
Concurrent Tree Traversals for Improved Mission Performance

under Limited Communication Range

Alejandro R. Mosteo, Luis Montano

Abstract— In previous work we presented a multi-robot
strategy for routing missions in large scenarios where network
connectivity must be explicitly preserved. This strategy is
founded on the traversal of path trees in such a way that
connectivity to a static control center is always maintained,
while ensuring that any target that is reachable by a chain
consisting of all robots is eventually visited. In this work we im-
prove the strategy performance by extending its sequential one-
task-at-a-time execution approach with concurrent execution of
tasks. We demonstrate that the general problem is NP-hard
and offer several heuristic approaches to tackle it. We study
the improvements that these heuristics can offer in regard to
several important variables like network range and clustering of
targets, and finally compare their performance over the optimal
solutions for small problem instances. In summary, we offer a
complete characterization of the new concurrent capabilities of
the CONNECTTREE strategy.

I. INTRODUCTION

Many application domains involve tasks of visiting places

of interest using robots. The problem of routing a team

over appropriate paths with the goal of visiting all target

locations (corresponding to specific tasks) is known as multi-

robot routing. It is known that solving multi-robot rout-

ing optimally is an NP-hard problem for many interesting

team objectives [1]: minimizing total mission cost (energy),

minimizing total mission time (makespan), and minimizing

average service time (latency).

In many interesting real-world applications network con-

nectivity must be explicitly considered and preserved. While

some domains may tolerate temporary losses of communi-

cation between team members, in others it is mandatory to

maintain connectivity at all times: monitored surveillance,

rescue missions, tightly coordinated cooperation, etc. These

include domains where uninterrupted contact to a stationary

monitoring base or command center is commonly required.

Mobile robots typically use an ad-hoc wireless connection

to communicate. Network integrity is maintained as long as

any robot can reach any other robot either directly or by

relaying messages through some other robot(s). Adding such

limited communication constraints to multi-robot routing

makes the problem even harder. Furthermore, real signals in

populated scenarios exhibit a complex behavior caused by

reflections, multi-paths, scattering and interferences, among

other factors [2]. This makes necessary the use of careful

deployment strategies that measure signal quality instead

of relying on expected ranges of operation. We presented

A. R. Mosteo and L. Montano are with the Instituto de Investigación
en Ingenierı́a de Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain
{amosteo,montano}@unizar.es

one such strategy in [3] under the name of CONNECTTREE,

which is based on the traversal of a tree of paths with the

control base at the root and targets at the leaves.

In this paper we enhance this strategy by analyzing the

implications of concurrent tree traversal while preserving

the advantageous features of the basic sequential algorithm,

which only attempted to visit one target at a time. To

do so, in Section II we review related work and revisit

the most relevant principles of CONNECTTREE past work.

Section III provides a formal definition of the multi-robot

routing problem. Section IV studies the properties of the new

problem. Section V describes algorithms to approximate this

complex optimization challenge, while statistical results are

shown and discussed in Section VI. Finally, we discuss future

work and conclude in Section VII.

II. LIMITED CONNECTIVITY

One common approach is to include link quality in the mo-

tion [4] or goal generation functions. This idea is not readily

applicable to general-purpose service robotics, because the

team tasks may be totally unrelated to those generated in

order to preserve communication. As a consequence, they

suffer from local minima problems where some robots be-

come trapped by obstacles, threatening mission completion.

Some proposals [5] thus require temporary network splits

to allow for escape routes, and therefore do not guarantee

uninterrupted connectivity.

Closely related are self-deploying mobile sensor networks.

In [6], a team of mobile relays maximizes network route

qualities by means of algorithms with varying degrees of

decentralization. In addition to locality problems, these ap-

proaches do not directly address the problem of mission

performance or execution, since they instead provide a

networked environment for other robots.

We aim our interest at approaches that can be used

on routing problems in scenarios with complex obstacles

while providing uninterrupted connectivity. Some of our

early work [7] takes first steps in this direction, adapting

task allocation algorithms to operate on top of a signal-

constrained navigation model; however this work cannot be

readily applied to complex environments. In [8], the Ho-

plites framework is applied using a line-of-sight constraint,

but actual link quality is not used. Another proposal [9]

experiments with a robot that deploys stationary relays

when necessary to extend its range of operation in out-of-

sight scenarios, focusing mainly on hardware issues. Finally,

in [3], we used a similar idea of robots that stop to act as

relays with a focus on mission cost optimality.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2840

a) Mall b) Random

Fig. 1. a) Shopping mall scenario with overlaid path tree. Twenty targets
are shown as knots in the tree. b) Randomly generated scenario.

