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Abstract— Laser based tracking systems have been developed
for mobile robotics and intelligent surveillance areas. Existing
systems estimate only human positions. In this paper, we
propose a method for human pose estimation represented by
human head and waist position using only laser range finders.
Two features of human cross-sectional contours are extracted
from laser scanner data scanning on the height of waist. This
method estimates human pose by using these features in the
Bayesian filtering framework. Moreover, we develop a new
particle filter framework with two transition models and two
resampling steps. In this framework, position estimation and
pose estimation are performed by many hypotheses. Our exper-
imental results demonstrate the effectiveness of the method in
pose estimation of multiple people by using only several laser
scanners.

I. INTRODUCTION

Recently, expectations towards robotic systems which en-
able daily life assistance are rising. Among many, researches
on home environment with distributed sensors are active, and
believed to offer practical applications. Such an environment
is referred as smart environment, smart space and so on.
Aware Home [1] and Sensing Room [2] are examples of
such systems. Such smart environments observe the space
using distributed sensors, extract useful information from
the obtained data and provide various services to users.
Therefore, a number of researches on human measurement
using distributed sensors have been tried.

In those researches, most methods estimate only human
position because it is based on the use of passive sensors.
However, to provide appropriate service to the human ac-
cording to the circumstances, not only positions but also
human poses are essential information. Therefore, our goal
is set to estimate positions and poses of multiple people in
the environment by multiple laser range finders.

Among a variety of sensors, cameras and laser range
finders are used in many works. Laser range finders are
especially popular tools for human tracking and navigation
applications due to their precision, effective sensing distance,
and ease of use. Moreover, in comparison with cameras,
laser range finders are resistant to environmental changes and
simple to apply to various environments. Because camera
images are influenced by illumination and the installation
of cameras into home environment often gives feelings of
resistance, we use only laser range finders.
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There are a number of researches on laser based human
tracking. They tried various scanning techniques such as
horizontal scanning at ankle-height [3], [4], [5], [6], hori-
zontal scanning at waist-height [7], [8] and so on. In those
researches, the methods based on leg tracking by horizontal
scanning at ankle-height are the most popular. Some reasons
for this include simplicity of shape (legs are roughly circular
and look the same from any angle) and visibility (legs are
narrow and tend not to completely occlude objects behind
them). For example, Zhao et al. [3] used Kalman filter and
a walking model for leg tracking. Cui et al. [4] proposed
a method based on the joint particle filter using multi-level
observations. These methods succeeded in tracking multiple
people in various environments. However, these methods
were focused specifically on position tracking. On the other
hand, Glas et al. [7] proposed a torso-level tracking method
based on the particle filter, which estimates not only positions
but also body orientation and arm position. However, it is
intended for walking people and not estimates human poses.
Therefore, we propose a method for human pose estimation
represented by human head and waist position using cross-
sectional contours on the height of waist. We focus on cross-
sectional contours obtained by horizontal scanning at waist-
height and develop a pose estimation system using only laser
range finders.

In the past, human pose estimation from camera image
sequences has been most proposed. Among those works, dis-
criminative approaches [9], [10], [11] which model and pre-
dict state condition directly from observation was proposed,
and it is reported to be effective for pose estimation. There-
fore, we adopt a discriminative, example based approach, in
which human pose candidates are defined beforehand and
human poses are estimated by a comparison of likelihoods
between input data and human pose candidates. Moreover,
because it is not sufficient to estimate robustly from changing
human contours, we incorporate the pose estimation by
example based approach into the particle filter framework
[12]. In our work, for applying two phases; estimation of the
center of a contour and human pose estimation, we develop
a new particle filter framework with two transition models
and two resampling steps.

Our system is intended for multiple people, and we shows
the extension to multiple people estimation. In this paper, we
will show the effectiveness of the proposed method in pose
estimation of multiple people.

This paper is organized as follows. We show the human
pose estimation using contour features in section II. In
section III, we define a overall framework for pose estimation
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Fig. 1. Flow of human pose estimation using contour features

of multiple people. We mention experimental results of
the proposed method in section IV. Finally, conclusion is
discussed in section V.

