract disturbances. The closed-loop system and
measurement dynamics is given by:

xk+1 = f (xk)+B(uOLk
−GkNδ x̂k)+Γwk

zk+1 =h(xk+1)+νk+1 (3)

The term δ x̂k represents the deviation of the state estimate
from the nominal state trajectory, used as an error signal for
the controller. The nonlinear functions f (x) and h(x) are used
to represent, respectively, the state transition relationships
in (1) and the nonlinear measurement of range and bearing
relative to each of the features. The sensor noise term νk
represents zero mean Gaussian white noise with diagonal
covariance matrix R. Gk is a time-varying matrix of controller
gains, which we compute optimally using the discrete-time
matrix Riccati equation. N is a 6 by 6+2n stripping matrix
needed to extract the vehicle states from the state vector,
discarding the 2n quasi-states for the purposes of control.
Because the feature states have no dynamics, the lower part
of f (x) is the identity, the lower part of B is zero, and the
lower part of Γ is zero.

The use of a nominal vehicle trajectory permits a lin-
earized Kalman filter to serve as the estimator for vehicle
localization. This strategy allows the vehicle to move to any
desired location in the plane, as long as an approximate
layout of features is known in advance. It is also assumed that
feature association can be performed successfully, and that
∆T between measurements is constant. These assumptions
will allow vehicle pose estimation and map refinement to
occur using a precomputed set of gains and Jacobians. The
estimation equation is written in terms of deviation from the
nominal trajectory, x̄k:

δ x̂k+1 =δ x̂k+1|k +Kk+1

[
δ zk+1−H(x̄k+1)δ x̂k+1|k

]
where δ x̂k+1|k =F(x̄k)δ x̂k−BGkNδ x̂k (4)
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Fig. 2. The model used in this stability analysis describes a holonomic
floating platform with three degrees of freedom, a scaled-down mockup of a
ship hull inspection vehicle. The platform is equipped with a Hokuyo-URG
laser and four bilge pumps mounted on foam pontoons which act as water
jet thrusters.

The nonlinear state transition function f (x) and the measure-
ment function h(x) are now replaced by F(x̄k) and H(x̄k),
the corresponding Jacobians, which are linearized about the
nominal trajectory at each time step. The term δ zk represents
the deviation of the measurement from the deterministic
measurement along the nominal trajectory. Kk is the time-
varying Kalman gain, which, as per the linearized Kalman
filter framework, is computed in advance along each step of
the nominal trajectory (see Gelb [11]). Although an EKF is
likely to yield better estimation in the presence of perturba-
tions, its nonlinearity and dependence on the vehicle’s noise-
influenced trajectory do not allow linear matrix computation
or computation in advance of the vehicle’s deployment. Thus
the LKF will serve as our estimator at the risk of inaccuracy
in the presence of large perturbations and with the benefit of
enabling a more descriptive stability analysis.

Thus far the only linearization approximations have been
those which are called for specifically by the linearized
Kalman filter. To enable our stability analysis, it will be
further assumed that the dynamics of the true physical plant
are well approximated by the state transition Jacobian, and
that the true measurement process is also well approximated
by the measurement Jacobian. Simplification of (3) and (4)
yields the following compact formulation:[

δxk+1
δ x̃k+1

]
=
[

F(x̄k)−BGkN BGkN
0 F(x̄k)−Ek

][
δxk
δ x̃k

]
where Ek =Kk+1H(x̄k+1)F(x̄k)

δ x̃k =δxk−δ x̂k (5)

The upper half of the state vector contains deviations from
the nominal trajectory, rather than the full states, and the
lower half of the state vector contains the estimation error.
Equation (5) provides us with an equilibrium point of zero
throughout the system’s operation, and it also offers an
expression of the closed-loop system dynamics which lends
itself to Lyapunov stability analysis.

III. UNPERTURBED STABILITY ANALYSIS

A. Stability Theorems

Before we assess the stability of (5), two stability
theorems are laid out. These theorems are defined for use

with discrete systems by Willems [12].

Theorem 1. The null solution of (5) is stable in the sense
of Lyapunov if and only if there exists a bound M, for any
k0, such that the following inequality holds for all k ≥ k0 :

‖Φ(k,k0)‖ ≤M

Φ(k,k0) is the transition matrix which propagates the system
to time k from time k0. If M can be taken independently
of k0, then the solution is uniformly stable in the sense
of Lyapunov. In other words, for any region R1 in which
we wish the system to stay, we can identify a region R2
in which the system must start, independent of initial time k0.

