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Abstract— In this paper, a position based impedance con-
troller (i.e. admittance controller) is designed by utilizing
measurements of a force/torque sensor, which is mounted at the
robot’s base. In contrast to conventional force/torque sensing
at the end-effector, placing the sensor at the base allows to
implement a compliant behavior of the robot not only with
respect to forces acting on the end-effector but also with
respect to forces acting on the robot’s structure. The resulting
control problem is first analyzed in detail for the simplified
one-degree-of-freedom case in terms of stability and passivity.
Then, an extension to the Cartesian admittance control of
a robot manipulator is discussed. Furthermore, it is shown
how the steady state properties of the underlying position
controller can be taken into account in the design of the
outer admittance controller. Finally, a simulation study of the
Cartesian admittance controller applied to a three-degrees-of-
freedom manipulator is presented.

I. INTRODUCTION

Impedance control is a prominent example for a compliant

motion control algorithm used for autonomous manipulation

and physical human-robot interaction [1], [2]. Different im-

plementations of the general impedance control concept have

been proposed using either impedance or admittance causal-

ity of the controller. A controller with impedance causality

(sometimes called ”force based impedance control”) usually

requires a precise torque interface and thus can benefit

greatly of integrated torque sensing and torque control [3],

[4]. In many commercial robots this is not feasible and only a

conventional position or velocity interface is provided. In that

case, a compliant behavior can still be implemented by in-

tegrating a force/torque sensor (FTS) at the end-effector and

designing an outer loop admittance controller (sometimes

called ”position based impedance control”) which provides

the desired set-point for an inner loop position or velocity

controller [5].

In this paper, we focus on the implementation of an ad-

mittance controller, which can be implemented on a position

controlled robot. However, by using a FTS mounted at the

tip of the robot, the compliant behavior can only be achieved

with respect to forces acting on the end-effector, while the

robot will be ”insensitive” to forces acting along the robot’s

structure. In contrast to this, the use of robots in partly

unknown human environments requires a compliant behavior
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of the robot also for (unplanned) contacts at different points.

While the application of force sensitive skins [6] or the

integration of torque sensing [7], [8] are possible approaches

to handle such situations, we investigate on an alternative

approach in this paper. Our approach aims at integrating

a force/torque sensor at the base of the robot instead of

mounting it at the end-effector. This enables to perceive

forces all along the robot’s structure independently of joint

friction. However, since the forces measured at the base

are related to the robot’s motion, the manipulator dynamics

must be taken into account in the design of the admittance

controller.

Apart from applications to fixed mounted manipulators,

we expect that the same issue will also be relevant for im-

plementing whole body impedance controllers of humanoid

robots. Feedback of the feet contact forces is often used in

walking and balancing controllers of biped robots in order to

control the interaction forces of the robot with the ground [9].

However, in that case the force feedback is often designed in

a pragmatic way and without rigorous theoretical justification

or stability analysis.

In the design of whole body impedance controllers includ-

ing a compliant behavior of the lower body with respect to

forces acting on the main body, we have to take account

of the following key issues. Firstly, for position controlled

robots it is necessary to incorporate the contact force mea-

surements at the feet into the whole body control, since these

sensors provide an indirect measurement of all forces acting

on the robot. Secondly, for keeping the zero-moment-point

within the support polygon of the feet, it is necessary to limit

the contact forces and moments. Thirdly, for handling larger

contact forces, a combination with stepping and walking

technologies will be required. Within this paper, we treat

the first of these problems. Compared to previous works

on this problem, we aim at giving an adequate theoretical

justification of the base sensor feedback by deriving all the

relevant dynamic equations and by presenting a stability

analysis of the one-DOF case.

The use of base mounted FTSs for identification and joint

torque estimation has been well studied in the works of

Dubowsky et al. [10], [11], [12]. In [11], a method for esti-

mating the dynamical parameters of a serial manipulator arm

was presented. Due to the measurement of the base force,

no joint torque information was required in the identification

procedure. In [12], the base FTS was used for estimating the

robot’s joint torques based on known dynamical parameters.

The estimated torque signal was used for implementing an

inner torque control loop, which was augmented by an outer
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PD position controller.

In [13], a base FTS was used in combination with a

FTS mounted at the wrist for collision detection and iden-

tification in human-robot interaction tasks. Kosuge et al.

[14] integrated a body force sensor on a mobile robot for

cooperatively handling large objects by multiple robots.