II. POSE ESTIMATION USING MULTIPLE LASER RANGE
FINDERS

Human pose is estimated by using only laser range finders.
First, we show the human pose estimation phase using
contour features from multiple laser range finders in Fig.1.

We adopt an example based approach for human pose
estimation. In the example based approach, human pose can-
didates are defined beforehand. Then, inference is achieved
by a comparison of likelihoods between input data and
human pose candidates. Moreover, we introduce Bayesian
inference in the framework in order to search through the
state space efficiently.

A. Human Measurement by Laser Range Finders

For the purpose of estimating not only human position
but also human pose, we perceive 2D human cross-sectional
contours on the height of waist. In usual approach, the
feet data obtained by horizontal scanning at an elevation of
about 20 cm above the ground are used. However, the feet
data show only human position. In contrast, cross-sectional
contours on the height of waist change in parallel with
human poses. Therefore, we use cross-sectional contours on
the height of waist obtained by horizontal scanning at an
elevation of about 90 cm above the ground. 90 cm is the
height of targets’ waist, and we suppose that targets of our
system are about 150-190 cm tall.

The coordinate system is represented with their X and Y
axes aligned on the ground plane and the Z-axis representing
the vertical direction from the ground plane. In our approach,
a human pose is composed of the position of the head ph =
(xh, yh, zh), the position and the rotation around the Z-axis
of the waist pw,t = (xw , yw, zw, θ). These parameters can
represent human poses such as standing, sitting or bending
in indoor environment. Estimating such poses enables a wide
variety of support by robotic systems. zh, zw, θ are directly
estimated by our approach. Other parameters are determined
by these parameters zh, zw, θ in human skeleton model.
Output values of zh, zw are reduced to discrete values 1, ..., 5.
As shown in Fig.2, these discrete values are sufficient to

Fig. 2. Classification of human poses

represent human poses such as standing, sitting or bending
in indoor environment.

B. Human Contour Features
In example based approach, the choice of the distance

for comparing two samples is crucial, as the distance is
used for a comparison of likelihoods between input data
and human pose candidates. Moreover, features require high
discriminative power as well as rapid evaluation. Therefore,
two features are extracted from human contours the center
of which is defined beforehand.

First, as a feature that requires lower computational cost,
we use distance-angle histogram. Detected data points of
human contour are plotted polar coordinates using the center
of the human contour as the origin. In the coordinates,
the area is divided into br parts for the radial coordinate
and bω parts for the angular coordinate and detected data
points in each area is accumulated into each histogram bin.
To discriminate the front-back orientation, bω is set to 2
and br is set to 4. The resulting histogram is composed of
b = brbω bins, where b is 8. This rough histogram is used in
the reduction of human pose candidates because the feature
requires little computational cost. In the radial coordinates,
a distance is limited within 500mm because the radius of
human cross-sectional contours is below 500mm even when
the target is bending.

Second, we use radial distance vector. The radial distance
vector is an angular array which keeps track of the distance
of detected data points from a proposed center point. The
distance is obtained by the angle 2 degree. Thus the number
of elements of the array is 180. Human contours obtained
by laser range finders often suffer a loss. This feature can
be extracted from such incomplete contours. Fig.3 shows
examples of distance-angle histogram and radial distance
vector of two poses.

C. Likelihood Evaluation Based on Multiple Features
In our approach, likelihood between input data and pose

candidates is calculated by two features and likelihood
evaluation employs a two step process.

In the first step, likelihood is calculated by the distance-
angle histogram. Likelihood between a histogram q(p) of
the pose candidate p predicted by the transition model and
a histogram q(ct) obtained by a proposed center ct is based
on the Bhattacharyya Coefficient. The likelihood is computed
by

Dhis(q(ct), q(p)) =

b∑
k=1

√
q(ct; k)q(p; k), (1)
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Fig. 3. Human contour features

where b is the number of histogram bins and b is set to
8. In the first step, pose candidates are eliminated if the
likelihood score is below a threshold ζ. This function leads
to the reduction of computational cost.

