
Multiswarm Particle Filter for Vision Based SLAM

Hee Seok Lee and Kyoung Mu Lee

Abstract— Particle Filters have been widely used as a power-
ful optimization tool for nonlinear, non-Gaussian dynamic mod-
els such as Simultaneous Localization and Mapping (SLAM)
and visual tracking. Particle filters, however, often suffer from
particle impoverishment, which is caused by a mismatch be-
tween proposal distribution and target distribution. To solve this
problem, we propose a new method to improve the efficiency of
particle filters by employing the Particle Swarm Optimization
(PSO), which is a kind of swarm intelligence algorithm. The
PSO, especially its variant for dynamic models, is combined
with the generic particle filter to get samples that are well
matched with target distribution. The resulting filter is applied
to a vision based SLAM system and its performance is tested.
We present experimental results that demonstrate improved
accuracy in localization and mapping at the same or less
computational cost than the conventional particle filters.

I. INTRODUCTION

Particle filters are the most popular optimization tools
for current SLAM implementations. To deal with the high
dimensionality of SLAM, Murphy [1] and Doucet [2] in-
troduced the Rao-Blackwellized particle filter (RBPF) that
reduces the variance of samples by dividing the solution
space into two parts, localization part and mapping part. In
RBPF, although the required number of particles is reduced
by sampling the poses only, the efficiency of the particle
filters w.r.t. the number of particles is still the main issue of
the particle filter based SLAM approaches.

A good proposal distribution is the key factor to a particle
filter’s efficiency, and there have been many researches
on how to design better proposal distribution of particle
filters. Fox [3] and Soto [4] suggested the adaptive methods
for economizing particles according to current estimation
quality. In [3], the approximation error is measured by
the Kullback-Leibler distance, and the number of particles
is determined according to the state uncertainty. Soto [4]
proposed a method of not only changing the number of
particles but also adapting the proposal distribution.

In some cases, observations of range sensors provide
more accurate information for the robot pose than motion
sensors, so using them can improve the proposal distribution.
In a work of Montemerlo et al.[5], measurements from
range sensors are incorporated with the motion prior for
the proposal distribution. They employ the linearization of
optimal importance distribution [6] of the robot pose using
recent sensor measurements. Usually measurements from the

H. Lee is with the Department of Electrical Engineering and Computer
Science, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul,
Korea. ultra21@snu.ac.kr

K. Lee is with Faculty of the Department of Electrical Engineering and
Computer Science, Seoul National University, 599 Gwanangno, Gwanak-gu,
Seoul, Korea. kyoungmu@snu.ac.kr

range sensor provide more concentrated distribution for the
robot pose, so the proposal distribution using these sensor
measurements can reduce the required range of sampling and
consequently reduce the number of particles required. How-
ever, the Gaussian approximation of robot pose is not ideal,
and the linearization of the optimal importance function is
not feasible in some cases such as grid mapping [7].

In this paper we present a novel Particle Swarm Optimiza-
tion (POS)-based particle filter that is accurate and efficient
in terms of both speed and the number of particles required.
The PSO is an optimization algorithm that is inspired by the
swarm intelligence. Similar to the population-based Monte
Carlo method optimization approaches, PSO estimates the
optimal value of a function using a set of samples. It has
a simple mechanism which uses a relationship between
particles, and it shows good optimization performances. With
a consideration on the dynamic properties of the SLAM
problem, it is successfully applied to the particle filter based
SLAM and improves the filter’s efficiency.

II. RELATED WORK

During the last several decades, various algorithms in-
spired by the swarm intelligence have been developed for the
optimization of linear or nonlinear functions in evolutionary
computation community [8]. These include Particle Swarm
Optimization (PSO) [9], Ant Colony Optimization (ACO)
[10], and Bee Algorithm [11]. These algorithms are similar to
the particle filters which use a number of samples to estimate
the optimal state, but they are different from particle filters
in that the swarm intelligence algorithms use relationship
between particles while the particle filters do not. PSO, the
algorithm we use, models the movement of a flock of birds.