A. Sequential CONNECTTREE strategy

Our generic strategy for multi-robot routing under limited

communication range in dense environments is based on the

following ideas (which are fully detailed in [3]). A tree

of paths is constructed rooted at the base and containing

all targets (Fig. 1a). Robots move together as a whole

(in practice in single column formation) towards a target,

monitoring the network link to the base; once this link quality

falls under some predefined safety threshold, the tail robot is

stopped at that point to act as a relay, and the rest continue

advancing while monitoring now their link to the stopped

relay robot1. Using this pattern repeatedly, the robots can

reach far away from the base without ever breaking the multi-

hop link to the base.

Once the target is visited, robots retreat from the target

along the same path they used to reach it, deliberately

mirroring the deployment: a relay can start retreating only

when all moving robots reach it back. Paths to consecutive

targets may share a portion in the upper levels of the tree.

Therefore, after visiting a target, robots do not need to retreat

all the way to the base to move on to the next target.

Instead, it is sufficient to retreat up to a common ancestor

point between the two paths. Thus, during the entire process,

critical network links lie within the tree and the relative robot

ordering is always maintained. Besides other advantages,

never two robots have to negotiate in a narrow passage.

B. Concurrent CONNECTTREE strategy

In the sequential model, only the head robot is used to visit

targets. We now want to visit several targets simultaneously.

To do so we allow the mobile pack of robots to split at

any branching point of the tree. The split pack divides thus

in two (or more) packs of some number of robots, each

1We presume that link quality between static endpoints remains reason-
ably bounded as not to break the link. This is true in our practical experience
when using adequate safety margings. Parallel research in reactive spring-
damper motion models such as found in [7] is in the pipeline of future work
for use when this assumption does not hold.

a) b) c)

Fig. 2. An example with four robots. In a), one robot has already stopped
to act as relay (square). At the branching point, it has been decided that two
robots will continue along the upper branch and one along the lower branch
(triangles). Their links to the previous relay are represented by thin lines. In
b), the robot below has reached its target (circle) and it is starting its way
back. Meanwhile, above, another relay has been stopped. In c), the small
pack of one robot is waiting for the other pack of two to come back, in
order to merge and continue up the tree and towards the base as a four-pack.

of these packs monitoring now their link to the previous

common relay (or base). Each pack then proceeds down the

tree towards a different target, and robots in the pack may

stop to act as relays as needed, like in the sequential case,

exclusively for the sake of connectedness of its own branch.

This split operation may happen recursively as long as there

are robots available.

When one pack retreats after visiting its target, it must

stop and wait at the common relay for the other pack(s) to

come back. When all packs sharing a relay are reunited at

the relay point, a conceptual merging occurs, and the original

pack is reformed. This pack can now resume its way back

to the upper areas of the tree. See Fig. 2 for an example.

The need for all packs to wait at the deepest common

relay for a merge is due to the same considerations detailed

in [3], which allow CONNECTTREE to provide cost bounds

and mission completeness.

In consequence we can see that, from the point of view of

robots going down a branch, nothing has changed in regard

to the sequential case: they move within the tree, monitoring

its link to the relay immediately above in the tree. Also, like

in the sequential case, the retreat phase requires all robots

below a relay to be reunited before this relay can return to

its mobile status in order to move up, even if now robots

come back in different packs.

With the introduction of the split action, we now have

several decisions to make at each branching point: Should

the pack split here? If so, how many robots would go down

each branch? We will study these questions in Section V.

III. MULTI-ROBOT ROUTING

The considered multi-robot routing problem is formally

specified by a set of robots, R = {r1, r2, . . . , rn}, a set

of targets, T = {t1, t2, . . . , tm}, the locations of both robots

and targets on the two-dimensional plane, and a non-negative

cost function c(i, j), i, j ∈ R ∪ T , which denotes some

abstract cost of moving between locations i and j (e.g.

distance, energy, time, etc.). We assume that the robots

are identical; therefore the same cost function applies to

all robots. Typical cost measures are travel distance, travel

time, or energy consumption between locations. In this work,

we additionally assume that the cost function satisfies the

triangle inequality. This assumption holds as long as the

2841

robots follow the cheapest obstacle-free path when moving

between locations.