In the second step, likelihood is calculated by the radial
distance vector. The metric chosen for evaluating the degree
of fit between the pose candidate and the detected data
points was a normalized root sum square calculation of
radial distance. For each contour that has the center ct,
the surrounding cluster of points are mapped into a radial
distance vector array Rct with N equiangular divisions. A
radial distance vector array rnp is extracted from the pose
candidate p. Likelihood Dvec of the normalized root sum
square is calculated across all angular subdivisions as below,
omitting bins which contain no data points.

Dvec(ct, p) =
1

N

√√√√ N∑
n=1

(rnt )
2, (2)

rnt =

{ |rnct − rnp | if |rnct − rnp | ≤ Rmax ,
Rmax otherwise, (3)

where each subdivision has the area of 2 degree and the
maximum of N is 180. The maximum of distance between
the corresponding points rnct − rnp is set to Rmax. This
threshold function contributes to improving the robustness
against noise such as data noise or non-defined contours of
human pose that arms or hands changes the contour beyond
the scope of the assumption.

D. Pose Estimation by Bayesian Inference

The example based approach requires high computational
cost and often gives the estimation result that lacks con-
tinuity. To address these problems, we introduce Bayesian
inference into the framework.

Given the observations up to time t, z1:t, the aim is to
estimate the posterior distribution p(xt|z1:t) of the state xt.
When estimating the posterior distribution p(xt|z1:t), making
consideration of both the transition model p(xt|xt−1) and
likelihood p(zt|xt) enables Bayesian inference.

In our approach, the transition model Ti,j from pose i to
pose j is defined by the head height zh, waist height zw and

Fig. 4. Pose candidates

orientation θ of these poses as below.

Ti,j =




1 if ( ( |zh,j − zh,i| ≤ 1 )
&& ( |zw,j − zw,i| ≤ 1 )

&& ( |θj − θi| ≤ ηi ) ),
0 otherwise,

(4)

where zh,i is the head position of the pose i, and zw,i and
θi are the waist position of the pose i. Values of zh, zw are
discrete values 1, ..., 5 as shown in Fig.2, and the transition to
the next step is allowed. ηp is the maximum of the transition
angle of the pose p in pose data set used in the stage of
construction of pose candidates. In order to prevent getting
caught into a local solution, Ti,j is binarized as 0, 1.

E. Construction of Pose Candidates

Pose candidates are generated by hierarchical clustering.
Using a full body motion capture system and laser range

finders, pose data and its contours are collected from subjects
that each perform a variety of motions. For efficient motion
data use, each pose is rotated and adjusted to the same
orientation. First, these contours are divided by human head
position zh = 1, ..., 5 and human waist position zw =
1, ..., 5. From each group, we extract several representative
contours through an aggregative hierarchical clustering. In
the clustering process, we use the radial distance vector
as the distance between contours. Finally, pose candidates
are constructed by rotating all pose candidates that have
representative contours at intervals of a step degree Θ. Each
pose candidate contains several representative contours and
information of the head height, waist height and orientation.
Fig.4 shows examples of poses and contours extracted as
pose candidates.

III. POSE ESTIMATION BY MANY HYPOTHESES BASE ON
THE PARTICLE FILTER FRAMEWORK

In our work, because two features are based on the center
of a contour, estimation of the center is also an important
task. If the estimation of the center is not accurate, the same
contours have different features. Moreover, by the presence
of incomplete contours that suffer a loss by occlusion, an
approach where the center is estimated by averaging the laser
points is not suited.

In addition, contours extracted from entirely different
poses are often very similar. These contours also cause the
failure of pose estimation.

Therefore, we develop a new particle filter framework with
two transition model and two resampling steps for estimation
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Fig. 5. Graphical model

of the center and human pose. In this framework, the center is
estimated by many hypotheses and human pose is estimated
by many hypotheses of the center.

A. Particle Filter

The particle filter is a Bayesian sequential importance
sampling technique, which recursively approximates the pos-
terior distribution using a finite set of weighted samples.
The posterior distribution at time t is approximated by a
set of discrete samples { s

(n)
t } (n = 1...N) with importance

weights { π
(n)
t } (n = 1...N). Particle filter simulates this

distribution by the following three-step recursion.