At the start of the algorithm particles are distributed
randomly in the problem space, and then slowly they move
toward the current local optimum points. This algorithm
was introduced for the purpose of optimizing static target
functions, but afterwards some methods were introduced to
apply the algorithm to dynamic models [12], [13].

There have been researches trying to apply PSO to
dynamic problems such as robot localization and visual
tracking, where the particle filters have already been applied.
Especially, the visual tracking has been a main target of these
approaches. Zhang et al.[14] applied PSO for each frame
and automatically tracked a target object. Tong et al.[15]
and Wang et al.[16] combined PSO with the particle filter
and applied it to the visual tracking and global localization
of robot. In their algorithms, particles are propagated first
by motion prior and then PSO is applied to re-distribute
particles to high probability regions. These studies, however,

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 924

PriorLikelihood

PSO

(a) (b)

Fig. 1. Distribution before PSO (a) and after PSO (b).

did not present the representation of PSO in the view of
particle filters, and also did not consider the characteristics
of dynamic environment.

Applying PSO directly to the particle filter can lead to
some problems such as lack of particle diversity after PSO
procedure has been applied. Once PSO is applied to the
particles, then most particles are converged around the local
or global maximum point of the likelihood. To solve this
problem [14] tried to re-distribute the particles randomly
after PSO, but it was not satisfactory.

Some studies have been conducted on PSO for dynamic
environment, which we can use to find a solution to the
above problems. Blackwell [12] [13] suggested methods such
as multiswarm, exclusion, and anti-convergence algorithms
to apply the PSO to dynamic environment problems. To
deal with the lack of particle diversity, they introduced the
concept of repulsion between particles like repulsion between
electrons. Additionally, to maintain multiple local maxima
they proposed a mechanism for multiple swarm management.
These algorithms prevent the over fitting of particles to the
current measurements, and the algorithm can be robust to
the instant failure of finding optima.

III. MULTISWARM PARTICLE FILTER

We maintain this particle filter-based framework and com-
bine the PSO for better particle generation. Similar to the
observation incorporated methods for the improved proposal,
our PSO combined method provides an effective way to get
samples matched with the observations. Since we deal with
a dynamic system, we apply the PSO that is designed for a
dynamic environment. It includes two concepts: the use of
quantum particles, and the use of multiple swarms. Quantum
particles are non-converging particles, which are used to
provide the diversity of particles. Multiple swarms enable
us to track the multiple hypotheses of the robot trajectories.
It is useful in situations where it is difficult to determine the
robot pose with current observations. The resulting particle
filter generates particles with a high likelihood as the original
PSO wants to do, but it does not lose the particle diversity.
The algorithm will be described in the next subsection.

A. Particle Swarm Optimization

The process of basic single swarm PSO algorithm is as
follows. At time t, particles are initially distributed into
a problem space with a prior distribution and the PSO
starts. Through the PSO iteration, all particles’ positions and

velocities are updated to find better optimal points. At kth
iteration, the particle i has its position x(i,k)

t (x(i,k)
t is the robot

pose in SLAM) and its velocity v(i,k)
t , and its best position

x(i)
tb from its history. Velocity indicates where to go, which

is estimated by the relative positions between the particle’s
current position and its best record x(i,k)

tb , and the swarm’s
current optimum gt . At kth PSO iteration, the position and
velocity of ith particle is updated by

x(i,k+1)
t = x(i,k)

t +v(i,k)
t

v(i,k+1)
t = wv(i,k)

t + c1r1(x
(i)
tb −x(i,k+1)

t)+ c2r2(gt −x(i,k+1)
t),

(1)

where w is a constant corresponds to the inertia, and c1, c2
are also constant weights for the relative positions. r1,r2 ∈
[0,1] are random values generated for each particle and each
PSO iteration. The current best position x(i)

tb and the swarm’s
current optimum gt are updated by every particle’s update.
With this procedure, the particles explore the space around
the current optimum and try to find better optimal point.