Theorem 2. The null solution of (5) is asymptotically stable
if and only if the conditions of Theorem 1 for stability in
the sense of Lyapunov are satisfied, and:

lim
k=∞

‖Φ(k,k0)‖= 0

The solution is uniformly asymptotically stable if the above
is satisfied and the bound M of Theorem 1 can be taken
independently of k0. If perturbed, a uniformly asymptotically
stable system will return to a state of equilibrium and will
do so independently of initial time k0.

The norm used in Theorems 1 and 2 is the Euclidean or
spectral norm, equivalent to the largest singular value of the
transition matrix. The state transition matrix of (5) is equiva-
lent to ‖Φ(k +1,k)‖, the transition matrix of Theorems 1 and
2 when a transition from k to k+1 is made. By multiplying
the successive state transition matrices of (5), the transition
matrix from any k0 to any time k along the nominal trajectory
can be computed.

Although the framework described in Section II is de-
signed for a nominal trajectory that connects two waypoints,
this scenario can be augmented for analysis at infinite time.
In the analysis to follow a periodic path between the way-
points depicted in Figure 3 will be executed, in simulation
and in experiment, by the holonomic platform displayed in
Figure 2. One period consists of a forward trip along the
path, followed by a trip in reverse back to the origin. It is
also assumed that the vehicle uses the same three features
throughout.

B. Stability Results for Map Refinement

First we consider the case in which the vehicle uses the
features for localization and can simultaneously adjust its
estimates of the feature locations. The first plot of Figure
4 displays the values of the transition matrix norm for the
Φ(k,k0) that transit from every initial time k0 to every final
time k along two cycles of the nominal trajectory. The
convergence of the norm to a periodic surface independent of
k0 permits the conclusion that the transition matrix norm can
be assigned a bound M which it will not surpass, and that
this bound can be taken independent of k0. Hence, Theorem
1 is satisfied and we may conclude the nominal trajectory
investigated is uniformly stable in the sense of Lyapunov.
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Fig. 3. The periodic vehicle trajectory analyzed in this study is depicted,
along with the configuration of three features used in the results to follow.
The nominal changes in heading commanded across this trajectory are indi-
cated by the body-fixed coordinates u and v and inertial angular coordinate
ϕ . Parameters that are used in our vehicle simulation and experiment are
listed.

This is the strongest stability guarantee we can obtain for
a system that includes the feature quasi-states, which allow
map refinement to occur as the features are measured. It
also confirms the intuition that a system cannot drive both
the vehicle and feature state estimates to zero if the map
used for pre-computing the LKF filter gains and Jacobians
is in need of refinement.

C. Stability Results for Map Exploitation

In search of a stronger stability guarantee we consider map
exploitation, in which the a priori map is assumed to contain
the correct feature locations and only the vehicle states are
estimated (i.e. localization rather than full SLAM). The upper
right plot of Figure 4 shows the transition matrix norm for the
Φ(k,k0) that transit from every initial time k0 to every final
time k along two cycles of the nominal trajectory. Unlike
before, the norm converges to a value of zero, and it does so
irrespective of initial time k0. This means that not only may
we identify a bound M for the norm according to Theorem 1,
but we may also apply Theorem 2 since the norm of Φ(k,k0)
approaches zero as k approaches infinity, independent of our
choice of k0. Thus, map exploitation is capable of achieving
uniform asymptotic stability, since the vehicle and its state
estimates can be driven to zero if the map is accurate.

To demonstrate that computation of ‖Φ(k,k0)‖ can be used
as a necessary and sufficient indicator of system stability, the
bottom of Figure 4 contains a map exploitation case in which
the controller gains used previously were amplified by factors
of five and six, respectively. The system remains stable using
a factor of five, but a factor of six is sufficient to render
the system unstable, as ‖Φ(k,k0)‖ is unbounded and grows
rapidly with increasing k. In this manner, we can gauge the
upward gain margin of the system by analyzing ‖Φ(k,k0)‖.
Although this method allows detection of an ill-conditioned
controller, there are aspects of the localization estimator
which can pass through unnoticed when ill-conditioned (such
as a map whose geometry will not allow successful local-
ization). For this reason, we must also consider the effect
of perturbations on the system, which are needed to bring

Fig. 4. The transition matrix norm is plotted for the trajectory and map
depicted in Figure 3, using the framework presented in Section II. The
plots encompass two complete cycles of the nominal trajectory, using the
parameters identified in Figure 3.

about the failure of the filter due to certain aspects of filter
conditioning.

