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Abstract—Multi robot motion planning problems can be 
solved very efficiently when the Configuration Space is mapped 
onto a Graph. Before planning, however, it must be assured 
that the constructed graph is reachable (solvable) for the given 
number and configuration of robots. Solvable Trees are types 
of trees that let any arrangement of a specified number of 
robots be reached from any initial arrangement through 
sequential moves of robots on vertices of the tree. In this paper 
the properties of Solvable Trees are investigated, and Minimal 
Solvable Trees, which are the smallest solvable trees in terms of 
the number of vertices, are introduced as a new concept. Also, 
a new algorithm with linear time complexity is proposed for 
deciding whether a multi robot motion planning problem has a 
solution on a tree, without explicitly solving it. 

I. INTRODUCTION 
HE general motion planning problem is known to be 
PSPACE-hard and NP-complete. Most of the solution 

methods for robot motion planning are variations of a few 
general approaches: Roadmap, Cell Decomposition, 
Potential Fields, mathematical programming, and heuristic 
methods, which are broadly surveyed in [1]. 
 Roadmap approaches reduce the workspace into a graph 
with nodes including the starts and goals of the robot, and 
find a collision-free path through graph search. Although 
classic approaches like Visibility Graph, Voronoi Diagram, 
and Cell Decomposition have proved to be effective for sin-
gle-robot problems, they do not provide straightforward so-
lutions to Multi Robot Motion Planning (MRMP) problems. 
 Space is the most limiting constraint in a typical MRMP 
problem: often, because of lack of sufficient space around 
robots, they cannot reach their goals without obstructing 
each other’s way, causing deadlocks. Deadlocks are situa-
tions in which two (or more) robots intercept each other’s 
motions and are prevented from reaching their goals. This 
happens generally in narrow passageways where robots 
cannot pass by each other. To resolve a deadlock, robots 
should reshuffle, circumnavigate, detour, or regulate their 
speed (also known as Velocity Tuning). Another approach is 
the Prioritized Planning, in which the robots move according 
to a priority scheme, as discussed in [2], [3], and [4]. 
  By reducing the workspace into a graph with nodes in-
cluding the starts and goals of all robots, the multi robot 
motion planning problem then turns into a sequencing 
problem where the robots are planned to move sequentially 
(or concurrently) toward their destinations, without colliding 
with each other. The graph structure stipulates them to 
remain on predefined routes (i.e. graph edges), and so avoid 
the obstacles existing in the workspace. Another benefit of 
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graph-based MRMP is its reduced computational time. 
 The main question in designing a predefined graph is to 
find out whether the graph is ‘reachable’ (solvable) for any 
initial and final configurations. A Configuration is an ar-
rangement of robots on the vertices of the graph such that no 
vertex is occupied by more than one robot. Solvable graphs 
allow the transition of any initial configuration of robots to a 
final state via their sequential moves. 
 The first work trying to find a relation between a graph’s 
topology and the number of ‘beans’ moving on it is due to 
Wilson, in which only bi-connected graphs are studied, and 
k = n � 1 (k is the number of beans, n the number of vertices) 
[5]. This study is improved in [6] by generalizing the decision 
problem for all graphs and for any number of robots. In [7] the 
above problem is studied as pebble motion problem by 
generalizing the 15-puzzle, and a linear algorithm for deciding 
the reachability of trees is presented. However, both [6] and 
[7] only cover cases where the set of empty nodes remain 
unchanged in start and goal configurations. In [8] the 
possibility of reaching destinations of connected subgraphs is 
studied, by simplifying the MRMP between some predefined 
subgraphs named stacks, halls, rings, and cliques. 
 To our knowledge, the problem of deciding whether a 
graph is always solvable for a specific number of robots for 
any initial and final configuration has never been mentioned 
or addressed in the literature. The problem of determining 
the smallest solvable graph (in terms of vertices) for a 
certain number of robots has also been remained untackled.  
 Graphs can be categorized into two general classes: cy-
clic, and acyclic: cyclic graphs have loops and are more 
convenient for moving of multiple robots (or agents), while 
acyclic graphs (i.e. trees) provide less maneuverability for 
the agents moving on it. That’s why MRMP on trees can 
serve as a basis for MRMP on general cyclic graphs. MRMP 
on trees has real-world applications in maze-like environ-
ments, indoor corridors, parking lots, railway networks, etc. 
 In this paper, we specifically deal with tree-type (acyclic) 
graphs, and set forth the following questions: What is the 
maximum number of robots a tree can accommodate such 
that any final configuration can be reached from any initial 
configuration? What topology a tree must have to be solv-
able for a specific number of robots? and What is the 
‘smallest’ tree solvable for a specific number of robots? 
 After presenting some basic definitions in section II, in 
section III the conditions for a tree to be solvable are 
investigated and the maximum number of robots located on it 
is determined. Two new concepts, MSTs and PSTs are 
introduced in Section IV. In Section V we propose an algo-
rithm for deciding whether an MRMP with a given tree and 
initial and final configurations has a solution, without 
explicitly solving it. 
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II. DEFINITIONS 
 Before we proceed, let us present three new fundamental 
and correlated concepts: 
� A Solvable Tree is a tree on which any configuration of at 
most m robots can be reached from any initial configuration 
through their moves on tree edges, and is shown by STm. 
� A Partially Solvable Tree is a tree on which only some 
configurations of m robots can be reached from any initial 
configuration, and is shown by PSTm.  
� A Minimal Solvable Tree is an STm having the least pos-
sible number of vertices, and is shown by MSTm. 
 In addition to the standard terminology used in Graph 
Theory, there are some new definitions and symbols defined 
specifically for this work, presented in Table I. Also, some 
concepts are shown graphically in Fig. 1(a). 
 Here we review some basic concepts in Graph Theory [9]: 
Let T = (V, E) be a tree, with the set of vertices V and set of 
edges E. The number of vertices also indicates the order of 
T, denoted by |T|. The number of vertices connected to the 
vertex v is called its Degree, d(v). Leaves of a tree, L(T), are 
vertices with d(v) = 1, and Internal Vertices of a tree, I(T), 
are vertices with d(v) > 1. Dist(v, u) is defined as the length 
of the shortest path between two vertices v and u. 