B. Swarm Optimization Combined Particle filter

The posterior distribution of the robot trajectories and
landmark positions is formulated by

p(r1:t ,m|z1:t ,u0:t−1) = p(m|r1:t ,z1:t)p(r1:t |z1:t ,u0:t−1), (2)

where r1:t and m are the trajectories of the robot from time 1
to t, and the estimated map, respectively. u0:t−1 and z1:t are
the odometry and the observations respectively. Following
the Rao-Blackwellized particle filter (RBPF) based frame-
work [1], we first sample the robot pose from the proposal
distribution π(rt |z1:t ,u1:t−1,r1:t−1), and then estimate the
positions of the landmarks using the sampled robot pose via
EKF for each particle. For the particle i which has the robot
pose r(i)

t at time t, the importance weight of the particle is
evaluated by

w
(i)
t = w

(i)
t−1

p(zt |r(i)
t)p(r(i)

t |r(i)
t−1,ut−1)

π(r(i)
t |z1:t ,u1:t−1,r

(i)
1:t−1)

. (3)

If the motion prior is noisy due to the motion sensor’s
error or due to external forces, then the proposal distribution
of the robot pose is not coincident with the likelihood
function. Fig. 1 (a) shows this situation, known as the particle
degeneracy problem. To deal with this problem, we apply
the PSO after particle propagation to adapt the particles
to the likelihood distribution. We can divide the sampling
procedure into two parts: one is a transition by motion
prior ut and the other is a transition by PSO dynamics
given by equation (1). In the PSO procedure, each particle
moves K times, where K is the number of PSO iterations.
We represent the intermediate position of the particle i at
kth PSO iteration as r(i,k)

t . r(i,K)
t = r(i)

t is the final obtained
position of the ith particle at time t. r(i,k)

t corresponds to
x(i,k)

t in equation (1). Then we set the proposal distribution

925

π(r(i)
t |z1:t ,u1:t−1,r

(i)
1:t−1) as

π(r(i)
t |z1:t ,u1:t−1,r

(i)
1:t−1) =p(r(i,0)

t |r(i)
t−1,ut−1)p(r(i,1)

t |zt ,r
(i,0)
t)

· · · p(r(i)
t |zt ,r

(i,K−1)
t).

(4)

p(r(i,0)
t |r(i)

t−1,ut−1) is the probability of transition by the
odometry and p(r(i,k+1)

t |zt ,r
(i,k)
t) is the probability of particle

position update at each kth PSO iteration. According to
this proposal, we first propagate the particles from the
motion probability p(r(i,0)

t |r(i)
t−1,ut−1) and update the initial

distribution through the PSO dynamics with the probability
p(r(i,k+1)

t |zt ,r
(i,k)
t). In the PSO dynamics, particles move

toward the high likelihood region, so we can approximate
the probability p(r(i,k+1)

t |zt ,r
(i,k)
t) as

p(r(i,k+1)
t |zt ,r

(i,k)
t) � p(zt |r(i,k+1)

t)

p(zt |r(i,k)
t)

. (5)

Therefore, we can calculate the resulting weight of the
particle by

w
(i)
t = w

(i)
t−1

p(zt |r(i)
t)p(r(i)

t |r(i)
t−1,ut−1)

π(r(i)
t |z1:t ,u1:t−1,r

(i)
1:t−1)

= w
(i)
t−1

p(zt |r(i)
t)p(r(i)

t |r(i)
t−1,ut−1)

p(r(i,0)
t |r(i)

t−1,ut−1)
p(zt |r(i,1)

t)

p(zt |r(i,0)
t)

p(zt |r(i,2)
t)

p(zt |r(i,1)
t)

· · · p(zt |r(i,K)
t)

p(zt |r(i,K−1)
t)

= w
(i)
t−1

p(zt |r(i,0)
t)p(r(i)

t |r(i)
t−1,ut−1)

p(r(i,0)
t |r(i)

t−1,ut−1)
.