In contrast to [12], we aim at incorporating the base

force measurement directly into the design of an admittance

controller instead of implementing an inner loop torque

controller. The desired impedance represents a dynamic

relation between external forces and the motion of the robot.

This impedance will be transformed into a dynamic relation

between the contact force at the base and the robot’s motion.

We will highlight some restrictions on the achievable closed

loop dynamics which are due to the dislocation of the force

sensing. A first version of the controller from this paper was

already presented in [15]. In the present paper, the controller

from [15] is refined by compensating for the steady state

error of the underlying position controller. This refinement

if achieved by modifying the outer admittance control loop

based on design ideas from [16], [17].

II. ROBOT MODEL INCLUDING THE BASE FORCE

In this section, the general model of a robot with n joints is

discussed, in which an expression of the contact force at the

base is included. In contrast to interaction forces measured at

the end-effector, the forces between the robot and its base are

internal forces. Therefore, we start with an extended model

with a free-floating base (Fig. 1). By adding constraints on

the base motion, we can derive an explicit expression of the

force and torque measured at the base.

O

x = f(q)

F b

F ext

xb, ẋb

Fig. 1. Model of a robot manipulator mounted on a base FTS. The fixed
base manipulator model is augmented by a free-floating base link, for which
the motion will be constraint. In this way, we can represent the reaction force
at the base as the constraint force.

In the following, the position and orientation of the base

link is specified via local coordinates xb ∈ ℝ
6. The joint

angles of the manipulator are denoted by q ∈ ℝ
n. Then, the

model of the robot with an free-floating base link can be

written as

M̄(xb, q)

(
ẍb

q̈

)

+ C̄(xb, ẋb, q, q̇)

(
ẋb

q̇

)

+ ḡ(xb, q) =

(
0

�

)

−

(
F b

0

)

+ � ext , (1)

wherein M̄(xb, q) ∈ ℝ
(6+n)×(6+n) denotes the complete

inertia matrix including the base link [18]. The centrifugal

and Coriolis terms are given via the matrix C̄(xb, ẋb, q, q̇) ∈
ℝ

(6+n)×(6+n). The gravity term is written as ḡ(xb, q) ∈

ℝ
(6+n). The joint torques � ∈ ℝ

n are considered as the

control inputs. The generalized force measured by the base

FTS is denoted by F b ∈ ℝ
6. The generalized external forces

(except for the generalized forces F b exerted at the base at

the location of the FTS) acting on the robot are summarized

by the vector � ext. In case that the external torques are due

to a generalized force F ext ∈ ℝ
6 acting at the end-effector,

they can be written as

� ext =

(
� ext,b

� ext,m

)

=

[
JT

b (xb, q)

JT
q (xb, q)

]

︸ ︷︷ ︸

JT (xb,q)

F ext , (2)

with J(xb, q) ∈ ℝ
(6×(6+n)) as the Jacobian matrix for the

serial kinematic chain from the fixed world frame O to the

end-effector. In the following, the external torques are split

up into the two components � ext,b ∈ ℝ
6 and � ext,m ∈ ℝ

n

acting on the base link and the joints, respectively.

In (1), the joint coordinates q are augmented by local

coordinates of the base link motion xb in order to incorporate

the contact force F b into the equations of motion. Since the

base is attached to the ground via a stiff force/torque sensor,

we have to augment (1) by an additional constraint, which

prevents any motion of the base link:

xb(t) = x∗

b ,
dxb(t)

dt
= 0 ⇒

[
I 0

]

︸ ︷︷ ︸

Φ

(
ẋb

q̇

)

= 0 . (3)

From this, one can see that the generalized force at the

base F b is represented in (1) by the Lagrangian multipliers

related to the constraint matrix Φ ∈ ℝ
6×(6+n) from (3). In

the following, this constraint will be incorporated into (1). In

this way an expression of the generalized base force can be

derived. Therefore, we drop the dependence on the constant

position and orientation xb = x∗

b of the base link and write

M̄(x∗

b , q), C̄(x∗

b ,0, q, q̇), and g(x∗

b , q) in the form

M̄(x∗

b , q) =

[
M b(q) M c(q)

MT
c (q) M (q)

]

,

C̄(x∗

b ,0, q, q̇) =

[
Cb(q, q̇) C1(q, q̇)
C2(q, q̇) C(q, q̇)

]

,

ḡ(x∗

b , q) =

(
gb(q)
g(q)

)

