
Experimental Verification of 3D Bipedal Walking based on

Passive Dynamic Autonomous Control

Tadayoshi Aoyama, Kosuke Sekiyama, Yasuhisa Hasegawa, and Toshio Fukuda

Abstract— This paper addresses a three-dimensional biped
dynamic walking control based on Passive Dynamic Au-
tonomous Control (PDAC). In our previous work, the robot
dynamics is modeled as a two-dimensional autonomous system
of a three-dimensional inverted pendulum by applying the
PDAC concept. In addition, the convergence algorithm based on
conservative quantities named “PDAC constant” was proposed,
so that walking velocity and direction is controllable. In this
paper, we apply our control framework to an experimental
robot “Multi-locomotion Robot”; then the performance and
the efficiency of the proposed control algorithm are verified by
experiments.

I. INTRODUCTION

Biped walking control has been studied for many years.

The most successful method to realize a three-dimensional

dynamic walking is so far the ZMP-based control [1], [2];

however, the ZMP-based control does not use a inherent

dynamics of the robot to realize a natural and efficient

walking.

So as to realize a natural and efficient walking, some

researchers proposed methods to utilize the robot dynamics

directly, assuming a point-contact between the robot foot

and the ground. Kajita et al. proposed a control method

which employed the conserved quantity introduced by the

assumption of the horizontal COG (Center Of Gravity)

trajectory [3]. Ono et al. proposed the self-exited walking

of the underactuated robot [4]. Chevallereau presented the

control of the robot dynamics on an optical trajectory by

introducing the virtual time [5]. Grizzle and Westervelt et

al. built the controller by the use of virtual holonomic

constraint of joints named Virtual Constraint which realizes

the stable dynamic walking by means of the biped robot with

a torso [6]–[8]. Some of these point-contact methods realized

smooth dynamic walking with two-dimensional experimental

robots.

Also, it is reported that three bipedal robots, where

minimum actuations based on passive dynamic walker [9]

are applied, realized three dimensional natural and efficient

walking on the level ground [10]. Although their work paid

attention to energy efficiency, the analytical control law

was not emphasized. On the other hand, there are some

interesting researches proposing analytical three-dimensional
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biped walking control law based on point-contact method for

a five-link bipedal robot [11], [12]; however, experimental

validations are not found in these works.

Fukuda et al. realized three-dimensional dynamic walk-

ing with the experimental robot based on the assumption

that the sagittal and lateral motion can be separated [13].

However, this control method has a problem in dividing

three-dimensional dynamics when the dynamics of each

plane are closely coupled. In order to solve this problem,

Doi et al. proposed Passive Dynamic Autonomous Control

(PDAC) [14] and applied it to three-dimensional natural

biped walking with an experimental robot [15].

We extended the PDAC further and proposed a stabilizing

method of three-dimensional biped walking previously [16],

which was only verified by numerical simulations. It is

important to verify the performance of the proposed control

algorithm by using an actual robot. In this paper, we apply

the convergent controller and the walking direction controller

in the work [16] to the experimental robot “Multi-locomotion

Robot [17]”; then the performance and the efficiency of the

proposed control algorithm are verified by experiments.

II. PASSIVE DYNAMIC AUTONOMOUS CONTROL (PDAC)

The PDAC was proposed previously by Doi based on two

concepts, i.e. point-contact and virtual constraint [14]. Point-

contact means that a robot contacts the ground at a point, that

is, the first joint is passive. Virtual constraint was defined by

Grizzle and Westervelt et al. [6], [8] as a set of holonomic

constraints on the robot’s actuated DoF parameterized by the

robot’s unactuated DoF. Assuming that PDAC is applied to

the serial n-link rigid robot as shown in Fig. 1, these two

premises are expressed as follows:
τ1 = 0 (1)

Θ = [θ1, θ2, · · · , θn]T = [f1(θ), f2(θ), · · · , fn(θ)]T

:= f(θ), (2)

where θ is the angle around the contact point w.r.t the

absolute coordinate system, that is, θ1 = f1(θ) = θ.

The whole robot dynamics is expressed as the follow-

ing one-dimensional autonomous system (that is, the phase

around contact point),

θ̇ =
1

M(θ)

√

2

∫

M(θ)G(θ) dθ (3)

:=
1

M(θ)

√

2
(

D(θ) + C
)

(4)

:=F (θ). (5)
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Fig. 1. Mechanical model of the serial n-link rigid robot. θi and τi are
the angle and the torque of ith joint respectively. mi and Ji are the mass
and the moment of inertia of ith link respectively.

The detailed calculation process is given in [14]. In this

paper, we term Eq. (4) and (5) as the Converged dynamics.