(6)

With this procedure, particles move toward the local
optimum of likelihood distribution and finally forms a swarm
following the target distribution as Fig. 1 (b). It can be
thought of as a post processing after initial particle prop-
agation.

The computational time to get one particle will increase
when the PSO iteration increases, because we have to cal-
culate the fitness (likelihood) of particles at every time they
move. With PSO, however, since it is possible to keep track
of the optimum values with a smaller number of particles
than generic particle filters, the total computation time can
be greatly reduced.

The necessary condition for applying PSO to the obtained
particles is that the maximum likelihood point must be in
the range of obtained particles. To meet this condition, we
have to keep the range of particles to appropriate size. This
can be achieved via repulsion dynamics between particles
and between swarms, which will be explained in the next
section.

C. Exclusion between particles

To prevent a severe convergence of particles, we can
put the repulsion forces between particles. Quantum Swarm
Optimization (QSO) [13] introduce a concept of quantum
particle to PSO. Quantum particle is non-moving particle,

(a) (b)

Fig. 2. Shape of likelihood function on x and y coordinates of robot pose.
(a) Identical data association for all particles. (b) Different data association
from different robot poses.

Fig. 3. Three swarms maintaining multiple modes. Red arrow: most
probable robot pose, Cyan arrows: other particles.

thus it does not get close to each other. Our swarms are
composed of neutral particles and quantum particles. The
neutral particles move according to the equation (1). The
quantum particles have zero velocity and are distributed
in wide area around a local optimum. This non-converged
distribution of quantum particle provides a chance to search
new region to the swarm. The position of quantum particle
j is determined at the start of every PSO iteration by

r(j,k)
t ∈ B(gt ,rcloud), (7)

where B(gt ,rcloud) represents a ball centered at gt with a
radius rcloud .

When we move to the next particle filter step, we move the
ball center gt according to the motion prior ut and form a new
ball with a radius rcloud . If some of these quantum particles
have a higher likelihood than the current local optimum, then
the neutral particles move toward these quantum particles
and try to find better points. The size of rcloud has to be set
carefully because it has to cover the odometry error, but it
cannot be too large. To apply the concept of QSO we use
these quantum particles, but these are just assistants for the
neutral (normal) particles. Therefore the quantum particles
do not have their maps and do not perform the update of
landmarks. When we calculate the likelihood of the quantum
particles, we use the map of the best neutral particle among
the swarm.

926

D. Multiswarm

If the likelihood function has only one mode (local op-
timum), using one swarm is sufficient. However, if there
is more than one mode, then it is very risky to keep
only a single swarm. In a visual SLAM which uses visual
landmarks like corner points, the result of data association
severely changes the shape of likelihood function. If the data
association is identical for all robot poses, then the shape of
likelihood function is concave like Fig. 2 (a). The projected
landmark position, however, is different according to the
sampled robot pose, and the data association based on the
projected landmark position can be different from particle to
particle, which varies the shape of the likelihood function as
shown in Fig. 2 (b). If we put the swarm at the mode with
false robot pose and do not have swarm for the true robot
pose, then the distance between these mode will be large and
finally we will lose the true robot pose and will not be able
to recover it.

To track multiple modes of the likelihood distribution, we
use multiple swarms. Through particle filtering, however,
these swarms may also get close to each other and be
converged. Therefore, we need a mechanism to prevent the
convergence of swarms as similar to the case of particles.
This is achieved by separating close swarms each other.
We set the distance threshold that determines whether two
swarms are in the range of same mode as rexcl . After updating
all particles in each swarm, we calculate the distance dnm

between each pair of swarms, given by the distance between
the two swarms’ best position gn and gm, where n,m are the
indices of the swarm. If dnm is smaller than the threshold
rexcl , then only one of the two swarms survives. Here,
we select the swarm with higher likelihood from gn, gm

as a survivor. Not survived swarm is then re-initialized or
removed, according to the swarm birth and death strategy in
[17].