The mission begins with all robots located at some base

location and completes when all targets are visited and the

robots return to base. The problem of multi-robot routing

is to find an allocation of targets to robots and a path for

each robot that begins at the base, visits all targets allocated

to it, and ends back to the base, so that the mission is

completed and a team objective is minimized. Three intuitive

team objectives [1], corresponding to minimizing energy,

makespan, and latency respectively, are:

MINSUM: Minimize the sum of the robot path costs over all robots.

MINMAX: Minimize the maximum robot path cost over all robots.

MINAVE: Minimize the average target path cost over all targets.

The robot path cost of a robot is the sum of the costs along

its entire path. The target path cost of a target t is the total

cost of the path traversed by the designated robot from the

base up to target t along its path. The three team objectives

above can be formally expressed as

MINSUM : min
A

∑

j

RPC(rj , Aj),

MINMAX : min
A

max
j

RPC(rj , Aj),

MINAVE : min
A

1

m

∑

j

CTPC(rj , Aj) ,

where A = {A1, A2, . . . , An} is a partition of the set

of targets, so that targets in Ai are allocated to robot ri,

RPC(ri, Ai) denotes the robot path cost for robot ri to visit

all targets in Ai starting from and finishing to the base, and

CTPC(ri, Ai) denotes the cumulative target path cost of all

targets in Ai, again, if robot ri visits all targets in Ai starting

from the base.

IV. PROBLEM CHARACTERIZATION

In this section we address the algorithmic complexity of

obtaining optimal solutions for each of these team objectives.

In order to analytically evaluate the cost of the obtained

solutions, we assume a known and fixed value for the

maximum length L of the link between two robots. This

is the simplest most used model for wireless links, which is

more tractable for a first approach. Promising results would

grant a more sophisticated stochastic model with detailed

simulation of wireless propagation as, for example, in [2].

Our previous work was devoted to the building of trees,

which is an instance of the Steiner problem [10] (also

NP-hard). Thus, in this work we start from an already

constructed fully traversable tree and try to minimize the

objectives for that tree. However, concurrency cannot in any

case improve MINSUM cost since the total weight of a tree is

fixed and the optimal (and polynomial on the size of the tree)

solution is any sequential depth-first traversal. Therefore, for

the remainder of this paper, we focus exclusively on the other

two objectives.

Counterexamples in Fig. 3 show that depth-first traversals

are no longer always optimal. This particular problem of

i) ii) iii)

Fig. 3. Let it be the circles the places were relays stop and, for evaluation
purposes, L=1. Root is at top and targets are located at the labeled leaves.
White circles represent nodes that violate the depth-first property in the
optimal solution. In i), with n = 5, the optimal solution would be to visit
concurrently a and b, merge at the root, visit c and return to base, for
a MINMAX cost of 16. The best depth-first solution requires a cost of
18, since b cannot be visited concurrently with any other target. A similar
reasoning gives optimal cost of 18 for ii) with n = 7 and 30 with n = 6

for iii), respectively.

concurrent traversal of a tree has ties with optimal covers

(for the selection of compatible branches that can be visited

concurrently) and scheduling (because of the timing aspects

of concurrent execution). We next show, using reduction, that

the problem is at least NP-hard for the MINMAX objective.

We start from the NP-hard problem of multiprocessor

scheduling (SS8) in [11]. Its inputs are a set T of tasks,

and for each task t in T its execution time Ct, and a global

deadline D. The question asked is, is there a 2-processor

non-preemptive schedule for the tasks that completes within

deadline D? That is, is there a way of mapping the tasks to

start times in such a way that no more than two tasks overlap

and all of them finish before D?

We can transform this problem into one instance of our

concurrent tree traversal this way: we set n = 2 (two robots

that take the role of processors), L = ∞ (no practical

network restriction), and construct a tree shaped as a star

(every leaf connected to the root) where each leaf contains

a target t from T , with edge length set as Ct

2
(so visiting

each leaf and coming back takes exactly Ct). By solving this

instance, we could give a solution to the original problem,

since each departure of a robot from the root is equivalent

to the scheduling time of a task. The transformation from

optimization to decision problem is trivial. For the second

part of the proof, given a solution to our problem, we can

verify in polynomial time (by simply simulating it) that the

constraints and deadline D are honored, thus completing the

proof of NP-hardness. �

A conservative upper bound of the brute force algorithm

would be: at each branching point, we can divide our robots

in 2n subsets; the tree contains at worst t− 1 internal nodes

(branching points). Each internal node may merit at most

t splitting operations, if only one target is visited per split.