IV. PERTURBED STABILITY ANALYSIS

A. Problem Formulation

To understand the system’s behavior in the presence of
perturbations we must consider how the governing equations
change when the vehicle is displaced from the nominal tra-
jectory. Because a displacement from the nominal trajectory
renders the linearization of the nominal state transition Ja-
cobian F and measurement Jacobian H incorrect, correction
terms ∆F and ∆H are needed to express the true location of
the vehicle. Despite this, the need for correction is unknown
to the estimator. Using these correction terms the propagation
of the state and the estimate appears as follows:

δxk+1 =(Fk +∆Fk)δxk−BGkNδ x̂k +Γw

δ x̂k+1 =δ x̂k+1|k +Kk+1

[
δ zk+1−Hk+1δ x̂k+1|k

]
δ x̂k+1|k =(Fk−BGkN)δ x̂k

δ zk+1 =(Hk+1 +∆Hk+1)δxk+1 +νk+1 (6)

These equations can be manipulated in a manner similar to
(5), and all terms containing correction matrices ∆F and ∆H
can be collected in an aggregate perturbation matrix ∆A,
where ∆A is defined as follows:

∆Ak =
[

∆Fk 0
Mk −Kk+1∆Hk+1BGkN

]
(7)

Mk =∆Fk−Kk+1(∆Hk+1(Fk +∆Fk +BGkN)+Hk+1∆Fk)
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The aggregate perturbation matrix is combined with the state
transition matrix of (5) as well as the process and measure-
ment noise to express the system equations as follows:[

δxk+1
δ x̃k+1

]
=[Ak]

[
δxk
δ x̃k

]
+[∆Ak]

[
δxk
δ x̃k

]
(8)

+
[

Γ 0
[I−Kk+1(Hk+1 +∆Hk+1)]Γ Kk+1

][
wk
νk

]
The state transition matrix of (5) is represented here by Ak.
By taking the Euclidean norm of both sides of this equation
and applying the Bellman-Gronwall lemma, Chen and Dong
[12] first described a sufficiency condition for asymptotic
stability of a linear system subjected to a perturbation ∆A,
which is now a well-documented result [13], [14].

Theorem 3. The null solution of (8) is uniformly asymptot-
ically stable if two conditions are satisfied. First, the system
must be uniformly asymptotically stable in the absence of
perturbations, indicated by the following:

‖Φ(k,k0)‖ ≤ mrk

This means that the Euclidean norm of the state transition
matrix must be bounded by a discrete exponential with
parameters m and r, and that this bound holds independently
of k0. Second, for a series of perturbation matrices ∆Ak, the
following must also hold for all k:

‖∆Ak‖ ≤
1− r

m
If both conditions are satisfied, then the system will remain
uniformly asymptotically stable in the presence of plant
perturbations ∆Ak.

B. Evaluating System Robustness

The conservative nature of Theorem 3 requires that the
unperturbed system under consideration must be uniformly
asymptotically stable, which excludes cases of map refine-
ment from evaluation since these cases achieve Lyapunov
stability at best. Despite this, it is conjectured that aspects
of filter conditioning (such as the choice of nominal trajec-
tory) which are best-suited for robustness in cases of map
exploitation will also be best-suited for robustness in cases
of map refinement.

One challenge in implementing Theorem 3 is choosing an
appropriate perturbation matrix ∆A. For this reason, we have
evaluated the theorem at perturbations of incrementally vary-
ing magnitude in each degree of freedom. In simulation, the
vehicle is displaced from the nominal trajectory by a given
distance at each point along the trajectory (in a single degree
of freedom), and the worst-case perturbation norm over the
entire trajectory is chosen as ∆A to represent the magnitude
of the displacement. The effect of combining perturbations
in multiple degrees of freedom is not considered.