IV. PROPOSED SLAM SYSTEM

The proposed particle filter can be applied to any SLAM
system, and can especially contribute to vision-based SLAM
which uses visual landmark like corner point. There can
be similar patterns in visual scenes which can cause some
ambiguities in possible robot poses. Maintaining multiple
swarms can remedy this problem. Among the vision-based
SLAM systems, we apply the proposed particle filter to
the ceiling vision based SLAM [18]. Ceiling scenes are
easy to match due to their scale invariant property, but
they suffer from the mistakes of data association caused
by similar patterns in ceiling. When there are similar or
repeated patterns, the robot has to keep track of as many
likely trajectories as possible.

We define the distance in the problem space to apply
the concept of multiswarm and exclusion of particles. The
robot pose of particle i is given by r(i)

t = [xi,yi,θi]Tt , so the
problem space is R

3. We have to give a weight to each
dimension because xi,yi and θi have different measures. In
our system xi and yi are measured by cm, and angle θi

is measured by radian, thus the compensation for different

unit is required. As a result, we can define the measure
for distance dr(r(i),r(j)) between robot pose r(i) and r(j) as
equation:

dr(r
(i)
t ,r(j)

t) = (xi−x j)2 +(yi−y j)2 +a2Trunc2(θi−θ j), (8)

where a is a weight value for angle, we set it 100 in
our experiment. rcloud and rexcl all use this measurement.
Trunc(θ) is the truncation function that makes θ always
between −π and π .

The weight of a particle is calculated from the average
distance between the projected positions of the 3D landmarks
to an image and the detected points of landmarks in the
image. The smaller distance means more probable particle
of robot pose, so by using exponential model we can define
the likelihood of the particle by

p(z|r(i)
t) = exp

[
− 1

N

N

∑
l=1

d(zl , ẑl)

]
, (9)

where N is the number of observed landmarks in current
scene. ẑl and zl are the projected position and the measured
position of the landmark Ll in the image plane, respectively.
d(zl , ẑl) is the Euclidean distance between them.

V. EXPERIMENT

To evaluate the performance of the proposed algorithm,
we perform two sets of experiments. One is an experiment
with a real ceiling vision based SLAM system, and the other
is an experiment on synthetic simulation. Since the ground
truth of the robot trajectory and the landmark positions are
not available for real experiment, we cannot perform an
error analysis of the system. Instead, we test the algorithm
indirectly with real system by comparing the maximum
likelihood and the effective number particles. We perform a
quantitative error analysis using synthetic simulation which
has the same model of the real system. We compare our
algorithm with the generic particle filter, the linearized
optimal importance method [6] used in FastSLAM-2[5].

A. Real System Experiment

We perform the experiment in an indoor environment
because the proposed algorithm uses ceiling vision. The
robot moves on a planar floor and observes the landmarks
on the ceiling or wall through a wide FOV (field of view)
camera that is pointing in the upward direction.

Fig. 4 (a) and (b) show the resulting maps obtained by
the generic particle filter and our proposed particle filter,
respectively. The positions and uncertainties of landmarks are
indicated by green ellipsoids. Although we cannot evaluate
the accuracy of the result since we do not have a ground
truth, qualitative comparison is possible using knowledge
of the structure of experiment environment. In Fig. 4, the
environment is composed of the wall, door and ceiling, thus
we can see the quality of the mapping by checking the co-
planarity of landmarks in the map. We can see that the map of
proposed particle filter is better than that of generic particle
filter in that sense.

927

(a) (b)

Fig. 4. Mapping results with real system: (a) Generic PF (b) Proposed PF

0.45

0.50

Proposed PF

0.40

0.45

Linearlized Opt. Proposal

Generic PF

0.30

0.35

o
d

0 20

0.25

k
e
li

h
o
o

0.15

0.20

L
ik

0 05

0.10

0.00

0.05

1 101 201 301 401 501 601 701 8011 101 201 301 401 501 601 701 801

Frame

Fig. 5. The plot of the maximum likelihood found by particle filters.