This gives a pessimistic upper bound of O(t22n). Indeed,

the subject of determining a tighter bound for the brute force

case is not trivial and has been recently studied for a related

problem in [12].

V. ALGORITHMS

A. Deterministic heuristics

Given the previous result, it is reasonable to find ideas

that could provide good heuristics. Most obvious, perhaps,

2842

i) ii)

Fig. 4. In i), with n = 6, the optimal solution involves sending all robots
down the leftmost branch, in order to visit e.g. a and b concurrently (late
split), then c and finally d and e concurrently, for a MINMAX cost of 14.
If we attempted an early split at the root, the four robots remaining for the
leftmost branch would require 16 time units to return. Contrarily, in ii) with
n = 5 an early split gives the optimal cost of 8 against the 10 units of a
late split in the leftmost branch to visit a and b concurrently.

is when to split a robot pack. Two possible options are: a) to

split as soon as we know that we can reach the farthest targets

in all descendant branches concurrently (we refer to this as

early split), even if this implies visiting sequentially targets

within each of these branches; or b) keep together until we

can visit all remaining targets below the current split point

concurrently (we refer to this as late split). Again, there is

no clear winner for these strategies. See optimal solutions

for each case in Fig. 4.

Another idea is which branch to visit next when there is

no split. Inspired on TSP heuristics [13], we may choose the

next farthest target or the next closest target. The combina-

tion of these two ideas gives the four next combinations:

farthest-first with early split (FAREARLY in the figures),

closest-first with early split (NEAREARLY), farthest-first

with late split (FARLATE), and closest-first with late split

(NEARLATE).

One particularly interesting aspect of the sequential

CONNECTTREE strategy is that it offers cost bounds over

the optimal unconstrained TSP solution. We can retain these

bounds in our heuristics if we impose some restrictions

on the solutions attempted. As we have seen in previous

examples (Figs. 3 and 4), cost gains are obtained when

some two (or more) branches are executed concurrently. If

we thus allow only depth-first traversals as in [3], while

opportunistically looking for some other branches that can be

concurrently executed in less time than the current depth-first

branch, it follows that we cannot do worse than the original

traversal. Hence, any bounds that it had are retained. This

group of heuristics implements this property. Also, they run

in O(m) time, with no perceptible delay for the amounts of

tasks tested.

For comparison, the basic sequential depth-first, closest-

first traversal (SEQDF) from [3] is used here as baseline for

measuring improvements in the evaluation runs.

B. Randomized traversal with timeout

RANDOM10/RANDOM60: This heuristic has the potential

of finding the optimal solution at the price of sacrificing any

cost guarantees. At each split point, we randomly choose

the next branch and how many robots to send, between the

minimum needed for the closest leaf target (early split), and

the maximum robots available (a late split). This process is

repeated iteratively with any remaining robots in the same

split point, unless a coin toss dictates to leave them unused.

In other words, at each juncture we randomly choose one

of many possible actions. Thus, with sufficient running time,

this algorithm could theoretically explore a large portion of

the solution space. The best known cost serves to discard the

complete exploration of solutions that are definitely known

to be suboptimal.

The number in the name is the timeout in seconds for the

algorithm. The best solution found on timeout is reported.

C. Optimal solution by brute-force

OPTIMAL: In our effort to characterize the results ob-

tained, we implemented a brute-force algorithm in order to

obtain some optimal solutions, even if for small problem in-

stances. This algorithm explores every possible choice, given

enough time and memory. A bread-first search is performed

in which every known state is ordered by either current

MINMAX or MINAVE cost, depending on the objective.

When the earliest state is final, it corresponds to the optimal

solution. In practice, we were able to solve problems ranging

from 12 to 17 targets, depending on the complexity of the

solution path tree.

VI. EVALUATION

A. Analytical setup

In order to implement and evaluate these heuristics, we

constructed an exact grid simulator. The parameters of the

test missions, unless explicitly stated otherwise, were as

follows. The simulation map is a 135m × 86m realistic

scenario (Fig. 1), modeled after a shopping mall close to our

lab, where obstacles are the product stands, and in which

we hope to conduct future real experimentation. Visiting

randomly distributed targets in such a scenario may represent

tasks of object inspection or delivery, service requests, or

sample collection missions, for example.