TABLE I 
DEFINITIONS OF USED TERMS AND SYMBOLS 

Term / Symbol Description 
O � {v | d(v) � d(u), � u � V} Origin: The vertex with maximum degree

in the Tree. If not unique, selected such
that the maximum Level of all vertices is
kept minimal. 

l(v) = Dist(v, O) Level: The minimal distance of vertex v
from O along the edges of the Tree. 

J  = {v | v is MI, d(v) � 3} Junctions: The set of Internal Vertices with
degrees of more than 2. It may be O as well.

H(S) Holes: The set of empty vertices not
occupied by robots at initial configuration
in the subtree S. The size of H(S) is
denoted by h(S) = |H(S)|, and when S is the
whole Tree, we set H = h(T). 

 
        (a)            (b) 
Fig. 1. (a) Some concepts: L = Leaf, I = Internal Vertex, and J = Junction. The 
central gray junction is selected the Origin of the tree. (b) A 6-Leaf Star. 

III. SOLVABILITY OF TREES 
 Since Junctions are vertices in the tree where different 
branches and Leaves meet (just as squares or crossroads 
which connect avenues and streets), they enable the robots to 
change their course of motion and shift from one branch or 
Leaf to another branch or Leaf. 
 On the other hand, Leaves and Junctions’ branches can be 
used for robots’ maneuvers and interchanges, and serve as 
places for situating the robots permanently or temporarily 

during the motion planning task, aiming to make the start-to-
goal paths of robots as free as possible and facilitate the 
robots’ moves toward their goals. 
 In this section for obtaining the solvability conditions of 
trees, first the simplest trees called ‘Stars’ are introduced 
and their solvability is investigated. The results are then 
generalized to more complicated trees. 