1) Selection: Select samples { s
′(n)
t−1} (n = 1...N) in pro-

portion to weight { π
(n)
t−1} (n = 1...N) corresponding

to sample { s
(n)
t−1} (n = 1...N).

2) Prediction: Propagate samples { s
′(n)
t−1} (n = 1...N)

with state transition probability p(xt|xt−1 = s′t−1) and
generate new samples { s

(n)
t } (n = 1...N) at time t.

3) Update: Update weights π
(n)
t = p(yt|xt = s

(n)
t ) cor-

responding to sample s
(n)
t by evaluating a likelihood

through observations. Normalize π
(n)
t so that the sum

of { π
(n)
t } (n = 1...N) is equal to 1. As a result,

estimated state at time t is equal to the expectation of
the set of samples { (s

(n)
t ;π

(n)
t )} (n = 1...N).

B. Particle Filter with Multiple Transition Models and Mul-
tiple Resampling Steps

In our case, the sample state is set to st = (S, l) =
(x, y, l). The state is compose of a discrete index l =
(zh, zw, θ) which labels the human pose and the continuous
variable S = (x, y) that denotes the center position of a
contour in a 2D space.

The graphical model in Fig.5 describes the dependencies
between our variables. The process density on the state
sequence is modeled as a first order auto regressive process
p(xt|xt−1). According to the independence assumption in
the graphical model, the equation of the process density is:

p(xt|xt−1) = p(lt|St, lt−1)p(St|St−1, lt−1). (5)

Moreover, we introduce a two stage resampling process
for estimation of the center and human pose.

Fig.6 shows the overall process and the concrete proce-
dures of the proposed framework are given below.

1) Generate the new sample set s
′(i)
t−1 in proportion to

weight π(i)
t−1 at time t− 1.

Fig. 7. Evaluation model by background subtraction

2) Propagate the samples with the transition model
p(St|St−1, lt−1), and generate the sample set s

′′(i)
t .

3) Update weights πS using the sample state St = (x, y).
4) Generate the new sample set ŝ

(i)
t in proportion to

weight π(i)
S , and add the small diffusion.

5) Propagate the samples with the transition model
p(lt|St, lt−1), and generate the sample set s(i)t .

6) Update weights πt using the sample state st = (St, lt).
In this framework, the procedures are divided into two

stages by two resampling steps. We describe details of these
stages below.

C. The First Stage : Contour Center Estimation

Samples s
′
t−1 are propagated with the first transition model

p(St|St−1, lt−1). We assume uniform straight motion of a
target position between two successive frames. Transition
model p(St|St−1, lt−1) is denoted as below.

St = St−1 + τvt−1 + ωt, (6)
ωt = (Γlt−1 |vt−1|+ γlt−1)ν, (7)

where τ is the time interval between frames, vt−1 is the
previous velocity of the target, ω is a system noise added to
s′t−1, and ν is a zero-mean Gaussian noise with a standard
deviation 1. Γlt−1 and γlt−1 are constant determined before-
hand by amount of the motion of human pose l, and vt−1 is
estimated by the estimated target’s position in two successive
frames. We control the diffusion factor ω adaptively by the
velocity vt−1 and the pose state lt−1 of the sample s′t−1.
Such control of the system noise ω contributes to improving
the robustness against sudden abrupt motion and the accuracy
of the center estimation.

The sample weights πS of the first stage are evaluated by
the likelihood of the center position from the observation z′t
and new samples are selected in proportion to sample weight.
The weights πS are evaluated by background subtraction
model of each laser range sensor as below.

πS =

M∑
i=1

exp
−|ds −Rl|

λ
, (8)

where ds is distance between detected point by background
subtraction model of sensor i and the sample s

′′
t , and Rl is

the radius of the human contour determined by the pose l
of the sample s

′′
t . Using this model, this function evaluates
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Fig. 6. Flow of the overall process

samples by distance between the sample and the center
of the contour that we assumed. We show the background
subtraction model in Fig.7

Finally, new samples are selected in proportion to sample
weight πS and are added the small diffusion. These proce-
dures lead to a dense set of samples around the true center
position.

