
  

  

Abstract—In this paper, a novel 3-D motion trajectory 
signature is introduced to serve as an effective description 
to the raw trajectory. More importantly, based on the 
trajectory signature, a probabilistic model-based cluster 
signature is further developed for modeling a motion 
class. The cluster signature is a mixture model-based 
motion description that is useful for motion class 
perception, recognition and to benefit a generalized robot 
task representation. The signature modeling process is 
supported by integrating the EM and IPRA algorithms. 
The conducted experiments verified the cluster 
signature’s effectiveness. 

I. INTRODUCTION 
OTION trajectory can play an important role in 
characterizing diverse kinds of motions of humans, 
robots and other objects. Ude et al. [1] used motion 

trajectory to describe human movements in transferring the 
motions to a humanoid robot. Bennewitz et al. [2] 
investigated motion trajectory-based human pattern 
representation for robot learning using hidden Markov model 
(HMM). Common human actions, behaviors and activities 
were modeled by motion trajectory in many studies [3], [4] 
where the recognition of gestures, gaits, etc., was validated. 
In view of the articulated structure of humans or robots, 
multiple concurrent motion trajectories can be extracted by 
tracking the body parts of interest such as the head, hands, 
feet, etc. [5], to characterize complicated full body motions. 

However, in the literature, a motion trajectory was 
normally used directly in its raw data form, which is 
inflexible to use as it relies heavily on the absolute positions. 
In fact, it is suitable to refer to the concept of shape descriptor 
[6] to build effective motion trajectory descriptions, which 
can outperform the raw trajectory data in offering generalized 
motion representation. 

In the existing work, some shape descriptors have been 
developed and used. Simple contour functions such as chain 
code, centroid-contour distance and R-S curve just admit 
ordinary performance [6]. The descriptors based on Fourier 
descriptor (FD) [7], wavelet coefficient [8] and curvature 
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scale space images [9] can represent shape in a coarse-to-fine 
manner, in which just partial salient features are of concern 
for shape description. This explains why they are actually 
unable to represent shapes uniquely. In particular, small-scale 
time-dependent features of motions cannot be recovered from 
Fourier transform based representation. The algebraic curve 
and moment functions [10] suffer from occlusion as they 
make use of global features. The mathematical descriptors 
such as NURBS [11] and B-spline [12] need a fitting process 
that inevitably causes inaccuracy in shape representation. In 
particular, the B-spline based description may result in 
recognition ambiguity as it is hard to compare B-spline 
parameters directly for recognition because a piece of curve is 
not uniquely described by a single set of control points [12].  

In this paper, a novel 3-D motion trajectory signature 
descriptor is firstly introduced, and then a model-based 
cluster signature is investigated using the probabilistic 
modeling methods for establishing effective descriptions for 
a motion class/pattern. While the motion trajectory signature 
is a description to an individual trajectory, the cluster 
signature corresponds to a motion pattern, which is 
characterized by a set of trajectory signatures of a cluster of 
similar trajectory instances from the same motion class.  

II. MOTION TRAJECTORY SIGNATURE 
For a free-from 3-D motion trajectory parameterized by 

]},1[|)(),(),({)( Ν∈=Γ ttZtYtXt , where Ν is 
trajectory length (frame number) and t  is the temporal stamp 
of trajectory sampling, the following motion trajectory 
signature has been proposed based on Euclidean curvature 
(κ ), torsion (τ ) and their first order derivatives with respect 
to the Euclidean arc-length parameter s  [13], [14], 

]},1[|)](),(),(),({[ Ν∈= tttttS ss ττκκ            (1) 

where dsds /κκ = , dsds /ττ = . 
The above signature is a complete description to the entire 

raw trajectory data. This is the same with the first-level 
signature defined in our previous work in [15]. As the 
signature is based on the local features, it admits the 
computational locality. Hence, rich descriptive invariants can 
be deduced from the signature [14]. 

An arbitrary length of regular (i.e. for all t , 0)( ≠Γ t& ) 
motion trajectory can be described by a single signature. For 
the irregular trajectories, the stationary points are firstly 
detected by examining 0)( =Γ t&  and then they are removed 
to regulate the trajectory to be a regular one to calculate the 
signature. This interprets why the signature is able to describe 
most motion trajectories extracted from a complicated motion. 
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Taking the trajectory Ω  shown in Fig. 1 as an example, its 
trajectory signature is illustrated in Fig. 2 with the four 
signature profiles of κ , τ , sκ  and sτ . 

 

Fig. 1. A piece of 3-D motion trajectory Ω . 