A. Star Trees 
 A Star is a complete bipartite graph with only one vertex 
in one part and one or more vertices in the other part. Stars 
are trees with diameters equal to 2, and have only one 
Junction. Fig. 1(b) illustrates a 6-Leaf Star. 
 Here we propose a lemma for the solvability of Stars: 
Lemma 1. A Star with m+1 Leaves is Solvable for m robots. 
Proof. A Star with m+1 Leaves has order of m+2 (e.g. Fig. 
1(b) for m = 5), and two of its vertices are not occupied by 
robots. Depending on the robots’ initial configuration, these 
two vertices are called Holes and may either be both Leaves 
(case a), or a Leaf and the only Internal Vertex (case b). 
 To prove the solvability of Star, various possibilities of 
initial and final configurations of robots can be considered 
in the form of four Scenarios enlisted in Table II. 

TABLE II 
POSSIBLE SCENARIOS FOR ROBOTS’ CONFIGURATIONS ON STARS 

 
G1: The goals of all 
robots are on leaves 

G2:  The goals of all robots 
are on leaves except for one 
that is on the internal vertex

S1: The starts of all robots 
are on leaves Scenario 1 Scenario 2 

S2: The starts of all robots 
are on leaves except for one 
that is on the internal vertex

Scenario 3 Scenario 4 

 Scenario 1: In this scenario a Leaf and the Internal Vertex 
are initially empty (case (b)). If the empty Leaf is the goal of a 
robot, then it should be occupied by that specific robot either 
directly (if there is a free path for the robot), or indirectly 
(after freeing the path by other robots). So the Star is solvable. 
 Scenario 2: In this scenario the case (b) holds again. The 
robots should occupy their goals in the same manner as in the 
Scenario 1, with the consideration that occupying the internal 
vertex should be the last move. The Star is therefore solvable. 
 Scenario 3: In this scenario, initially one robot is on the 
Star’s internal vertex and m�1 robots are on the Leaves, and 
so the case (a) holds true. Through a single move of the 
robot located on the internal vertex to an arbitrary empty 
Leaf, the Scenario 1 is attained, and the subsequent moves 
for solving the problem can be done in the same manner. 
 Scenario 4: The case (a) applies for this scenario. Again 
by moving the robot on the internal vertex to an empty Leaf, 
this scenario converts to the Scenario 2, and the problem can 
be solved accordingly.                � 
 The concept of Star trees can be generalized as follows: 
 An Extended Star is a tree with one Junction (hence the 
Origin) and more than one Internal Vertices. In other words, 
Extended Stars can be constructed by adding new Leaves to 
a Star, such that no other Junction is formed. 
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Fig. 2. An Extended Star with a maximum Level lmax = 4. 

 The following Lemma deals with the solvability of 
Extended Stars: 
Lemma 2. The maximum number of robots for which an 
Extended Star is solvable is m = |T| � lmax � 1, in which lmax 
is the maximum Level in the tree. 
Proof. The maximum distance from the Extended Star’s 
Junction J to any vertex in the tree is lmax = max{l(v),� 
v�V}. It is obvious that in order for the tree to be 
solvable, any two robots must be able to interchange their 
positions. The worst case of interchanging occurs when a 
robot r located on the vertex with l(v) = lmax has to move 
to the depth of another branch of the tree. Since there is 
only one Junction in the tree, the robot should pass 
through the Junction, and so at least the path P connecting 
vertex v(r) and J, plus another vertex connected to the 
Junction (i.e. not on P) must be either initially empty, or 
able to be emptied by motions of other robots. This means 
that at least lmax+ 1 vertices in the tree should be empty. 
That is, H = lmax+ 1, and so the maximum number of robots 
will be  m = |T| � H = |T| � lmax � 1.          � 

B. General Trees 
 General Trees are trees with multiple Junctions. A general 
tree can be partitioned into a number of zones formed 
around each Junction. As a result, the solvability of a 
general tree can then be assessed in two phases: first, the 
possibility of robots’ maneuvers within each zone is checked 
(i.e., local interchanges), and second, the possibility of 
robots’ interchanges among all zones is verified (i.e., global 
interchanges). 
 Partitioning of a general tree is based on the number of 
holes (empty vertices) calculated by H = |T| � m, where |T| 
is the order of the tree (or the number if its vertices).  
 The conditions for local (micro level) and global (macro 
level) interchangeabilities in general solvable trees are 
discussed in Lemmas 3 and 4. Before that, some definitions 
are provided below: 
Definition 1. Any two Junctions are considered Near if there 
is no other Junction between them. That is,  

1 if  Path( , ), 
( , )

0 otherwise
r p q r

p q
j j j j J

Near j j
� �

�
�
�
�

��   (1) 

where Path(jp, jq) is the set of vertices connecting jp and jq.  
Definition 2. The set of vertices around a Junction satisfying 
the following condition is called the Influence Zone (IZ) of 
that Junction. That is, 

IZk = {v | Dist(jk, v) � H � 1, � v � V}    (2) 
 Two IZs are considered Near if their Junctions are Near. 
Fig. 3 shows Influence Zones for all four Junctions of a tree. 