,

where M(q) ∈ ℝ
n×n is the joint level inertia matrix and

M c(q) ∈ ℝ
(6×n) represents the inertia coupling matrix

between the manipulator and the base link. Notice that the

classical robot dynamics can be obtained by pre-multiplying

(1) by a matrix spanning the left nullspace of ΦT :

M(q)q̈ +C(q, q̇)q̇ + g(q) = � + � ext,m . (4)

In order to get an expression for the base force as a

function of the robot’s motion, we instead pre-multiply (1)

3245



by Φ and obtain

F b = � ext,b −M c(q)q̈ −C1(q, q̇)q̇ − gb(q) . (5)

Moreover, substituting q̈ from (4) into (5), leads to

F b = −M c(q)M
−1(q)[� + � ext,m −C(q, q̇)q̇

−g(q)] + � ext,b −C1(q, q̇)q̇ − gb(q) . (6)

The last three equations (4)-(6) basically represent three

relations between q̈, � , and F b, which will be relevant for

the derivation and analysis of the admittance controller:

A: (4) represents a relation q̈ ⇌ � (robot dynamics).

B: (5) represents a relation F b ⇌ q̈.

C: (6) represents a relation F b ⇌ � .

From (5) and (6), it is obvious that the base force, which is

measured by the FTS, depends not only on the robot’s state

(q, q̇) and the generalized external forces � ext, but also on

the current joint torque � , which is considered as the control

input in our case. It should be mentioned that therefore the

use of this force in the controller is from a theoretical point of

view not unproblematic. This issue basically arises because

we ignore the force sensor’s elasticity in the model and

treat it as an ideal force sensing element. However, for the

controller design, one should avoid direct feedback from the

force sensor measurement to the joint torque output of the

controller as this feedback would not be well-defined.

III. CONTROLLER DESIGN: THE ONE-DOF CASE

In this paper, we focus on an admittance controller design.

Therefore, we will use an underlying position controller for

the robot manipulator and design a compliant impedance

behavior in an outer loop based on the measured forces

at the base. For this, in particular the relation between the

external forces and the measured contact force at the base

is of interest. The general relations for the n degrees-of-

freedom case are given in (5) and (6). Before discussing the

design of a Cartesian admittance controller in section IV, we

will analyze the simple one-degree-of-freedom case in this

section in order to clarify the main design issues based on a

simple model.

Consider the model shown in Fig. 2, in which a single

mass M is controlled via an actuator force F . Compared

to the general model described in Section II, we have the

correspondence as shown in Tab. I. The actuator force F is

determined by the output of an inner loop position controller

for x ∈ ℝ, which gets its set-point xd from an outer

admittance controller. In the analysis of this section, we will

assume that the underlying position controller has the form

of a PD controller with velocity feed-forward term, i.e.

F = −P (x− xd)−D(ẋ− ẋd) , (7)

with positive PD controller gains P > 0 and D > 0.

It can easily be verified that in this simple one-DOF case

the complete inertia matrix becomes

M̄ =

[
Mb +M M

M M

]

.

x

Mb

M

Fb
Fext

F

Fig. 2. Model of single mass, actuated by the force F and mounted on a
base force sensor.

TABLE I

CORRESPONDENCE BETWEEN THE GENERAL AND THE

ONE-DEGREES-OF-FREEDOM CASE

general case one-DOF

Coordinates q x
Actuator force � F
External force F ext Fext

� ext,b Fext

� ext,m Fext

and thus the inertia coupling matrix M c(q) is given by

M . By evaluating (4)-(6) for this one-DOF case, we obtain

(A) Mẍ = F + Fext , (8)

(B) Fb = Fext −Mẍ , (9)

(C) Fb = −F . (10)

Due to M c(q)=̂M , the relation between Fb and the actuator

force F in (10) has a very simple form, i.e. the measured

base force is equal to the reaction force of the actuator.