Since the Converged dynamics is autonomous, in addition,

independent of time, it is considered as a conservative

system. The integral constant in right hand side of Eq. (4)

C, is a conserved quantity, which is termed as the PDAC

constant. Its value is determined according to the initial

condition (as for biped walking, the state immediately after

foot-contact), and kept constant during a cycle of motion.

Thus, it is possible to stabilize the motion by keeping the

PDAC constant at a certain value.

III. DERIVATION OF CONVERGED DYNAMICS

As for humanoid-type robots, the trunk has much larger

mass compared to the limbs. Thus, in this paper, a robot

is modeled as a three-dimensional inverted pendulum shown

in Fig. 2(a). We apply an assumption of the point-contact

to this pendulum in accordance with the PDAC, hence it

is possible to choose the axes of pendulum angle around

the contact point to express its motion. In this paper, we

utilize the polar coordinate system. The state variables and

parameters are shown in Fig. 3(b). θ and φ are the variables

of the pendulum angle around the contact point. l is the

variable of the pendulum length.

In this paper, the trunk inclination is kept in the gravita-

tional direction and the upper body does not rotate around

yaw-axis. In addition, we assume that the robot is sym-

metrical. By applying PDAC, dynamic equations of three-

dimensional inverted pendulum are expressed as follows:

d

dt

(

ml2 sin2 θφ̇
)

= 0 (6)

d

dt

(

ml2θ̇
)

= ml2φ̇2 sin θ cos θ + mgl sin θ. (7)

The detailed calculation process of Eq. (6), (7) is given in

[15]. By multiplying both sides of Eq. (6) by ml2 sin2 θφ̇,

and integrating with respect to time, the following constraint

equation is obtained,

φ̇ =

√
2C1

ml2 sin2 θ
(8)

:= F1(θ), (9)

where C1 is the integral constant which is determined by

initial state immediately after foot-contact. Substituting Eq.
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Fig. 2. (a) 3D inverted pendulum model. (b) Definition of coordinate
system. Note that this figure shows just a coordinate system definition and
doesn’t mean that foot placement is in alignment.
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Fig. 3. (a) Passive joints (point-contact) and active pendulum length
actuation. (b) Polar coordinate system around contact point.

(8) into Eq. (7) results in

θ̇ =
1

ml2

√

2

∫ (

2C1 cos θ

sin3 θ
+ m2gl3 sin θdθ

)

(10)

:=
1

M(θ)

√

2
(

D(θ) + C2

)

(11)

:= F2(θ). (12)

Next, in accordance with PDAC, the pendulum length is

described as the function of θ,

l := λ(θ). (13)

In this paper, for simplicity, λ is defined as the following

function of θ,

λ(θ) =: 3

√

p1θ3 + p2θ2 + p3θ+p4 (14)

=: 3

√

f(θ). (15)

By substituting this equation into Eq. (11), the converged

dynamics is derived,

M(θ)=mf(θ)2/3 (16)

D(θ)=− C1

sin2 θ
− m2g

(

(

f(θ) − f ′′(θ)
)

cos θ

−
(

f ′(θ) − f ′′′(θ)
)

sin θ
)

. (17)
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IV. DESIGN OF CONTROLLER

A. Design of walking cycle

In this subsection, the actual motion of the robot is

designed. Figure 4 shows the schematics of the pendulum
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Fig. 4. Motion of a 3D inverted pendulum.
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Fig. 5. Parameters and variables of dynamic walking based on 3D inverted
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motion and the COG trajectory of the biped walking. The

continuous line shows a trajectory of the COG in the right-

leg support phase and the dotted line shows in the left-leg

support phase. The dot on the edge of both the continuous

line and the dotted one means a foot-contact. Figure 5 shows

the parameters and variables. S0 and S2 denote moments

right before and after a foot-contact, and S1 is the moment

at θ̇ = 0. θi, φi, and li denote the roll angle, yaw angle,

and pendulum length at Si (i = 0, 1, 2) respectively. During

the cycle of walking motion, φ will monotonically increase.

Meanwhile, θ will decrease at first, and then increases, after

posing for a moment at θ1. Thus, decompose the walking

cycle from a foot-contact to the next foot-contact into two

phases—Phase (A): from S0 to S1 (θ̇ < 0), Phase (B): from

S1 to S2 (θ̇ > 0). In the phase (A), the pendulum length will

not change, thus

p1 = p2 = p3 = 0, (18)

pd = l30. (19)

In the phase (B), the coefficients p1-p4 are decided so that

the following four conditions are satisfied,

f(θ1) = l31, (20)

f(θ2) = l32, (21)

f ′(θ2) = 0, and (22)

− f ′′(θ1) cos θ1 +
(

− f ′(θ1) + f ′′′(θ1)
)

sin θ1 = 0. (23)

Eqs. (20) and (21) indicate the continuity condition of the

pendulum length, and Eq. (22) is the condition that the

velocity of pendulum along l is 0 in the foot-contact. The

objective of Eq. (23) is to adjust PDAC constants of the phase

(A) and (B). In the phase (A), conditions of f ′(θ) = 0,

f ′′(θ) = 0, and f ′′′(θ) = 0 are satisfied because the

pendulum length is the constant value, i.e. f(θ) = l30. Thus,

if Eq. (23) holds when θ = θ1, Eq. (17) that is converged

dynamics, is continual during a walking cycle and PDAC

constants remain constant during a step.