 
Fig. 2. The signature (implemented by the approximate signature [13]) of 

trajectory Ω . (a) κ . (b) τ . (c) sκ . (d) sτ . 

III. MODEL-BASED CLUSTER SIGNATURE 

A. Cluster Signature Modeling 
A motion class is essentially a common motion pattern 

representing a meaningful motion type. Hence, not limited to 
building the signature for describing a single motion 
trajectory, the signature description for a motion class is of 
more importance to serve as a generalized motion description. 
Usually a motion class is characterized by a cluster of 
signatures of similar trajectory instances. A so-called cluster 
signature here is proposed for describing a motion classes. It 
is a probabilistic model-based representation learned from the 
density estimation to a cluster of motion trajectory signatures. 
Inheriting the rich invariants of the trajectory signature, the 
cluster signature is more effective than the common 
model-based methods that are based on the raw motion data. 

Assume that the number of motion classes is N , then via 
training, N  models will be learned that are characterized by 
respective model parameters N

ii 1}{ =Θ . Assume that iX  

contains M  signature samples (note that the samples do not 
necessitate the same length), i.e. M

mmii XX 1, }{ == , which 

serve as the training sample to train an individual model iΘ , 
these samples are firstly re-arranged in the form of 

][ ,,2,1, Mimiiii XXXXX ⋅⋅⋅⋅⋅⋅= . Then the underlying 

probability density function (PDF) of iX  can be estimated 
by a Gaussian mixture model (GMM), 
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K
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1
),;()|( µ               (2)  

where K  is the number of mixing Gaussian components, 
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It is worthy emphasizing the format of the signature miX ,  for 

the GMM modeling. The temporal index T of a motion 
trajectory is incorporated into the signature data to form an 
augmented signature in the format of 

)]();();();();([, tttktktTX ssmi ττ= . The reason of 

incorporating T  is that it is capable of capturing the temporal 
characteristics of a motion. However, notice that because 
signatures may have different lengths, T  may need a 
pre-normalization to make the signatures being aligned 
reasonably in temporal correspondence. Assume the lengths 
of the M  signatures are M

iiT 1}{ = , a bound of temporal range 

is defined by lowT  and upT (usually 1=lowT  and 

}{max
],1[ iMiup TT

∈
= ), then the temporal indexes of each 

signatures are normalized to the range of ],[ uplow TT . Note 

that this pre-normalization just adjusts the temporal indexes 
for the purpose of reasonable temporal alignments among 
signatures, in which the real signature data are not affected. In 
this manner, the dimension d  of )(),( iXf ∑µ  will be 5 (1-D 

temporal index plus 4-D signature components). It is also 
pointed out that for keeping consistent alignment between 
temporal stamp and signature data, the pre-normalization may 
be further improved by the pair-wise normalization using 
different scaling constants between different pairs of critical 
points along the trajectories. 

From the definition of a GMM model, a motion class iΘ  
is characterized by the corresponding model parameter set 

K
kkkki w 1},,{ =Σ=Θ µ . The key problem now is the model 

parameter estimation. Assume that the number of classes N  
is known a priori and the training samples are labeled 
knowing which sample belongs to which class, the 
expectation-maximization (EM) algorithm [16] and the 
iterative pairwise replacement algorithm (IPRA) [17] are 
combined to learn an optimal GMM parameter set iΘ  .  

The EM algorithm is an iterative maximum likelihood 
estimation (MLE) algorithm. It seeks to maximize the 
likelihood function by gradient descent technique. Here, the 
likelihood function is defined by the log-likelihood 
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parameter i
*Θ  is learned following the MLE principle, 

)(maxarg*
ii L Θ=Θ .  

Yet, it should be noted that the results of the EM algorithm 
depend much on the initial parameter values because the EM 
algorithm is always monotonically convergent to find the 
local maximum. Therefore the choice of the initial parameter 
values is critical. In practice, the GMM mixing number K  
should be estimated at first, followed by the initialization of 
respective GMM component parameters K

kkkkw 1},,{ =Σµ . 

Thus, guessing a good initial value to K  is the most 
important basis for successful model learning. Usually, K  is 
just fixed from user’s guess or determined by trial-and-error 
[15]. Relying on user’s intervention is inflexible, and the 
actual situation is that a user has to invest a lot of efforts to 
guess at a good value to K  for each GMM model. To 
improve on this and achieve automatic model learning, it is 
proposed to use the IPRA algorithm to refine the results of the 
EM algorithm to obtain optimal learning results. That is, this 
solution integrates the EM and IPRA algorithms. 