As a control goal, we assume a desired impedance relation

in form of a second-order mass-spring-damper system

Mdẍ+Ddẋ+Kd(x− x0) = Fext , (11)

with Md > 0, Dd > 0, and Kd > 0 as the desired inertia,

damping, and stiffness, respectively. The point x0 ∈ ℝ is the

virtual equilibrium position and is assumed constant. The

desired behavior (11) defines a dynamic relation between ẋ
and the external force Fext. Since we want to realize this

behavior based on the measurement of the contact force at

the base, we transform the desired impedance into a relation

between ẋ and the base force Fb. This can be done by

combining (11) and (9) to obtain

(Md −M)ẍ+Ddẋ+Kd(x− x0) = Fb . (12)

From (12), one can see that the target inertia Md must always

be larger than M , otherwise (12) would result in an unstable

dynamics. Notice that (12) is independent of the underlying

position controller (7) used for the implementation via ad-

mittance control. For an ideal position controller, the actual

position x would become identical to its reference motion

xd. One possible way for implementing (11) with a position

controlled robot is then to replace x in (12) by xd:

(Md −M)ẍd +Ddẋd +Kd(xd − x0) = Fb . (13)

This design strategy, shown in Fig. 3 so far did not involve

the particular form of the underlying position controller.
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Mb

M

Fb

Fext

F

(13) Position
Control

xd

Fig. 3. Admittance control of the one-DOF model using a FTS at the
base. If the admittance controller from (13) is replaced by (18), one can
take account of the static error resulting from the position controller.

However, for analyzing the stability properties we need to

consider a particular controller structure. In the following, we

assume the PD controller (7). Then, the closed loop system

can be obtained from (8) and (13). By using (7) and (10),

we can eliminate F and Fb from (8) and (13) to obtain

Mẍ+D(ẋ− ẋd) + P (x− xd) = Fext , (14)

(Md −M)ẍd +Ddẋd +Kd(xd − x0) =

P (x− xd) +D(ẋ − ẋd) . (15)

Let us first analyze the equilibrium points of the system.

Therefore, we assume that a constant external force Fext

is acting on the system. Then the unique equilibrium point

(x̂, x̂d) can be obtained from (14)-(15) as

x̂d = x0 +
1

Kd

Fext (16)

x̂ = x0 +
Kd + P

KdP
Fext . (17)

Using the new coordinates x̃ = x−x̂ and x̃d = xd−x̂d, the

stability of the equilibrium point in the sense of Lyapunov

can be shown based on the Lyapunov function

V (x̃, x̃d, ˙̃x, ˙̃xd) =
1

2

(
˙̃x
˙̃xd

)T [
M 0
0 (Md −M)

](
˙̃x
˙̃xd

)

+

1

2

(
x̃
x̃d

)T [
P −P
−P P +Kd

](
x̃
x̃d

)

,

which is positive definite for Md > M . The time deriva-

tive of this function along the solutions of (14)-(15) is given

by

V̇ (x̃, x̃d, ˙̃x, ˙̃xd) = −Dd
˙̃x2
d −D( ˙̃x− ˙̃xd)

2 ,

from which stability of the equilibrium point follows. More-

over, by invoking La’Salle’s invariance principle [19], also

asymptotical stability can be shown.

In the stability analysis, a constant external force was

assumed. Regarding interaction with dynamic environments,

one can additionally show passivity of the closed loop system

with the external force Fext as input and the velocity ẋ
as output. This can be verified by considering the storage

function

V (x, xd, ẋ, ẋd) =
1

2
Mẋ2 +

1

2
(Md −M)ẋ2

d +

1

2
P (x− xd)

2 +
1

2
Kd(xd − x0)

2 ,

for which the time derivative along the solutions of (14)-(15)

is given by

V̇ (x, xd, ẋ, ẋd) = −Ddẋ
2
d −D(ẋ − ẋd)

2 + ẋFext .

From this, the passivity of the system with respect to the

input-output pair (ẋ, Fext) follows immediately1.

Notice that in the controller design so far, the outer loop

admittance controller (13) was designed independently of the

inner position controller. For a non-ideal position controller,

the achieved impedance (as a relation between x and Fext)

will be slightly distorted according to the properties of the

inner loop position controller. In case of the PD controller

(7), one can see from the steady state equation (17) that

the achieved steady state behavior corresponds to a stiffness

value of KdP/(Kd + P ). This stiffness tends to the desired

value Kd for large position controller gains P >> Kd.

However, it is possible to exactly compensate for the steady

state error of the position controller if the gain P of the

position controller is known. Then the stiffness term of the

outer admittance control loop can be modified by adopting

the techniques used in [16], [17]. If the stiffness term in

(13) is replaced by KdP
P−Kd

(xd − x0), with Kd < P , the

desired stiffness Kd is achieved exactly. However, in this

case the position controller gain P poses an upper limit for

the achievable stiffness Kd < P . The modified admittance

controller is then given by

(Md −M)ẍd +Ddẋd +
KdP

P −Kd

(xd − x0) = Fb . (18)

Notice that this modification would not be necessary if

instead of the underlying PD controller a controller with

integral action is used.