 
Fig. 3. Influence Zones (IZs) of the Junctions of a sample tree with H = 3. 
Note that v8 and v17 do not belong to any IZ. 

Definition 3. An Interconnected Influence Zone (IIZ) is the 
set of all Influence Zones (IZs) such that for any two Near 
IZs in the set, the distance between their Junctions is not 
more than (H � 2). Mathematically, 

	 
( , ) 2p p qtIIZ IZ Dist j j H� � �      (3) 

for all Near(IZp, IZq) = 1 and {jp, jq} � J. For example, in 
Fig. 3, IZ2 and IZ3 merge and form IIZ1 (see Table III). Note 
that once interconnected IZs merge and form a new IIZ, they 
are omitted from the list of existing IZs. Even so, the 
remained IZs are still labeled according to their Junction 
number.  

C. Condition for Local Interchanges 
 Local robot interchanges are considered to be any type of 
rearrangements from an initial to a final configuration taken 
place inside an Influence Zone of a Junction. The following 
lemma proposes the condition which an IZ must have to be 
solvable. 
Lemma 3. Any Influence Zone having H Holes is solvable.  
Proof. Based on definitions of Extended Star and Influence 
Zone, it is inferred that an Extended Star is a special subset 
of Influence Zone, having only one Junction. Regarding the 
proof of Lemma 2 and that Junctions are vertices at which 
robots can change their course of motion or exchange 
positions, the solvability condition in Extended Stars 
requires at least more empty vertices than in IZs. In other 
words, a lower limit for the number of holes in an IZ is 
determined from the number of necessary holes in an 
Extended Star with the same depth of branches (which is H 
= lmax+ 1). Since by definition, in an IZ, lmax = H � 1, then the 
number of holes is at least H* = lmax + 1 = H � 1 + 1 = H.   � 
 For example in the Fig. 3 if all the holes were on {v6, j1, 
j2} (situated in IZ1 and IZ2), then the robots on {v1, v2, v3} 
and {v7, v10, v11, v14, v15, j3} could interchange in IZ1 and IZ2, 
respectively.  

D. Conditions for Global Interchanges 
 In this stage the conditions for interchangeability of any 
two robot located in Near Influence Zones are investigated. 
Obviously, the results can be generalized to the whole tree 
due to the transitive property of sets (in this case, IZs). The 
following lemma provides conditions for global 
interchanges of robots, hence the solvability of the tree. 
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Lemma 4. Any General Tree having H Holes is solvable iff 
the following conditions are satisfied:  

(i).  All two Near Influence Zones are Interconnected, 
(ii). All vertices belong to at least one Influence Zone. 

Proof. (a) We first assume that a tree with H Holes is solvable 
if the conditions (i) and (ii) hold, and prove it by direct 
proof: If an arbitrarily selected robot is located on any 
vertex, then this vertex belongs to at least one IZ (regarding 
to (ii)), and the robot can not only move to anywhere in its 
IZ, but also to any vertex in its Near interconnected IZ (due 
to (i) and Lemma 3).  Furthermore, it can also move to any 
vertex in any IZ in the tree since by (i) all near IZs are 
Interconnected, having distances less than or equal to H � 2 
between their Junctions. On the other hand, since according 
to (ii) all vertices in the tree are located within at least one 
IZ, the robot can therefore access to any vertex in the tree. 
This means that the tree is solvable.          � 

(b) Now we assume that in a tree with H Holes the 
conditions (i) and (ii) hold if the tree is solvable. We will 
prove it by indirect proof (i.e. proof by contradiction) for 
each condition separately: 