The basic principle is as follows: firstly, the EM algorithm 
is activated by an arbitrary initialization of the mixing number 
K ; secondly, the IPRA algorithms refines (merges) the 
resulting GMM model parameter iΘ , in which K  is also 
adjusted correspondingly. 

Initially, K  is set to a relatively big number to guarantee 
that the K -component GMM model is adequately capable of 
modeling the density. As a bigger K  leads to more accurate 
modeling, the more complex the signatures are, the bigger the 
K  should be set initially by users. For example, set 50=K , 
if it is estimated that a 50-component GMM is sufficient to 
describe the signatures. In fact, it is algorithmic safe to set K  
an arbitrary big number. Once K  is initialized, the k-means 
method is used to estimate the initial GMM parameter values 

K
kkkki w 1

)0()0()0()0( },,{ =Σ=Θ µ . With these initial 
parameter estimations, the EM algorithm iterates the E 
(expectation) step and the M (maximization) step [15], [16], 
until the convergence condition arrives. Here the 
convergence condition is defined as a threshold about the 
function )( iL Θ , i.e. stopi

t
i

t CLL <−ΘΘ+ 1)(/)( )()1( .  

Because K  was initialized by an arbitrary, big number, 
the convergence of the EM process does not guarantee that 
the resulting GMM model must be an optimal resolution. For 
instance, certain components may be very close or similar. 
Thus, the IPRA algorithm is immediately applied to further 
refine the results of the EM algorithm. The core principle of 
the IPRA is, among the resulting mixture components 

K
kkkkw 1},,{ =Σµ  from the EM algorithm, to construct a 

minimum spanning tree connecting all the components, and 
then the similarities of all mixing-components are measured 

and examined to iteratively merge the most similar pairs of 
the mixing components, along which the component 
parameters are updated correspondingly. After arriving at the 
predefined minimum similarity threshold, the IPRA process 
stops, eventually giving rise to the optimized GMM model 
parameters (the mixing number K  and the corresponding 
component parameters K

kkkkw 1},,{ =Σµ ).  

For two mixing components represented by ],[ 11 Nw  and 

],[ 22 Nw  respectively, the similarity measurement between 
them is defined based on the Hellinger metric as follows,  

)21(]),[],,([ 21212211 ∫−= dxNNwwNwNwH  (4) 

where, denoting the signature data dimension by d , 

)22,;0(||||)22( 21212121
4

1
4

1
Σ+Σ−ΣΣ=∫ µµπ NNN d   (5) 

If ]),[],,([ 2211 NwNwH  is smaller than the 

predefined merging similarity threshold mergeH , then 

],[ 11 Nw  and ],[ 22 Nw  will be merged, and the 
Method-of-Moments algorithm is used to update the 
component parameters, 

21 www +=                                  (6) 
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As above stated, applying the EM together with the IPRA 
algorithms, all the optimal model parameters N

ii 1}{ =Θ  
representing respective motion classes can be obtained. The 
model parameter set K

kkkki w 1},,{ =Σ=Θ µ  is defined as 
the cluster signature, which in essence admits an abstract 
description to a motion class. It should be noted that the 
cluster signature defined here is different from the signature 
modeling in [15]. The work in [15] deals with the 
length-fixed second-level signature which was simply 
modeled by the GMM using the EM algorithm solely. 

It is emphasized that the proposed solution of integrating 
the EM and IPRA algorithms can automate the process of the 
model-based learning. Initializing K  with an arbitrary 
number of big enough can reliably lead to a fully automatic 
learning procedure. This is more efficient than solely using 
the EM algorithm. The computational time for the cluster 
signature learning depends on both the size of training 
samples and the initialization value of K . 

B. Instantiating a Generalized Trajectory Signature 
Based on a learned cluster signature for a motion class, a 

generalized trajectory signature instance can be instantiated 
from the GMM model. This can predict a trajectory signature 
from the cluster signature according to a given predictor, and 
it can also provide an intuitive interface for perceiving the 
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characteristics of a motion class. Motion perception is useful 
for enhancing human-robot interactions. 

The signature instantiation is resolved using the Gaussian 
mixture regression (GMR) method [17]. The regression 
problem is to reconstruct a general signal form from a set of 
observations. Arranging the variables in an observation with 
two sub-sets in the form of },{ YXO = , the observation is 
divided to a predictor variable set represented by the 
p -dimensional X  and a response variable set represented 

by the q -dimensional Y . If the joint density of the 
observation O  falls in the GMM, then when partitioning the 
joint density by XXYYX fff |, = , both XYf |  and Xf  also 

have the GMM distribution. This is the basis to derive the 
GMR aiming at estimating the conditional expectation of Y  
given X . For the signature-based regression, the 
observations are a cluster of trajectory signature instances of 
a motion class, and it has been known that the signature 
cluster does fall in the GMM. For an augmented signature 

},{ STOa =  where S  represents the signature data and T  
denotes the temporal index, the GMR is followed to get a 
generalized trajectory signature by estimating the conditional 
expectation value of S  given T .  