From Eqs. (20)-(23), the coefficients p1-p4 are derived as

follows:

p1 = − l32 − l30
(θ2 − θ1)2

u3

u1u3 − u2

, (24)

p2 = − l32 − l30
(θ2 − θ1)2

u2

u1u3 − u2

, (25)

p3 = −3p1θ
2
2 − 2p2θ2, and (26)

p4 = l32 − p1θ
3
2 − p2θ

2
2 − p3θ2, (27)

where

u1 = 2θ2 + θ1, (28)

u2 = −6θ1 cos θ1 − 3θ2
1 sin θ1 + 6 sin θ1 + 3θ2

2 sin θ1, and

(29)

u3 = −2 cos θ1 − 2θ1 sin θ1 + 2θ2 sin θ1. (30)

B. COG controller based on virtual constraint

Figure 6 shows the block diagram of the robot joint control

based on virtual holonomic constraint. The current COG
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Fig. 7. Snapshots of the Simulation

position, (xg, yg, zg) is derived by solving the forward kine-

matics. From this result, pendulum angles can be determined

as below,

θ = cos−1





zg
√

x2
g + y2

g + z2
g



 , (31)

φ = tan−1

(

yg

xg

)

. (32)

By use of θ, the desired pendulum length is calculated,

ld = λ(θ). (33)

Consequently, the desired COG position is derived as fol-

lows:

xd
g = ld cos φ sin θ, (34)

yd
g = ld sin φ sin θ, and (35)

zd
g = ld cos θ. (36)

The desired joint angles are decided by solving the inverse

kinematics with reference to the desired COG position.

C. Foot-contact model

In this paper, it is assumed that perfectly inelastic collision

between a ground and a foot occurres for a moment similarly

to previous works [6], [8], [18], [19]. Thus the angular mo-

mentum around a new contact point is conserved. Assuming

that φ0 is the angle of φ right after a foot-contact, a vector

of the pendulum after impact, L is

L = [l0 sin φ0 sin θ0, l0 cos φ0 sin θ0, l0 cos θ0]
T , (37)

where φ0 and θ0 are angles in the coordinate system of the

next step.

The velocity vector right before a foot-contact, V1, is

calculated as follows:

V1 =[vx, vy, vz]
T , (38)

where

vx =l2(φ̇2 cos φ2 sin θ2 + θ̇2 sin φ2 cos θ2)

+ l̇2(sin φ2 sin θ2),

vy =l2(−φ̇2 sinφ2 sin θ2 + θ̇2 cos φ2 cos θ2)

+ l̇2(cos φ2 sin θ2),

vz = − l2θ̇2 sin θ2 + l̇2(cos θ2), and

φ2 is the angle of φ before the foot-contact.

The velocity vector after the foot-contact, V0, is derived

by the following equation,

V0 =
V1 · (L × (V1 × L))

|L × (V1 × L)| (L × (V1 × L)) (39)

=
L × (V1 × L)

l2
(40)

:= [v′

x, v′

y, v′

z]
T . (41)

Note that V1 is [−vx, vy, vz] since left- and right-handed

systems are switched at the foot-contact.

From Eq. (41), θ̇0 and φ̇0 are

θ̇0 = − v′

z

l0 sin θ0

, (42)

φ̇0 = − sinφ0 cos θ0

cos φ0 sin θ0

θ̇0 −
v′

x

l0 cos φ0 sin θ0

. (43)

V. EXPERIMENT

A. Simulation

In this paper, we apply the convergent controller and

the walking direction controller in our previous work [16]

for stabilization of a bipedal walking. By these controllers,

two PDAC constants C1 and C2 converge to C∗

1 and C∗

2

that are desired values of PDAC constant; then the robot

dynamics converges to a unique trajectory in the four-

dimensional space composed of θ, φ, θ̇, and φ̇. In the control

framework, a step-length, a walking period, and a walking

velocity are determined by the desired PDAC constants C∗

1 ,

C∗

2 and COG height at a foot-contact h. Unfortunately, we

have not found yet the systematic method to acquire the

optimal combination of C∗

1 , C∗

2 , and h according to the

desired step-length, walking period, and walking velocity.