We give different number of particles to the filters because
each filter needs different time for dealing with one particle.
The generic particle filter uses 300 particles while the
linearized optimal proposal method uses 180 particles. The
proposed particle filter has 200 particles which are divided
into four swarms and each swarm has 25 neutral particles
and 25 quantum particles which perform three PSO iterations
for one frame. This compensation makes the elapsed time for
each algorithm almost the same.

The mapping result of the linearized optimal proposal
method is almost the same with the result of our method.
Even though we cannot plot the error of robot pose, we can
plot the maximum likelihood found by each particle filter.
This is helpful for comparing the sampling performance of
the filters. In Fig. 5, the proposed particle filter has higher
maximum likelihoods than the other filters in more regions.
The average likelihoods are 0.178 (proposed PF), 0.129
(Linearized optimal proposal), and 0.0996 (Generic PF) for
each filter. This result is gained from the optimization ability
of the original PSO algorithm. The proposed particle filter
does not generate particles at once; it adjusts the particles

25

Proposed PF

20

Linearlized Opt. Proposal

Generic PF

15

m
)

rr
o
r

(c
m

10E
r

5

0

1 201 401 601 801 1001 1201 1401 1601 1801 2001

Frames

Fig. 6. Synthetic data simulations, with the same computation time for all
algorithms: The plot of pose error between the ground truth and the best
sample position.

70

Proposed PF

60 Linearlized Opt. Proposal

Generic PF

50

)

30

40

rr
o
r

(c
m

)

20

30E
r

10

20

0

10

0

1 2 3 4 5

Measurement Error (1.0pixel, 1.0deg)

Fig. 7. The plot of pose error with varying measurement noise.

after particle transition by motion model. This enables the
particles to find a better position with respect to the likeli-
hood. If the measurement error is small, then our filter will
give promising results. If not, the particle distribution will
be overfit to the likelihood and the filter performance can be
degraded. This is experimented in synthetic data simulation.

B. Synthetic Simulation

To evaluate the accuracy of each particle filter quantita-
tively, we test each filter to the synthetic simulation of the
ceiling vision based SLAM system. To compare only filtering
accuracy, we set all algorithms to the same odometry, same
real motion (Gaussian error and abrupt motions are added
to the odometry) and same data association results. The
robot moves total 2037cm trajectory. Again, we tested three
algorithms, the generic particle filter, the linearized optimal
importance method, and our proposed algorithm. We tested
the algorithms under two different conditions: same number
of particles and same computation time. For all results, a
position error for robot contained only translation error for
a convenience.

928

TABLE I
EXPERIMENTS WITH SAME NUMBER OF PARTICLES

Generic PF Opt. Proposal Proposed PF
particle 30 30 30

Time (sec) 27.02 38.25 32.01
Avg. Error (cm) 11.16 2.662 2.699

Stdev. (cm) 1.80 0.385 0.286

TABLE II
EXPERIMENTS WITH SAME COMPUTATION TIME

Generic PF Opt. Proposal Proposed PF
particle 55 30 43

Time (sec) 39.49 38.25 38.28
Avg. Error (cm) 6.612 2.662 1.606

Stdev. (cm) 0.987 0.385 0.244

With the experiment of same particle number condition,
we can compare the quality of generated particles. Table
I summarizes the results. This experiment is performed
with a measurement error of 1.0pixel and 1.0degree of
the measurement. With the same number of particles, the
proposed algorithm and linearized optimal proposal shows
nearly equal results in average position errors. The proposed
algorithm gives the least standard deviation of error, which
means it shows a stable performance. Since the proposed
algorithm requires less computation time for generating one
particle than the linearized optimal proposal method, the
performance of the proposed algorithm is improved when we
use the same computation time for all filters. The summary
of same computation time experiment is Table II.

Fig. 6 shows the plot of position error during the robot’s
travel. Initially, all the filters show similar patterns but as
they move the difference is increased. We simulate the large
odometry noises induced by external force to the robot, and
that time the plots change severely. For the generic particle
filter, it is hard to recover the correct trajectory after this
motion, while the other filters quickly reduce the error.