Using the method in Section III.A, a cluster signature is 
firstly obtained by modeling a cluster of trajectory signature 
samples },{ STOa =  by the GMM distribution, 

∑
=

Σ=
K

k
kkkST stNwstf

1
, ),;,(),( µ                 (9) 

For each Gaussian component ),;,( kkSTN Σµ , 

re-arrange the parameter items kµ  and kΣ  in terms of the 

predictor T  and response S  as follows,  
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Then each Gaussian component is partitioned and the 
GMM density function can be transformed into the following 
form,  

∑
=

ΣΣ=
K

k
kTTkTkkkST tNttsNwstf

1
, ),;()ˆ),(ˆ;|(),( µµ   (11) 

where 
)()(ˆ 1

kTkTTkSTkSk tt µµµ −ΣΣ+= −               (12) 

kTSkTTkSTkSSk ΣΣΣ−Σ=Σ −1ˆ                     (13) 

The conditional PDF of TS |  can be formulated by 

∑
=

Σ=
K

k
kkkTS tsNtCtsf

1
| )ˆ),(ˆ;()()|( µ            (14) 

where the mixing weight kC  is calculated as follows, based 

on the marginal density of T , 
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Thus, given T , the conditional expectation and covariance 
of S  can be estimated as follows, 

∑
=

===
K

k
kk ttCtTSEt

1

)(ˆ)()|()(ˆ µµ           (16) 

∑
=
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k
kk tCtTSCovt

1
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That is, given a predictor vector T̂  (a set of temporal 
indexes), via evaluating )(ˆ tµ  at each temporal index Tt ˆ∈ , 

a generalized trajectory signature }ˆ|)(ˆ{ˆ TttS ∈= µ  can 

be produced. At the same time, the covariance matrix )(ˆ tΣ  
indicates the generalization extent around )(ˆ tµ  at each point 

t . It is worthwhile to point out that in the GMR, T̂  can differ 
from T  in length and the temporal interval, and the resulting 
signature Ŝ  will have the same length with T̂ . This offers 
the feasibility to produce diverse signature instances with 
different signature lengths and points’ distribution by 
configuring different predictors. 

C. Bayesian Signature Recognition 
A Bayesian signature recognition engine was built before 

[15] and is used here again. The posterior probability 
)(log qi XP Θ  is used for signature recognition based on 

the maximum a posterior (MAP) criterion. This means that 
for N  motion classes denoted by N

ii 1}{ =Θ , the query qX  is 

classified into the class MAPΘ  by examining qX  as an 

observation to each GMM model, 

)]([logmaxarg qiMAP XP Θ=Θ
Θ

              (18) 

IV. EXPERIMENTS 
In the experiment, sign language is used to demonstrate the 

cluster signature-based motion class description. A signed 
word is performed by a single human hand, and the 
underlying regular motion trajectory is extracted as the 
spatiotemporal representation of the word. The raw 3-D 
motion trajectory is acquired by stereo tracking and is 
smoothed using the wavelet smoother [13], [14]. Fig. 3 shows 
the 3-D trajectories extracted from a set of sign words 
demonstrated by human. 

 
Fig. 3. Motion trajectories of a set of human demonstrated sign words. 
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A. Sign Cluster Signature Estimation and Perception 
As shown in Fig. 4, three signatures instances of different 

lengths of the sign class ‘5’ are clustered. They have 191, 127 
and 153 sampling points, respectively. From Section III.A, 
their temporal indexes are firstly pre-normalized to the range 
of [1,191]. Then the GMM and IPRA procedures are applied 
to the three signatures with the initial parameters of mixing 
Gaussian number 30=K , the stopping threshold of the EM 
algorithm 9-1e=stopC , and the IPRA merging similarity 

threshold 001.0=mergeH . Finally an optimal cluster 

signature (Fig. 5) is modeled by a GMM that actually consists 
of 20 mixing Gaussian models. Each mixing Gaussian model 
is represented by an ellipse in which the star symbol indicates 
the data center and the covered field of the ellipse indicates 
the varying range of the corresponding partial signature data 
being modeled. From the visualized cluster signature, the 
varying range of the motion class can be intuitively perceived 
from the sequence of ellipses (Gaussian models). 