Case (b.i): Suppose that the distance of two Near Junctions 
(i.e. the number of edges between) is greater than H � 2. 
Take an arbitrary robot on any vertex: in order for this 
robot to move from its IZ to any vertex in its Near IZ, the 
path connecting their two Junctions (inclusive) and the 
destination vertex must be empty. Regarding that by the 
current counterargument Dist(jp, jq) > H � 2, then it can be 
at least Dist(jp, jq) = H � 1, which contains one more 
vertex. Therefore, counting the destination vertex, the total 
number of required Holes in the tree would be 
H* = [Dist(jp, jq) + 1] + 1 = [(H � 1) + 1] + 1 = H + 1 (4) 
which is in contradiction with the assumption of existing H 
Holes in (b). Thus, it is concluded that Dist(jp, jq) � H � 2, 
and the condition (i) holds.              � 

Case (b.ii): we assume that there exists at least one vertex v 
that does not belong to any IZ. According to the definition 
of IZs, the distance of v to its nearest Junction jp is at least H 
(i.e. Dist(v, jp) = H), which contains H + 1 vertices. In order 
for a robot on v to move to a vertex connected to jp, the path 
connecting v and jp and the destination vertex must be 
empty. So the total number of required Holes would be 
H* = [Dist(jp, jq) + 1] + 1 = [(H � 1) + 1] + 1 = H + 1 (5) 
which is in contradiction with the assumption of existing H 
Holes in (b). Thus, it is concluded that any vertex in the tree 
must belong to at least one IZ, and the condition (ii) holds. � 

 For example in Fig. 3, if the robot on v10 wants to move to 
v1, in addition to the vertices on its way (i.e. j2, v6, j1), it needs 
v1 to be empty; which is not so, and the move is impossible. 

IV. MINIMAL AND PARTIALLY SOLVABLE TREES 
 A Minimal Solvable Tree (MSTm) is the smallest tree on 
which any configuration of at most m robots can be reached 
from any initial configuration through their moves on the 
tree’s edges, and is shown by MSTm. In this definition, 
‘smallest’ is expressed and measured in terms of the number 

of vertices. It is noted that for a specific number of robots (m), 
there can be some MSTm with different topologies. 
Minimality of Stars: For proving that a Star with m+1 Leaves 
is an MSTm, let’s assume that the Star with m+1 leaves is not 
minimally solvable for m robots. Then a star with a smaller 
order (i.e. |T| < m+2) should be minimally solvable. If |T| � m, 
then there are no vertices for moving the robots, and so this 
Star is not solvable. If |T| = m+1, then a robot on a Leaf cannot 
move to another Leaf since its moves are limited to just one 
Leaf and the only Internal Vertex. Therefore, all final 
configurations are not reachable, and so the graph is not 
solvable. We conclude that for a Star to be Minimally Solvable 
it must have an order of m+2 (i.e. should have m+1 Leaves). � 
Minimality of Extended Stars: For Extended Stars, all 
vertices belong to the only IZ. Regarding that the longest 
path from (and including) the Junction must be empty, 
H = lmax + 1, and therefore |T| = m + H.          � 
Minimality of General Trees: Regarding that Dist(jp, jq) 
� H � 2, the minimum value that H can take to produce a 
positive distance is 3. Thus the order of an MSTm is 
|T| = m + H = m + 3, and the order of an STm is |T| > m + 3. � 
 Any tree not satisfying the conditions of the Lemma 4 is 
definitely not solvable for m robots, and may be either a 
non-solvable tree, or a Partially Solvable Tree for m robots 
(PSTm). Also, regarding the proof of Minimality of General 
Trees, if m < |T| < m + 3, then the tree is PSTm. Note that 
while not being Solvable Trees, PSTs are still solvable for a 
limited class of problems: those which require only Local 
Interchanges within either a single Influence Zone, or an 
Interconnected Influence Zone. The next Section presents an 
algorithm for determining whether an MRMP problem is 
solvable on a given PST or not. 