IV. CARTESIAN ADMITTANCE CONTROL OF A

MULTI-BODY ROBOT

In the previous section, the admittance controller design

and its stability analysis have been presented in detail for a

simple model. In this section, the same line of argumenta-

tion will be followed for designing a Cartesian admittance

controller of a multi-body robot manipulator.

Let the desired impedance be defined in Cartesian coordi-

nates x = f(q) ∈ ℝ
6, ẋ = J(q)q̇, where f(q) represents

the forward kinematic mapping and J(q) ∈ ℝ
(6×6) the

analytic Jacobian J(q) := ∂f(q)/∂q. In the following

derivations, we will consider the non-redundant case and

assume that the Jacobian is non-singular (and thus invertible)

in the relevant workspace. Extensions to the redundant case

would additionally require to consider the effect of the

nullspace dynamics (see, e.g., [21], [22]) on the measurement

of the base FTS.

As a desired impedance, we assume a mass-spring-

damper-like system of the form

Λdẍ+Ddẋ+Kd(x− x0) = F ext , (19)

1A sufficient condition for a system (with input u and output y) to be
passive [20] is given by the existence of a continuous storage function S
which is bounded from below and for which the derivative with respect to

time along the solutions of the system satisfies the inequality Ṡ ≤ yTu.
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with the symmetric and positive definite matrices Λd ∈

ℝ
6×6, Dd ∈ ℝ

6×6, and Kd ∈ ℝ
6×6 representing the

desired inertia, damping, and stiffness, respectively. The

virtual equilibrium position is given by x0 ∈ ℝ
6.

The main advantage of using the base sensor is that it

allows to measure forces all along the robot’s structure, not

only the the end-effector. Still, the above desired impedance

is defined with respect to Cartesian coordinates describing

the end-effector position and orientation. This means that

for forces exerted in the vicinity of the end-effector, the

perceived impedance will be close to (19). If the external

forces are exerted far away from the end-effector, e.g. close

to the base link, then the perceived impedance behavior will

be different. However, under the assumption that a reliable

contact point estimation is feasible, one could aim at adapting

the compliance behavior to the current point of contact.

In order to compare the desired impedance with the

equations of motion (4) and for combining it with (5)-(6),

we rewrite the model (4) in Cartesian coordinates as2

Λ(q)ẍ+ �(q, q̇)ẋ+ p(q) = J−T (q)� + F ext , (20)

where Λ(q) denotes the Cartesian inertia matrix Λ(q) =
(J(q)M−1(q)JT (q))−1 and the matrices �(q, q̇) and the

Cartesian gravity term p(q) are given by �(q, q̇) =
J−T (q)(C(q, q̇)−M (q)J−1(q)J̇(q))J−1(q) and p(q) =
J−T (q)g(q), respectively.

The relation between the base force and the accelerations,

i.e. (5), becomes

F b = JT
b (q)F ext −Λc(q)ẍ− �1(q, q̇)ẋ− gb(q) , (21)

where the inertia coupling matrix Λc(q) and �1(q, q̇)
are given by Λc(q) = M c(q)J

−1(q) and �1(q, q̇) =
(C1(q, q̇)−M c(q)J

−1(q)J̇(q))J−1(q), respectively.

Finally, equation (6) takes the form

F b = M c(q)M
−1(q)[� + JT

m(q)F ext − �(q, q̇)ẋ (22)

−p(q)] + JT
b (q)F ext − �1(q, q̇)ẋ− gb(q) .

Similar to the procedure in the one-DOF case, we trans-

form the desired impedance (19), which represents a relation

between the Cartesian velocity and the external forces, into

an impedance relation between the velocity and the general-

ized base force. Therefore, we utilize (21) to obtain
(

Λd − J−T
b (q)Λc(q)

)

ẍ+
(

Dd − J−T
b (q)�1(q, q̇)

)

ẋ+

Kd(x− x0) = Jb(q)
−T (F b + gb(q)). (23)

Equation (23) presents the main component for the design

of the controller. We are aiming again at an admittance

controller with an inner position control loop. Instead of

implementing the underlying position controller based on

the Cartesian dynamics (20), a joint level position controller

2While the assumptions made in this section would formally allow to
represent the system dynamics in terms of x = f−1(q) and ẋ only, we
keep the dependence of the dynamic equations on the joint angles q since
this formulation is closer to the actual implementation of the control law.