We also tested the performance of each filter with a
varying measurement noise. Since the proposed method and
the linearized optimal proposal method generate particles
using recent observation, these algorithms cannot give good
results when the quality of the observation is poor. Fig. 7
shows the result on this experiment. As we can see, the
proposed algorithm shows better results on low measurement
noise and worse results on high measurement noise than the
linearized optimal proposal method. Actually, 5 pixels and 5
degrees are quite large errors in image based measurement,
thus we can conclude that the proposed algorithm can give
better results in general environment.

VI. CONCLUSION

In this study we have proposed a novel particle filter-
ing method which can be used to resolve the problem of
particle impoverishment by employing the Particle Swarm
Optimization-based approaches. With this method we can

perform efficient sampling in terms of the number of re-
quired particles by combining the generic particle filter with
the PSO which is equipped with the concept of quantum
particles and multiple swarms. Our algorithm can be applied
to not only the landmark-based SLAM, but also to grid-
based SLAM, wherever we can evaluate a likelihood from
observation. Moreover, the proposed particle filter can be
applied not only to SLAM, but also to any kind of application
which uses the particle filter-based approaches such as object
tracking.

VII. ACKNOWLEDGMENTS

This research was supported in part by SAMSUNG
THALES, and in part by the ITRC program of MKE/IITA
through 3DRC (IITA-2008- C1090-0801-0018), Korea.

REFERENCES

[1] K. Murphy, “Bayesian map learning in dynamic environments,” in
Proc. Advances in Neural Information Processing Systems, Colorado,
USA, 1999.

[2] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-
blackwellised particle filtering for dynamic bayesian networks,” in
Proc. Conference on Uncertainty in Artificial Intelligence, 2000.

[3] D. Fox, “Kld-sampling: Adaptive particle filters,” in Proc. Advances
in Neural Information Processing Systems, Vancouver, Canada, 2001.

[4] A. Soto, “Self adaptive particle filter,” in Proc. International Joint
Conferences on Artificial Intelligence, Edinburgh, UK, 2005.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in Proc. National Conference
on Artificial Intelligence, 2002.

[6] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering.”

[7] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” in Proc. National
Conference on Artificial Intelligence, 2002.

[8] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence. San
Francisco, USA: Morgan Kaufmann, 2001.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE International Conference on Neural Networks, Perth, Australia,
1995.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization
by a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern.
B, vol. 26, no. 1, pp. 29–41, 1996.

[11] D. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi,
“The bees algorithm - a novel tool for complex optimisation prob-
lems,” in Proc. Innovative Production Machines and Systems Confer-
ence, 2006.

[12] A. Carlisle and G. Dozier, “Adapting particle swarm optimization to
dynamic environments,” in Proc. International Conference on Artificial
Intelligence, Las Vegas, USA, 2000.

[13] T. Blackwell and J. Branke, “Multiswarms, exclusion and anti-
convergence in dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 459–472, 2006.

[14] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu, “Sequential particle
swarm optimization for visual tracking,” in Proc. IEEE International
Conference on Computer Vision and Pattern Recognition, Anchorage,
USA, 2008.

[15] G. Tong, Z. Fang, and X. Xu, “A particle swarm optimized particle
filter for nonlinear system state estimation,” in Proc. IEEE Congress
on Evolutionary Computation, Vancouver, Canada, 2006.

[16] Q. Wang, L. Xie, J. Liu, and Z. Xiang, “Enhancing particle swarm
optimization based particle filter tracker,” Lecture Notes in Computer
Science, vol. 4114, pp. 1216–1221, 2006.

[17] T. Blackwell, “Particle swarm optimization in dynamic environments,”
Evolutionary Computation in Dynamic and Uncertain Environments,
pp. 29–49, 2007.

[18] W. Jeong and K. Lee, “Cv-slam: A new ceiling vision-based slam
technique,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing, China, 2005.

929