V. DETERMINING THE SOLVABILITY OF A PROBLEM 
 An important issue in multi-robot routing problems is 
deciding whether a final configuration of robots on a tree is 
reachable from an initial configuration through sequential 
moves of robots. This problem is addressed in works such as 
[6], [7], and [10], though none have dealt with general cases. 
 Any MRMP problem for m robots is feasible on STm and 
MSTm, regardless of the initial and final configurations of 
robots. On PSTs, however, only some problems have 
solution. In this Section an algorithm is presented for 
determining the feasibility of a problem on a given tree, 
regardless of its type, without explicitly solving it. This 
algorithm is useful for verifying the existence of a solution 
when the tree is PST, or there is no prior information about 
its solvability. 
 Before explaining the algorithm, two definitions are 
presented: Any vertex in a Zone (IZ or IIZ) having a 
distance of H � 1 to the nearest Junction of that Zone is 
called a Port of that Zone, and is shown by Pt(IZp)i or 
Pt(IIZt)i, respectively for IZp and IIZt. Also, the subtree 
connected to a port i of a Zone is called the Linked Subtree 
of that Port, and is shown by LS(Pt(IZp)i) or LS(Pt(IIZt)i), 
respectively for IZp and IIZt. The above concepts are 
explained in Table III for the example in Fig. 3. 
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TABLE III 
IZS, IIZS, PORTS AND LINKED SUBTREES OF THE SAMPLE TREE 

IZs Ports Linked Subtrees 
IZ1 = { j1, v1, v2, v3, v6, j2} 
 
IZ4 = { j4, v4, v5, v9, v13, v18} 

Pt(IZ1)1 = j2 
Pt(IZ1)2 = v3 
Pt(IZ4)1 = v18 

LS(Pt(IZ1)1) = V \ {IZ1, v8} 
LS(Pt(IZ1)2) = v8 

LS(Pt(IZ4)1) = V \ IZ4 

IIZs Ports Linked Subtrees 

IIZ1 = {j1, j2, j3, v6, v7, v10, 
         v11,v12, v14, v15, v16} 

Pt(IIZ1)1 = j1 
Pt(IIZ1)2 = v12 

LS(Pt(IIZ1)1) ={v1, v2, v3, v8}
LS(Pt(IIZ1)2) = IZ4 � v17 

 The algorithm is based on a key concept, the ‘Maximum 
Reachability Space’ (MRSi) of robot ri, which is defined as a 
subtree that is accessible for ri. 
 The outline of the algorithm is as follows: After 
determining IZs and IIZs, the MRS of each robot is 
calculated. If the goals of all robots lie inside their MRS, 
then it is checked if the robots intercept each others’ start-to-
goal moves. If no blockings occur, then the problem is 
solvable. On the other hand, if the goal of at least one robot 
does not lie in its MRS, or the goal is not accessible because 
of interceptions, then the problem has no solution. The 
algorithm’s details are given in three phases as follows: 

A. Initialization 

Step 1. Determine the following parameters and sets: 
- Start and Goal positions (si and gi) and shortest path 

(SPi) of each robot ri, 
- The number of Holes (H), and 
- All Zones (i.e. IZs and IIZs), 
- Ports of all Zones (i.e., Pt(IZp)i and Pt(IIZt)i), � p, t, i, 
- Linked Subtrees of all Ports of all Zones (i.e., 

LS(Pt(IZp)i) and LS(Pt (IIZt)i), � p, t, i. 

B. Maximum Reachability Space Calculation 

Step 2. Calculate the MRSi for each robot according to the 
procedure described in Fig. 4. 

Step 3. If for any robot ri its goal gi is not in MRSi then the 
problem has no solution. Otherwise, go to the Deadlock 
Situations Checking phase. 

C. Deadlock Situations Checking 
 In this phase the shortest start-to-goal paths are calculated 
independently for each robot. If some paths intersect at 
certain vertices, then some robots may block other robots’ 
moves to their goals, which are known as deadlocks.  
 All possible cases of deadlocks occurred for two robots 
moving at same or opposite directions in a tree are 
illustrated in Table IV. The relative directions of each pair 
of robots are determined based on the order of vertices 
visited by each robot. For instance in Case 1, 
SPi = {2�3�4} and SPj = {1�2�3�4�5}, and so 
SPi  SPj. In Case 3, SPi = {5�4�3�2} and 
SPj = {1�2�3�4�5}, and so SPi  ¬SPj � si = gj. The 
symbol ‘¬’ indicates the path in reverse order. 
Step 4. Check the deadlock situations of all robots whose 

MRS’s are different. If any of the deadlocks in Table IV 
occurs then the problem is not solvable. Otherwise, there 
is a solution to the given MRMP problem. 