can be used and combined with the Cartesian admittance

by inverse kinematics as shown in Fig. 4. Let xd ∈ ℝ
n be

the desired Cartesian position resulting from the admittance

controller and qd = f
−1(xd) the corresponding set-point

for the position controller, the admittance controller, which

implements (19) based on the measurement of the base force,

can be written as
(

Λd − J−T
b (qd)Λc(qd)

)

ẍd +
(

Dd − J−T
b (qd)�1(qd, q̇d)

)

ẋd +

Kd(xd − x0) = J−T
b (qd)(F b + gb(qd)). (24)

f (q)

F b

F extInverse
Kinematics

Position
Control

Λ(q) ∈ ℝ
6,6

(24)

�

qd

xd

Fig. 4. Cartesian admittance control of a manipulator mounted on a base
FTS. If the admittance controller from (24) is replaced by (28), one can take
account of the static error resulting from the underlying position controller.

Similar to the one-DOF case, a correction of the steady

state error due to a non-ideal position controller is possible

by modification of the stiffness term in (24). Therefore, it

is required that the steady state properties of the controller

are known. If we consider for instance a PD controller with

gravity compensation

� = P (qd − q) +D(q̇d − q̇) + g(q) , (25)

with positive definite gain matrices P ∈ ℝ
n×n and D ∈

ℝ
n×n, then the steady state error for a constant external force

F ext depends on the proportional gain matrix P . In steady

state, the joint angle q̂ clearly fulfills

�̂ = P (qd − q̂) = −JT (q̂)F ext . (26)

The correction of the admittance control law can be done

by following the methods proposed in [16], [17]. From (19)

one can see that in the steady state of the desired impedance,

the condition Kd(f(q̂) − x0) = F ext should hold. By

combining this equation with (26), we get

P (qd − q̂) = −JT (q̂)Kd(f(q̂)− x0) . (27)

The idea, adopted from [16], [17], is then to solve (27) for

q̂ and use the resulting function q̂(qd,x0) in the implemen-

tation of the admittance. In this way, we obtain
(

Λd − J−T
b (qd)Λc(qd)

)

ẍd +
(

Dd − J−T
b (qd)�1(qd, q̇d)

)

ẋd +

Kd(f (q̂(qd,x0))− x0) = J−T
b (qd)(F b + gb(qd)). (28)
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More details on how to solve an equation like (27) for q̂

can be found in [16], [17]. However, this solution requires

that the controller gain P is ”larger” than the Cartesian

stiffness Kd, i.e. (27) can be solved uniquely only if

JT (q)KdJ(q) < P holds. Thus, the gain of the position

controller represents an upper bound for the achievable

stiffness, which is not surprising at all.

V. SIMULATION RESULTS

For the verification of the controller from Fig. 4, we

present a simulation study of a planar three-degrees-of-

freedom robot as shown in Fig. 5. For the inner loop position

controller a PD controller with gravity compensation as in

(25) is used. The proportional gain matrix P is chosen as a

diagonal matrix. The two sets of proportional gains, which

have been used in the simulations, are given in Tab. II.

For the design of the damping gain matrix D the ”double

diagonalization design” from [23] with a damping factor of

0.7 is applied resulting in a configuration dependent damping

matrix.

0.5 m

0.25 m 1.0 kg

1.0 kg

1.0 kg

x

y

'

F ext

Fig. 5. Simulation model: A planar three-DOF manipulator mounted on a
base FTS. The link length of all three segments is set to 0.5m. The inertia
of the links is represented by a single mass located in the center of the link
segments. The external force acts in the horizontal x-direction. As Cartesian
coordinates, the end-effector position (x, y) and orientation � are used.

TABLE II

GAINS OF THE JOINT POSITION CONTROLLER

Joint 1 2 3

Prop. Gain ”L” [Nm/rad] 5 103 5 103 103

Prop. Gain ”H” [Nm/rad] 5 104 5 104 104

TABLE III

IMPEDANCE PARAMETERS

Direction x y '
Inertia 5 Ns2/m 5 Ns2/m 5 Nms2/rad

Stiffness 100 N/m 100 N/m 10 Nm/rad
Damping 31.3 Ns/m 31.3 Ns/m 9.9 Nms/rad

In this simulation study, we compare the two admittance

controllers based on (24) and on (28) and we will observe the

influence of the underlying position controller on the closed

loop behavior. In all simulations, the desired impedance

is chosen according to (19) with diagonal matrices for

the desired inertia, damping, and stiffness. The values of

the diagonal elements are given in Tab. III. The external

excitation is chosen as a stepwise external force acting on

the end-effector in x-direction (see Fig. 5).