We obtain r and m by bounding the surface plot of
‖Φ(k,k0)‖ with an exponential. Specifically, we find the k0
which yields the worst-behaved curve and ensure that the
exponential bounds all values on this curve efficiently. By

comparing the parameters of the exponential bounding curve
with the norm of ∆A, it is apparent when the system is
guaranteed asymptotically stable. In addition, by comparing
system conditions which achieve a stability guarantee for
differing perturbation magnitudes, the relative robustness of
two trajectories, maps, or otherwise can be compared. In
this manner the second inequality of Theorem 3 is used as
a performance metric.

As an illustrative example, the effect of feature spacing on
vehicle robustness can be investigated using this performance
metric. Starting with three features condensed to a single
point and gradually separating them until they achieve the
configuration of Figure 3, the maximum perturbation mag-
nitude for which stability is guaranteed can be computed for
each feature configuration. This is demonstrated in Figure
5, in which ‖∆Ak‖ is plotted for varying configurations of
features, for varying disturbance magnitudes, and separately
in each degree of freedom. The perturbation norm is com-
pared with the r and m parameters of the exponential fit
to ‖Φ(k,k0)‖ for each configuration. To offer an example of
what we may conclude from these plots, the bottom right plot
of Figure 5 shows that the vehicle is guaranteed stable against
angular perturbations of order 10−3 radians for a feature
spacing of 0.1 meters, but this guarantee cannot be made for
a feature spacing of 0.01 meters. Hence, a vehicle observing
features with a spacing of 0.1 meters is more robust than if it
were observing features with a spacing of 0.01 meters, since
it is guaranteed stable against larger-sized perturbations. In
general, Figure 5 permits the conclusion that maps with a
wider feature spacing are guaranteed stable against larger-
sized perturbations, although the performance metric exhibits
asymptotic behavior and there is a point beyond which no
significant gains in robustness are achieved by spreading the
features further.

Although the perturbations for which stability is guar-
anteed are often small in size (it is almost certain that
perturbations larger than 10−3 radians will be encountered
during vehicle tests), we aim to use Theorem 3 as a means of
comparing system configurations. The system configurations
which yield the maximum stability guarantee, despite the
magnitude of the guarantee itself, will be best-equipped for
operation in a noise-filled environment.

V. EXPERIMENTAL RESULTS

We verified these predictions experimentally using the
holonomic floating platform pictured in Figure 2. This ve-
hicle carried out map exploitation and attempted to execute
the trajectory of Figure 3 using feature spacings of 0.3m,
0.05m, and 0m. These spacings were chosen since 0.3m is
near the asymptotic upper limit of the performance metric in
Figure 5, the performance metric for 0.05m is 50% smaller,
and 0m has a performance metric of zero, since ‖Φ(k,k0)‖
does not converge to zero when all three features share
the same location (and so this case is never guaranteed
asymptotically stable). The top of Figure 6 demonstrates
that the 0.3m spacing yielded the most effective closed-
loop vehicle, as the platform adhered closely to the nominal
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Fig. 5. The perturbation matrix norm is plotted in each degree of freedom as
a function of feature spacing for disturbances of incrementally varying mag-
nitude (captured on the solid blue lines). Alongside each set of perturbation
matrix curves is plotted the exponential bounding curve performance metric
(the dashed red line), indicating the maximum perturbation size for which
each feature layout is asymptotically stable. The smallest feature spacing
considered in this plot is 0.01m, since a spacing of 0m yields a performance
metric of zero, which cannot be expressed on the above logarithmic scale.

trajectory and the estimator adhered closely to the vehicle’s
true location, although there were small errors in following
the nominal trajectory due to perturbations in the water tank
testing environment and interference from the vehicle tether.
The 0.05m spacing caused errors in the estimator, which at
times remained closer to the nominal trajectory than to the
vehicle’s true location and thus the vehicle failed to execute
the entirety of the nominal trajectory. In the 0m spacing
case (which effectively consists of a single feature on the
map) the estimator failed completely and the vehicle was
driven off of the nominal trajectory. The bottom of Figure 6
isolates performance in the angular degree of freedom, and
compares filter estimation error with true displacement of
the platform from the nominal trajectory. Here it becomes
clear that in the 0.05m and 0m cases, instability results, as
the estimator failed to converge to the true location of the
vehicle. Although the robustness performance metric is only
a sufficiency condition and doesn’t explicitly predict vehicle
instability, in this case it called for selection of the map best-
suited for localization and closed-loop control, avoiding less
robust feature configurations which ultimately brought about
system instability.