 
Fig. 4. Pseudocode for calculating Maximum Reachability Spaces of robots. 

TABLE IV 
POSSIBLE DEADLOCK SITUATIONS CREATED BY TWO ROBOTS 

Case Description Graphical Representation 

1 SPi  SPj 

2 SPi  ¬SPj  � 
si � gj  �  gi � sj 

3 SPi  ¬SPj  �  si = gj 

4 SPi  ¬SPj  �  gi = sj 

5 SPi = SPj  � 
si = gj  �  gi = sj 

6 SPi � SPj  �  SPj � SPi 
�  gi � SPj  �  gj � SPi 

7 SPi � SPj  �  SPj � SPi 
�  si � SPj  �  sj � SPi 

D. An Example 
 The algorithm is run for the tree illustrated in Fig. 3. The 
shortest paths of robots, their relevant Zones and MRS are 
determined in Table V. Although it is verified that the goals 
of all robots lie within their MRS, for ensuring the 
solvability of the problem, deadlock situations must also be 
checked for all intersecting shortest paths of robots, as 
presented in Table VI. As a result, it becomes obvious that 
the problem has no solution because of deadlocks. 

Procedure MRS 
1 for each robot ri do 
2  if H = 1 then go to 25. 
3  Find the set of Zones (IZ or IIZ) that contain the start (si) of ri (call Žs). 
4  if Žs = � then go to 25. 
5  Find the set of Zones that contain all the vertices of SPi (call Žp). 
6  if Žp = � then Žp � Žs 
7  for each Zone in Žp (call Zp

j) do 
8   Find the number of Holes in Zp

j (i.e. h(Zp
j)). 

9   if h(Zp
j) = H then set MRSi � Zp

j. Go to 26. 
10   else find a port k for which Di 

j=min{Dist(si, Pt(Zp
j)k)}, �k� Ports 

11    if Di 
j < H � 1 then 

12     if Di 
j � h(LS(Pt(Zp

j)k)) then 
13      Set MRSi � Zp

j. Go to 26. 
14     else go to 25. 
15     end if 
16    else if Di 

j = H � 1 then 
17     if h(LS(si)) < H (for � LS(si)) then 
18      Set MRSi � Zp

j. Go to 26. 
19     else go to 25. 
20     end if 
21    else set MRSi � Zp

j. Go to 26. 
22    end if  
23   end if 
24  end for  

25  Set 
( )

1
MRS  = ( , );

d si

i jji Path s u
�
�  uj � LS(si) j, Dist(si, uj) � h(LS(si) j) 

26 end for 
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TABLE V 
SHORTEST PATHS, ŽP, ŽS, AND MRSi OF ROBOTS IN FIG. 3 

Robot Shortest Path Žp Žs MRS 
r1 {v1� j1� v2� v3} IZ1 IZ1 IZ1 
r2 {j1� v6� j2} IZ1, IIZ1 IZ1, IIZ1 IZ1 
r3 {v3� v2� j1� v1} IZ1 IZ1 IZ1  
r4 {j2� v6} IZ1, IIZ1 IZ1, IIZ1 IIZ1 
r5 {v10� j2� j3� v11} IIZ1 IIZ1 IIZ1 
r6 {v14� j2� j3� v15� v16} IIZ1 IIZ1 IIZ1 
r7 {j3� j2� v6� j1} IIZ1 IIZ1 IIZ1 
r8 {v7� j3� j2� v14} IIZ1 IIZ1 IIZ1 
r9 {v15� j3� j2� v10} IIZ1 IIZ1 IIZ1 
r10 {v11� j3� v15} IIZ1 IIZ1 IIZ1 
r11 {v16� v15� j3� v7} IIZ1 IIZ1 IIZ1 
r12 {v8� v3� v2} � � {v8, v3, v2,  j1} 
r13 {v12� v11� j3} IIZ1 IIZ1 {v17, v12, v11,  j3} 
r14 {v17� v12} � � {v18, v17, v12, v11} 
r15 {v18� v13} IZ4 IZ4 {v13, v18, v17, v12} 
r16 {v13� v18� v17} � IZ4 { j4, v13, v18, v17} 
r17 {j4� v5� v4} IZ4 IZ4 IZ4 
r18 {v5� j4� v13� v18} IZ4 IZ4 IZ4 
r19 {v4� v5� j4� v9} IZ4 IZ4 IZ4 