In the first simulation, we use the admittance controller

from (24) and the parameter set ”L” from Tab. II. The initial

configuration for the simulation can be seen in Fig. 5. The

resulting step response for a force step of 1N in x-direction

is shown in Fig. 6. The desired step response in x-direction

according to the parameters in Tab. III is shown by the

black dotted line, while the simulation result is shown by the

black solid line. While the transient behavior is similar to the

desired behavior, one can observe a steady-state error, which

results from the non-ideal position controller with a finite

proportional gain P . This can also be seen by observing

the motion in y- and �-direction, which should remain zero

according to the desired behavior.

In the second simulation, we now replace the admittance

control law (24) by (28). In order to solve (27) for q̂(qd, q0),
a first order approximation is used. The results are shown in

Fig. 7. One can see that the modified stiffness term in the

admittance controller eliminates the steady state error due

to the position controller. Clearly, for the implementation of

(28) it must be assumed that the value of the proportional

gain of the underlying position controller is known. In

the transient phase, the quality of the position controller

still influences the accuracy. The deviation of the Cartesian

coordinates in y- and �-direction from the equilibrium during

the transient phase can be explained by the effects of a non-

ideal underlying joint position controller. This is verified by

a third simulation in which the admittance controller (28) is

combined with a joint position controller with higher gains,

which are given by the set ”H” in Tab. II. The corresponding

simulation result is shown in Fig. 8. One can see that

for the higher proportional gains in the position controller

the desired impedance is realized much better during the

transient phase.
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Fig. 6. Simulation result with the admittance controller (24) and an
underlying position controller with the lower proportional gains (set ”L”
in Tab. II). The desired step response in x-direction is given by the black
dotted line. The simulation result for the Cartesian motion in x-, y-, and
�-direction are shown by the black solid line, the blue dashed line and the
red dashed-dotted line, respectively.
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Fig. 7. Simulation result with the admittance controller (28) and an
underlying position controller with the lower proportional gains (set ”L”
in Tab. II). The desired step response in x-direction is given by the black
dotted line. The simulation result for the Cartesian motion in x-, y-, and
�-direction are shown by the black solid line, the blue dashed line and the
red dashed-dotted line, respectively.
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Fig. 8. Simulation result with the admittance controller (28) and an
underlying position controller with the higher proportional gains (set ”H”
in Tab. II). The desired step response in x-direction is given by the black
dotted line. The simulation result for the Cartesian motion in x-, y-, and
�-direction are shown by the black solid line, the blue dashed line and the
red dashed-dotted line, respectively.

VI. SUMMARY AND OUTLOOK

In this paper, we analyzed the admittance control problem

of a robot manipulator, in which the force/torque sensor is

mounted at the base of the robot. This has the advantage

that external forces acting all along the robot’s structure are

perceived by the sensor. The desired impedance still is given

in terms of a dynamic relation between external forces at

the tip and the end-effector motion, but the interaction of

the robot with its environment is not restricted to the end-

effector. The contribution of this paper is a generalization of

the controller from [15] by taking the steady state properties

of the underlying position controller into account in the

design of the outer admittance control loop. The design

idea was exemplified by a detailed analysis of the one-

DOF case. The Cartesian impedance control problem for a

general multi-degrees-of-freedom robot was discussed and

verified by a simulation study. We believe that the analysis

can also be useful for implementing whole body impedance

and compliance controllers of legged robotic systems in

which the ground reaction forces of the feet are measured

by force/torque sensors.
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A. Pascucci, and M. Schedl, “DLR’s torque-controlled light weight
robot III - are we reaching the technological limits now?” in IEEE

Int. Conf. on Robotics and Automation, 2002, pp. 1710–1716.
[5] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-

elling, Planning and Control, ser. Advanced Textbooks in Control and
Signal Processing. Springer-Verlag, 2009.

[6] M. Lee and H. Nicholls, “Tactile sensing for mechatronics: a state of
the art survey,” Mechatronics, vol. 9, no. 1, pp. 1–31, 1999.

[7] Ch. Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, Ch. Borst,
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