D. The Second Stage : Human Pose Estimation

In the second stage, human poses are estimated from each
sample state as described in section II. This function is
implemented by the second transition model p(lt|St, lt−1).
Transition model p(lt|St, lt−1) is denoted as below.

Tlt−1,ltDhis(q(St), q(lt)) > ζ, (9)
lt = argmax

l
Dvec(St, l), (10)

where Dhis(q(St), q(lt)), Dvec(St, l) are likelihood com-
puted in Eq.1, 2. Pose label lt−1 transits to pose label lt
that is estimated from the position S = (x, y) of the sample
ŝt by the method described in section II. In this framework,
each sample has a pose estimation framework by Bayesian
inference and each sample transits independently.

The weights π are evaluated by the likelihood Dvec(St, lt)
based on the sample state st = (St, lt) as below.

πt = exp(−κDvec(St, lt)) (11)

Because estimated state at time t is equal to the expectation
of the set of samples { (s

(n)
t ;π

(n)
t )} , estimation results by

each sample are integrated.

E. Extension to Multiple People Pose Estimation

Traditional particle filters perform poorly at consistently
maintaining the multi-modality in the target distribution that
often results from multiple targets. Vermaak et al. [13] intro-
duced a mixture particle filter (MPF), where each component
is modeled with an individual particle filter that forms part
of the mixture. The MPF enables tracking multiple targets
simultaneously. In our approach, for the purpose of multiple
people estimation, our method is extended to multiple single-
target particle filter framework as the MPF. Each filter

tracks each person independently. Human contours obtained
by laser range sensors scarcely join each other and not
require a segmentation of human existing area. Therefore,
the extension can be simplified.

IV. EXPERIMENTAL RESULTS

A. Setup and Procedure

The area of interest in our experimental environment was a
space within the room roughly 4 meters long and 4.5meters
wide. We used four SICK LMS-200 laser scanners, set to
scan an angular area of 100◦ at a resolution of 0.25, covering
a radial distance of 8 meters with a nominal system error of
±15 mm, providing readings of 401 data points every 53 ms.

The sensors were mounted at a uniform height of about
90cm, just waist-level for most subjects. Tables and sofas
were also placed within the area, but all of these were below
90cm and thus not visible to the laser scanners.

In the construction of pose candidates, we used about
1000 frames of data obtained by a full body motion capture
system NatruralPoint OptiTrack. We extract 22 representative
contours through clustering process. Θ is set to 10 and
22× 36 = 792 pose candidates are constructed.

In this experiment, we set Rmax = 100(mm), λ =
220, κ = 5.0, ζ = 0.75(N/180) respectively. Moreover, we
processed 150 samples per one target.

The overall process is executed by one PC (Intel Core2
Duo E6600 2.40GHz, Memory 2GByte). The tracking runs
online at a frame rate of 16.6 Hz when tracking two people,
12.5 Hz when tracking three people. In the below estimation
experiments, we used the data obtained at 10 fps.

B. Pose Estimation of a single person

In order to investigate quantitatively the estimation ac-
curacy by the proposed method, we performed several ex-
periments. In the experiments, we assumed a variety of
movements of a single person: walking, sitting, bending,
etc. The true position is extracted from the motion data
collected by a full body motion capture system NatruralPoint
OptiTrack at the same time. Fig.8 shows an example of
estimation results.
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Fig. 8. Experimental results on single human pose estimation

In contour image of Fig.8, white lines denotes estimated
waist orientation and green lines denotes the true waist
orientation. Reference image is captured for the reference at
the same time by a camera. We can see from Fig.8 that the
pose is well estimated through a series of motions. Contours
extracted from different poses in frame 300 and 1035 are
so similar that it may be difficult to distinguish these poses.
However, we can see that it is possible to estimate these poses
by our method. This is attributed to making consideration
of time-series information. Then, due to symmetry, arbitrary
180◦ flipping can be a problem in the contours as like frame
295 or 300. Against such contours, our method also estimates
correctly. We can also confirm the robustness of our approach
against the various motions of arms or hands from frame 295
and 300.