TABLE VI 
DEADLOCK SITUATIONS OF ROBOTS IN FIG. 3 

Robot Compared With Deadlock Situation Case 

r1 r12 g1 � SP12  �  g12 � SP1 6 

r4 SP4  ¬SP2  �  s4 = g2 3 
r2 r7 SP2  ¬SP7  �  s2 = g7 3 

r5 r13 g5 � SP13  �  g13 � SP5 6 
r18 SP15  ¬SP18  �  s15 = g18 3 r15 r16 SP15  ¬SP16  �  g15 = s16 4 

VI. DISCUSSION 
 As explained above, the algorithm for verifying whether a 
given problem on a tree has a solution is performed in three 
phases: (1) calculating Influence Zones, (2) determining the 
Maximum Reachability Space of each robot, and (3) 
checking possible Deadlocks in robots’ motions. The time 
complexity of the algorithm is in O(n) in phase 1, and O(m) 
in phases 2 and 3, where n and m are the number of tree’s 
vertices and robots, respectively. 
 For experimentation, we designed various rooted trees 
(RT) with different branching factors (b) and depths (d), and 
ran the algorithm on a PC with 2.8 GHz Intel CPU and 1 GB 
of RAM. Each problem was solved 10 times for random 
start and goal configurations. The average runtimes are: 

Problem in Fig. 3: n = 22,  m = 19, time = 0.078 sec. 
RT: b = 2, d = 5,  n = 63,  m = 50, time = 0.748 sec. 
RT: b = 4, d = 3,  n = 85,  m = 70, time = 1.327 sec. 
RT: b = 3, d = 4,  n = 121, m = 100, time = 2.861 sec. 
RT: b = 5, d = 3,  n = 156, m = 150, time = 5.191 sec. 

 Since we didn’t find any previous work in the literature 
with assumptions as general as ours, we had no benchmarks to 
make comparisons, and therefore evaluated the efficiency of 
our findings in terms of time and memory by comparing our 
results with the number of operations required for thoroughly 
searching the configuration space. Investigating the solvability 
of an MRMP problem of m robots on a tree with n vertices 

through exhaustive enumeration will require n! / (n � m)! 
different permutations of robots to be checked, which is far 
beyond the time order of the presented algorithm. Also, 
verifying whether a tree is SGm would require 

� �2
1 ! ( )!m

i n n i� �� operations to be checked, for any initial 
and final configurations, which is again exponentially time 
consuming.  

VII. CONCLUSION 
 For graph-based multi robot routing, it is necessary to 
ensure that the graph has a proper topology and sufficient 
number of vertices (relative to the number of robots) to enable 
planning of robots’ moves. In this paper a number of novel 
contributions are proposed in the field of MRMP on trees: the 
concepts Solvable, Minimal Solvable, and Partially Solvable 
Trees are introduced. Considering that the complexity of 
graph searching operations is directly influenced from the 
graph size, finding Minimal Solvable Trees would 
significantly ease the motion planning task for multiple robots 
on trees. Also, a new algorithm with linear time complexity 
is proposed for deciding whether a multi robot motion 
planning problem has a solution on a tree-type graph, 
without explicitly solving it. The algorithm also computes 
the Maximum Reachability Space of the robots which can be 
used to determine the whole class of solvable problems on 
the tree. The result of this algorithm is valuable especially 
for designing solvable trees or evaluating an existing 
network or workspace. 
 In a complementary work, we have generalized the 
concepts of STm, PSTm, and MSTm to Solvable Graphs (SGm), 
Partially Solvable Graphs (PSGm), and Minimal Solvable 
Graphs (MSGm), respectively, for cyclic graphs which 
contain at least one cycle, and have proposed similar 
algorithms for determining their solvability [11]. 
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