Thus, in this paper, applicable C∗

1 , C∗

2 and h for the actual

robot are determined empirically by numerical simulations.

As the results of the simulations considered the physical

parameters of the Gorilla Robot III (introduced in the next

subsection), applicable C∗

1 , C∗

2 ,and h are found as follows;

C∗

1 =[(Kgm2/s)2], C∗

2 =[(Kgm2/s)2], and h=0.48[m]. On the

condition that these parameters are applied, also initial con-

ditions of velocity are set as θ̇=0.1[rad/sec], φ̇=0.0[rad/sec],

the step length, the walking period and the walking velocity

converge to 0.18[m], 0.65[sec], and 0.28[m/s] respectively.

Figure 7 shows snapshots of this simulation.

B. Experimental setup

Figure 8 depicts the overview of our robot “Gorilla Robot

III(Multi-Locomotion Robot) [17]” and its link structure. The
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Fig. 10. Phase Portrait of the inverted pendulum.

robot is about 1.0[m] tall, weighs about 24.0[kg], and con-

sists of 25 links and 24 motors including two grippers. The

real-time operating system VxWorks (Wind River Systems)

runs on a Pentium III PC for processing sensory data and

generating its behaviors. Each joint is driven by AC servo

motor through the harmonic drive gear, partially through a

timing belt. Maximum output power of the motor is 30[W].

The power supply and the computer are installed outside of

the robot for weight saving. The control system of the Gorilla

Robot III is shown as Fig. 9.

C. Experimental result

We validated the proposed algorithm with the Gorilla

Robot III. The experiment was conducted on the level ground

with maximum ±1.0[cm] irregularity. As a result of the

experiment, three-dimensional dynamic walking in 0.14[m]

step-length and 0.26[m/s] walking velocity was realized.

Although the ground has maximum ±1.0[cm] irregularity

in the experimental environment and the information of the

ground shape was not given to the robot, the robot achieved
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Fig. 11. Joint angle of the bipedal walking experiment.
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Fig. 12. Torque output of the bipedal walking experiment.

the stable walking without information of the ground. Figure

10 shows the phase portrait of the inverted pendulum. From

this figure, it is confirmed that the inverted pendulum motion

doesn’t diverge but make a periodic motion. Figures 11

and 12 show the joint angles and joint torques of the

experiment respectively. Also, Fig. 13 shows snapshots of

the experiment.

D. Energy efficiency

In this paper, in order to compare an energy efficiency

between robots of different sizes, the dimensionless specific

cost of transport, Ct=(energy used)/(weight×distance trav-

eled) which was proposed in [10], and the specific energetic

cost of transport, Cet, and the specific mechanical cost of

transport, Cmt were defined. Whereas Cet uses the total

energy consumed by the system, Cmt considers the positive

mechanical work of the actuators. Since a total energy cannot

be evaluated in our system, this paper uses Cmt as the

energetic cost of transport. The mechanical work of the

actuators in one cycle of the walking E is calculated as

follows:

E =

∫ T

0

N
∑

i=1

δ
(

τiθ̇i

)

dt, (44)

δ (x) =

{

x, if x > 0
0, if x ≤ 0

, (45)

where T is the cycle time of a walk, N is the number of

actuators, τi and θ̇i are the joint torque and the angular

velocity of i-th joint number. Then, the mechanical cost of

transport Cmt in one cycle of a walk is calculated as follows:

Cmt =
E

S × Mg
, (46)
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Fig. 13. Snapshots of the Bipedal Walking Experiment. Each figure shows the snapshots at (a)1st (b)7th (c)13th (d)19th (e)25th step.
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where S is the step length of the robot, M is the mass of

the robot, g is the gravitational acceleration. After 20 steps,

the motion of the robot converges to the stable one. The

experimental Cmt of each step are shown in Fig. 14, and

the average of Cmt is 0.15. The Cmt of Honda humanoid

ASIMO [20] which realized a stable three-dimensional dy-

namic walking applied ZMP-based control is estimated 1.6

in [10], thus our walking algorithm is efficient more than ten

times compare to the ZMP-based control.

VI. CONCLUSION

This paper realized a PDAC-based three-dimensional

biped dynamic walking on the level ground. The robot dy-

namics is modeled as a two-dimensional autonomous system

of a three-dimensional inverted pendulum by applying the

PDAC; then two conservative quantities named PDAC con-

stant were derived. We applied the convergent controller and

the walking direction controller based on PDAC constants to

the Multi-locomotion robot. The applicable desired PDAC

constants C∗

1 and C∗

2 for the robot were determined by

numerical simulations. Finally, experimental results validated

the performance and the energy efficiency of the PDAC-

based bipedal walking algorithm.
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