 
Fig. 4. The three signature instances plotted in red (length 191), green (length 

127) and blue (length 153). (a) κ . (b) τ . (c) sκ . (d) sτ . 

 
Fig. 5. The GMM-based cluster signature of the signatures instances shown 

in Fig. 4. (a) κ . (b) τ . (c) sκ . (d) sτ . 

 
Fig. 6. Signature generalization (in black) from the cluster signature with 

temporal index ]63:1[=T . (a) κ . (b) τ . (c) sκ . (d) sτ . 

 
Fig. 7. Varying range (gray fields) of the generalized signature shown in Fig. 

6. (a) κ . (b) τ . (c) sκ . (d) sτ . 

Next, the cluster signatures regression is demonstrated by 
setting different predictors. Fig. 6 shows a generalized 
trajectory signature that is produced with the predictor 

]63:1[=T . The generalized signature is overlaid (in black) 
in the three signature instances to compare its generalization 
degree. It is observed that the regressed signatures can serve 
as good representative signature of the sign word ‘5’. As said 
before, this kind of generalized signature can be produced 
with free configurations of the temporal length and points’ 
distribution to support possibly diverse class descriptions. 

In the course of the GMR procedure, the variability of the 
mean of each element along the generalized signature is 
restricted to a generalization range that is controlled by the 
covariance matrix in equation (17). This can be visualized 
around each temporal index (point). As demonstrated in Fig.7, 
the gray fields indicate the generalization range of the 
generalized trajectory signature shown in Fig. 6. This gives 
an explicit perception to the possible variability of each 
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trajectory point, and then the entire generalized signature. 
The above results illustrate the visualized form of a cluster 

signature, from which, the characteristics of a motion class 
can be intuitively perceived. In the next experiment, the 
cluster signature-based sign class recognition is 
demonstrated. 

B. Sign Recognition Test 
The Bayesian signature recognition is tested using the UCI 

KDD high quality Auslan sign trajectory dataset [18] (There 
are 2,565 samples in total) and its performance is compared 
with a direct signature matching method in [13]. Referring to 
[13], the dynamic time warping (DTW) method was applied 
to recognize a sign motion by the nonlinear matching of the 
first-level signature. Two instances of the sign word ‘hurry’ 
and ‘exit’ are shown in Fig. 8. The sign trajectories are 
smoothed by the wavelet smoother using wavelet DB5 and 
extracting the third level coefficients. Of all the samples of a 
class, half are used as training samples to learn a cluster 
signature, and the other half are inputted to do 1-NN 
recognition. The recognition is repeated more than 50 times 
on a common PC (Pentium 4 CPU 3.00GHz, 512M RAM) by 
randomly picking a number of classes and samples, which 
gives rise to an average recognition performance as recorded 
in Table 1 and Table 2, respectively. It is observed that the 
cluster signature behaves better in both accuracy and 
efficiency. In particular, the improvement on recognition 
accuracy is due to the utilization of the prior knowledge 
through model learning. In contrast, The DTW method 
cannot do that as it just matches two signatures, 
straightforwardly. More statistical sign recognition results 
can be found in [19]. 

 
Fig. 8. Sign samples of word ‘hurry’ (a) and ‘exit’ (b). 

Table 1. Recognition accuracy comparison. 

Number of classes Solutions 2 4 8 
DTW trajectory signature matching 91.79% 87.05% 80.56%

Bayesian cluster signature recognition 92.73% 88.58% 83.02%

Table 2. Recognition efficiency comparison (units of milliseconds per 
query). 

Number of classes Solutions 2 4 8 
DTW trajectory signature matching 753 1287 2206

Bayesian cluster signature recognition 163   187   191

V. CONCLUSION 
Based on a 3-D motion trajectory signature, a GMM-based 

cluster signature is developed in this paper for describing 
motion patterns. More importantly, we propose a solution that 
combines the EM and IPRA algorithms for the pursuit of 
automatic model learning. This proves more efficient than the 

solely use of the EM algorithm. In addition, the GMR-based 
signature regression problem is also formulated, from which 
a generalized trajectory signature can be instantiated from an 
abstract cluster signature according to a given predictor. 

The probabilistic model-based cluster signature can admit 
wide applications for motion characterization. It is shown that 
the cluster signature is not only useful for perceiving a motion 
class by the model visualization, but also exhibits good 
performance for motion recognition. The cluster signature 
description can also serve as an invariant and effective robot 
task representation for supporting generalized robot learning.  
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