Moreover, we computed estimation accuracy. If head posi-
tion zh and waist position zw are correct and error of rotation
angle θ is below 30◦ or 45◦, we regard the result as a correct
estimation and computed accuracy. We used 5616 frames
that contain 3608 walking frames and 1247 sitting frames
because the motion of the daily life in home environment is
assumed. As a result, estimation accuracy(%) is 82.5 if error
of rotation angle θ is below 30◦, and 85.6 if error of rotation
angle θ is below 45◦. Moreover, estimation accuracy is 86.7
when we evaluated only the head and waist position.

We also computed recall rate, precision rate, F-measure at
each poses that not contain rotation. Recall rate, precision
rate, F-measure are defined as below.

recall rate =
correctly estimated poses

total poses
(12)

precision rate =
correctly estimated poses

total poses estimated by method
(13)

F-measure =
2× recall × precision

recall + precision
(14)

TABLE I
ESTIMATION RESULTS AGAINST STANDING AND SITTING

Standing Sitting
tolerance Recall Precision F-measure Recall Precision F-measure

30◦ 84.3 88.1 86.2 92.1 94.6 93.3
45◦ 87.8 91.7 89.7 92.1 94.6 93.3

only position 89.6 93.6 91.5 92.1 94.6 93.3

Table I shows recall rate, precision rate, F-measure at
standing pose and sitting pose.

We confirm from estimation accuracy that our method
estimates human poses sufficiently. As for the orientation,
the accurate estimation can be also confirmed. If we can get
the orientation within an error 30◦, it is possible to provide
appropriate supports by robotic systems.

All F-measure scores at sitting poses are above 92.1 and
the high performance against sitting poses is determined. In
contrast, the F-measure score at standing poses within 30◦

angle errors is 86.2 and less than that at sitting poses. This is
due to the rapid and various motions of arms that change the
contour. However, the rough orientation is well estimated.

C. Pose Estimation of Multiple People

In order to demonstrate the effectiveness and robustness
of the method against multiple people, we performed several
experiments. In the experiments, we assumed up to four
people. Fig.9 shows some of the results. In top image,
extracted contours are superimposed upon scan data.

The effectiveness of our method in the movements of
multiple people can be confirmed from Fig.9. In frame 710,
there is an example of incomplete contours that suffer a loss
by occlusion. Even in this case, our method can maintain
correct estimation. This is attributed to pose estimation by
many hypotheses. We can also see that the contours from
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Fig. 9. Experimental results on pose estimation of multiple people

laser range finders can be obtained stably and hardly suffer
an extreme loss. It is a superior property of laser range
finder. Consequently, human poses of multiple people can be
estimated with the almost same accuracy as that of a single
person. Then we used the same pose candidates set for all
people. We can confirm that differences among individuals
hardly affect the estimation accuracy.

V. CONCLUSION

In this paper, we proposed a method for pose estimation
of multiple people by using only laser range finders. In order
to estimate not only position but also pose, we used human
cross sectional contours on the height of waist.

The proposed method uses the example based approach
and a new particle filter framework with two transition
models and two resampling steps. Position estimation and
pose estimation are performed by many hypotheses.

In our experiments, estimation accuracy(%) is 82.5 if error
of rotation angle θ is below 30◦, and 85.6 if error of rotation
angle θ is below 45◦. Thus we showed the effectiveness
of the proposed method in estimation of human poses
such as standing, sitting or bending in indoor environment.
Successful pose estimation for multiple people was also
demonstrated in our experiments. It was shown that pose
estimation from human cross sectional contours on the height
of waist is effective in pose estimation of multiple people.

Future tasks are experiments in the other wide environment
such as airports, train stations, and shopping malls. Because
the laser range finder covers a radial distance of 20 meters
with a nominal system error of ±4 cm, it is expected that
the propose method is effective in those environments.
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