Looking ahead to implementation on the HAUV itself,
the robustness metric was also used to investigate which of
two candidate trajectories is a more robust ship hull survey
trajectory. The HAUV hull survey trajectories depicted in
Figure 7 were selected heuristically based on simplicity

Fig. 6. The floating platform of Figure 2 was driven along the nominal
trajectory of Figure 3 for three different configurations of three point
features. In the upper half of the figure, the feature locations, nominal
trajectory, vehicle position estimates, and vehicle position ground truth are
plotted for each case. In the lower half, the angular degree of freedom is
isolated and estimation error is plotted alongside vehicle displacement from
the nominal trajectory. All plots display data from two complete cycles of
the nominal trajectory.

and apparent hull coverage, and both have been used fre-
quently in vehicle experiments performed on the hull that
is pictured, a flat-bottomed boat approximately 18 m in
length. Trajectory 1 orients the imaging sonar footprint along
the width of the hull, and Trajectory 2 orients the sonar
footprint along the length of the hull. The robustness of
these trajectories is harder to predict than the trajectory of
Figure 3 since the viewing window of the HAUV imaging
sonar is limited in size, and only a subset of the features
will be observed at each time step. If the cruising speed
of the vehicle is varied, the frequency with which features
will be observed will vary in turn. The hull survey was
treated as a case of map exploitation, and locations of the
hull’s zinc anodes were used as features on an accurate
given map. Odometry in each degree of freedom was added
among the measurement capabilities since there are short
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Fig. 7. The robustness performance metric is used to evaluate two HAUV
candidate trajectories, for which the vehicle path, sonar viewing window, and
feature locations are depicted. The perturbation matrix norm is plotted in the
angular degree of freedom as a function of vehicle cruising speed for angular
disturbances of incrementally varying magnitude (the solid blue lines).
Alongside each set of perturbation matrix curves is plotted the exponential
bounding curve performance metric, indicating the maximum perturbation
size for which each feature layout is asymptotically stable (expressed as a
series of red points with a best-fit line).

instances along the trajectories where no features are visible.
The addition of odometry still permits the expression of
the closed-loop vehicle as a linear time-varying system, and
so the robustness analysis techniques continue to apply. A
simulation of the HAUV’s vehicle dynamics was used to
apply Theorem 3 to each candidate trajectory for a variety of
cruising speeds, and the results demonstrated that Trajectory
1 is guaranteed to tolerate perturbations approximately an
order of magnitude greater than those for which Trajectory
2 is equipped. Figure 7 displays these results in the angular
degree of freedom. Hence, our performance metric would
indicate that Trajectory 1 is the robustness-optimal choice
from among the two candidates.

VI. CONCLUSION

First, it has been shown that Φ(k,k0), a holonomic marine
vehicle’s linearized time-varying transition matrix, can be
used as a necessary and sufficient indicator of stability in
inspecting the vehicle’s controller. Analysis of Φ(k,k0) also
reveals that map refinement (i.e., localization and mapping)
can achieve Lyapunov stability at best, while map exploita-
tion, which is strictly localization, can achieve asymptotic
stability.

Second, it has been shown that by considering perturba-
tions to the system, a performance metric can be derived
which serves as a sufficient condition for asymptotic stability
in the presence of perturbations. This metric also serves a
more useful purpose of allowing a comparison of robustness
between different system configurations. The performance
metric allows us to discern the impact of subtle aspects of

filter conditioning, such as the geometric configuration of
map features, on the robustness of the marine vehicle.

Although the stability and robustness analysis tools pre-
sented here were developed for the analysis of vehicles
employing feature-based navigation processes, they can also
be applied to any system whose closed-loop dynamics may
be expressed using a linear time-varying state space model.
There are no additional limitations which restrict the quantity
or type of sensors that may be blended to produce the state
estimate, allowing systems like the HAUV, which integrate
a large suite of navigation sensors, to be accomodated.

In addition to evaluating feature configurations, computing
the robustness performance metric yields a procedure for
discerning which of several candidate trajectories is best-
equipped to tolerate perturbations, which we aim to develop
into a robustness-optimal motion planning algorithm. By
augmenting A* to consider robustness in addition to path
length in its cost-to-come, we hope to enable hull surveys
to divert from the shortest survey path to gain robustness
against perturbations.
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