There were n = 8 mobile robots and m = 50 targets in

the mission. The targets were uniformly randomly distributed

over the free cells of the map. The communication range

was modeled as the branch length between robots, being,

by default, L = 35, which is not far from the minimum

needed to reach the farthest points in the map using all

robots. Ten runs were performed for each algorithm, using

a different seed for each run; nevertheless, the same set of

seeds was used across the different algorithms, so that they

are compared on the same basis.

With these starting points, in each test we modified one

variable of interest, as detailed in the following subsections.

B. Network range influence

This test was set up to explore the influence of network

range on mission performance. It is to be expected that

requiring more robots for the farthest targets would reduce

the opportunities for concurrency. Hence, the link length L

was set to the values of L = 25m and L = 50m (typical of

Wi-Fi transmitters). The shortest range is barely enough to

reach the farthest places in the simulation map. The longest

range, on the contrary, is quite generous, thus allowing us to

2843

Fig. 5. Mean and 95% confidence interval of cost reduction for the
MINMAX objective over the sequential depth-first closest-first traversal.

Fig. 6. Mean and 95% confidence interval of cost reduction for the
MINAVE objective over the sequential depth-first closest-first traversal.

find which improvements can be expected in such favorable

conditions.

This test was performed for both the MINMAX and

MINAVE objectives. The results are, respectively, in Figs. 5

and 6. In these and similar figures, the COMBINED values

were obtained by taking the best result in each run obtained

by any heuristic. Therefore, they represent our best realistic

expectations of improvement over the sequential strategy.

Fig. 5 already shows some interesting results: even in such

tight conditions, some modest improvements are possible.

However, it is with L = 50 that we see to which extent

we can expect improvements, with instances running close

to 20%. Furthermore, it made patently clear that the late

split strategy is better than the early split one. This is

also interesting because in future real experiments, with the

possibility of requiring replannings (see [3]), late splits will

minimize the penalty for a replanning.

Turning to Fig. 6 for the task averages we see less

optimistic results. This is not entirely surprising, since we are

not, in truth, attempting any MINAVE specific optimizations,

besides when greedily going for the nearest targets. This is

patent in the L = 50 portion of the figure, where both near-

first heuristics fared better. Another point of interest is that

the random heuristic seemed lost when given a larger solution

Fig. 7. Mean and 95% confidence interval of cost reduction for the
MINAVE objective over the sequential depth-first closest-first traversal with
both non-clustered and clustered random targets.

Fig. 8. Mean and 95% confidence interval of cost overhead over the optimal
solution found by brute force, for both cost objectives.

space to choose from, and in fact could not perform better

than the sequential approach.

C. Clustering influence

Clustering of targets has a definite importance for

MINAVE costs. In effect, algorithms that fail to detect

target clusters (e.g. greedy strategies) can be dramatically

outperformed by more potent optimizers. In this test we

tried to ascertain if, particularly the random strategy, could

take advantage of the wider solution space explored. Tasks

were either uniformly distributed or following a Gaussian

random distribution around a random but small (no less than

one, no more than 4) number of clusters. By looking at

Fig. 7 we can see that, again, the short time allotted to the

random heuristics was not enough to observe any particular

advantage for them. However, the existence of clusters did

augment the chances of improving the sequential results,

because late splits resulted in large amounts of targets visited

in short periods of time.

D. A peek into optimality

For the sake of our brute force solver, we set in this trial

m = 12, allowing us to obtain truly optimal mission costs

for both objectives. Albeit with a reduced solution space,

2844

Fig. 9. Mean and 95% confidence interval of cost reduction for the
MINMAX objective over the sequential depth-first closest-first traversal in
both scenarios.

the results are quite revealing (Fig. 8). We confirmed the

tendencies seen in Section VI-B that favor late split for the

MINMAX case. Also, we see that the small problem size

allows the randomized solver, just like in the L = 25 case,

to come ahead of the other heuristics. Results are worse in the

MINAVE case but, still, by using the combined results of all

heuristics, we can get acceptable results given the irregular

performance of the heuristics.

These results point that the work in MINAVE specific

algorithms is granted, since average task latency is arguably

as potentially useful for service robotics as minimum mission

time, and there is a larger gap to close.

E. Random scenarios

In this final test, we tried to rule out any evident artifacts in

the results due to the particular simulation scenario used. We

constructed random scenarios to this end as the one shown

in Fig. 1b), randomly placing crosses into an empty area of

the same size as the mall, until it was saturated. The results

shown in Fig. 9, albeit less generous, illustrate that the same

trends can be observed in both kinds of scenario.

F. Final remarks

After these batteries of tests, we can extract several con-

cluding remarks. Firstly, we see that by using the combined

results of all algorithms, we can expect to obtain noticeable

improvements over the sequential strategy, which is an en-

couraging result. However, we also saw that there is room for

improvement, specially in regard to the MINAVE objective.

We also observed that late splitting is, in general, a more

successful strategy. This may be of use for the design of

improved heuristics, and is definitely advantageous for the

real case in which network range is not known.

VII. CONCLUSION

In this work we studied the concurrent traversal of trees

with multi-robot teams under limited communication range,

in order to improve our past work with the CONNECTTREE

strategy. While the initial design of this strategy only visited

targets in a sequential way, we have now set the foundations

to use concurrency whenever possible in order to reduce

mission costs. We have done so in such a way that the cost

bounds that were demonstrated for the sequential strategy

can be retained in some cases for the concurrent strategy.

As part of our approach to concurrency, we studied the

algorithmic complexity qualities of the problem at hand,

showing that it is NP-hard and thus ruling out the imme-

diate availability of an optimal algorithm for the general

problem. Instead, we described several heuristic approaches

and studied the improvements that these heuristics can offer.

We saw that noticeable improvements can be obtained for

both makespan and latency objectives, and to some extent

quantified, by comparing to optimal solutions for small

problem instances, the gap still to cover.

Future work will focus on the implementation of such

improvements in our team of real robots, in order to evaluate

the influence of the jump from simulation to experimenta-

tion. Also, theoretical research into the latency optimization

objective is needed in light of the results presented herein.

VIII. ACKNOWLEDGMENTS

Thanks to Michail G. Lagoudakis for his support and

insightful comments. This work was partially supported by

the Spanish project DPI2006-07928 and the European project

IST-1-045062-URUS-STP.

REFERENCES

[1] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kley-
wegt, S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based
multi-robot routing,” in Proceedings of Robotics: Science and Systems,
Cambridge, USA, June 2005.

[2] V. Sridhara and S. Bohacek, “Realistic propagation simulation of urban
mesh networks,” Computer Networks, vol. 51, no. 12, pp. 3392–3412,
August 2007.

[3] A. R. Mosteo, L. Montano, and M. G. Lagoudakis, Distributed

Autonomous Robotic Systems 8. Springer Berlin Heidelberg, 2009,
ch. Guaranteed-Performance Multi-robot Routing under Limited Com-
munication Range, pp. 491–502.

[4] E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management in
mobile robot teams,” in ICRA. IEEE, 2008, pp. 1525–1530.

[5] M. N. Rooker and A. Birk, “Communicative exploration with robot
packs,” Lecture Notes in Artificial Intelligence, pp. 267–278, 2006.

[6] B. P. Gerkey, R. Mailler, and B. Morisset, “Commbots: Distributed
control of mobile communication relays,” in AAAI Workshop on

Auction Mechanisms for Robot Coordination (AuctionBots), Boston,
Massachusetts, July 2006, p. 51–57.

[7] A. R. Mosteo, L. Montano, and M. G. Lagoudakis, “Multi-robot rout-
ing under limited communication range,” in International Conference

on Robotics and Automation, 2008.
[8] N. Kalra, D. Ferguson, and A. Stentz, “A generalized framework for

solving tightly-coupled multirobot planning problems,” in ICRA, 2007,
pp. 3359–3364.

[9] N. Pezeshkian, H. G. Nguyen, and A. Burmeister, “Unmanned ground
vehicle radio relay deployment system for non-line-of-sight opera-
tions,” in IASTED Int. Conf. on Robotics and Applications. Germany:
DARPA/ITO, August 2007.

[10] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem.
Elsevier, 1992.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.
[12] T. P. Baker and M. Cirinei, Principles of Distributed Systems.

Springer Berlin / Heidelberg, 2007, ch. Brute-Force Determination
of Multiprocessor Schedulability for Sets of Sporadic Hard-Deadline
Tasks, pp. 62–75.

[13] G. Reinelt, The traveling salesman: computational solutions for TSP

applications, ser. Lecture notes in computer science. Springer, 1994,
vol. 840.

2845

