
  

Abstract—The use of robots in assistive roles will be an 
increasingly significant application for robotics. Assistive 
robots need to physically interact with humans in a safe 
manner. We propose the use of inflatable robot links as 
structural members instead of traditional rigid links. We 
believe such links would allow the development of inherently 
safe robots. For these robots to be useful in tasks such as 
assisting humans, it is essential that we be able to control 
contact forces with these robots. In this paper, we propose a 
model for force control with a single inflatable link, investigate 
the dynamics of the model, and present experimental results. 

I. INTRODUCTION 
HIS paper presents a novel idea for making robots 
inherently safe using inflatable links. For safe physical 

human-robot interaction, there are essentially two 
requirements: a) safety under impact, b) safety under 
controlled interaction. Impact safety is characterized by the 
uncontrolled or open loop response of the system. We can 
relate this to the performance of the system under high 
frequency disturbances. Since typically any control system 
has a limited bandwidth of operation, no practical control 
system can modify this characteristic of the system. Safety 
under controlled interaction refers to the ability to control 
the interaction forces between the human and the robot 
within the bandwidth of the control system. This is what is 
typically referred to as force control. Fig. 1 shows the 
dependence of force on the frequency of interaction. At 
frequencies within the control bandwidth, interaction force 
is governed by the controller characteristics; while at higher 
frequencies, the interaction force is governed by the open 
loop characteristics of the system. During controlled 
interaction, the high frequency force disturbance is not large 
enough for concern. However during impact, this is not true; 
hence the open loop characteristics of the system become 
important from a safety perspective. 

Techniques to evaluate safety in human-robot interaction 
have been proposed [1],[2]. Correspondingly, methods have 
been proposed for the design of safe rigid link robots [3]-[6]. 
However, even with careful design and sophisticated 
control, safety of rigid link robots is limited by the link mass 
and rigid structure. The rigid structure due to a hard surface 
(usually metal) results in high contact stiffness between the 
robot and the user. This is undesirable for safety [7]. Impact 
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and continuous contact safety are directly addressed by the 
use of inflatable links which are extremely light and have 
much lower achievable contact stiffness. Padding the entire 
robot with soft material is also a solution but it has 
disadvantages such as causing the system to become bulky, 
heavy and causing mobility restrictions around joints.  

The system being proposed is naturally safe under impact 
due to its low weight and contact stiffness. For the same 
reasons, air bags are used in vehicles. However, we need to 
establish the ability to do useful tasks using robots with 
inflatable links. One such ability is force control. We are in 
essence using inflatable links for their advantages under 
impact and attempting to extend their capability using force 
control. Inflatable structures were used in a robotic 
manipulator in [8]. To the best of the author’s knowledge, 
the use of inflatable structures for force control is not 
previously documented. Force control with flexible link 
manipulators has been studied [9],[10]. We believe that the 
class of systems being investigated by us would operate 
under deflections which do not permit the use of a linear 
deflection model. We use a Pseudo Rigid Body Model 
(PRBM) [11] to analyze the system under large deflections. 

This paper is organized as follows. In Section II, we 
describe the system we have developed and its model. 
Section III describes the behavior of the system as predicted 
by the model. In Section IV, we describe control schemes 
for force control, study the stability of the control based on 
Lyapunov Methods, and show experimental results. In 
Section V, we discuss issues and solutions to be 
implemented in the future, and finally in Section VI we 
present our conclusions. 

II. SINGLE LINK INFLATABLE ROBOT 
To study the use of inflatable links in robots, we 

prototyped a system consisting of a single inflatable link 
actuated at the base with a DC torque motor. Fig. 2 shows a 
photograph of the system and the schematic of the system is 
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shown in Fig. 3. For this system, our goal is to be able to 
control the contact force exerted on the object by the 
inflatable link. We use the term inflatable beam and link 
interchangeably as the inflatable link in the system functions 
structurally as a beam. 

The inflatable links we use in our system have been 
fabricated in our lab with polyurethane1 sheets of varying 
thickness. The sheets are heat sealed to form an air tight 
chamber. We have also experimented with polyethylene 
sheets which did not give satisfactory results due to less 
structural load capacity, weak seals obtained, and formation 
of plastic regions after inflation. The lesser load capacity 
and formation of plastic regions can be related to the lower 
yield stress of polyethylene compared to polyurethane. The 
lower yield stress causes achievable pressures in the link to 
be smaller. Formation of plastic regions causes crimping of 
the link ultimately leading to lower structural capacity. For a 
polyurethane inflatable beam of length 50 cm, we were able 
to successfully carry a force of 8N at its end. The limitation 
in load capacity is largely due to certain prototyping issues.  
With this load capacity, the system can be used for 
applications such as manipulation of lightweight objects and 
grooming which have small force requirements and are 
relevant to people needing assistance in activities of daily 
living (ADLs). Higher load capacities on the order of a few 
hundred Newtons can be achieved as is shown in [13],[14].  

Inflatable beams are different from traditional beams as 
the material used to make them can only hold tensile stress. 
An inflatable tube can be modeled in a number of ways 
suggested in [11]-[13]. The simplest approach is to consider 
the effect of pressure in the tube as a pre-stress in the tube. 
Then the Euler-Bernoulli beam theory for large deflections 
 

1 Source: McMaster-Carr, Catalogue # 3460 

can be applied to obtain deflections and stresses in the beam. 
The beam fails when the stress at any point on the surface of 
the beam is less than zero. In the following subsections, we 
discuss a system model and system behavior. 

A. Large Deflection Beam Analysis 
In the following discussion, we review some theory about 

large deflections of solid beams to understand the deflection 
characteristics of an inflatable beam. We assume the beam is 
inextensible and consider only geometric nonlinearity. For 
the sake of simplicity, we study a cantilever beam with a 
moment load (M0) at its end for large deflections. 

 We know from Euler-Bernoulli beam theory: 
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where, E is the Young’s Modulus of the beam material, I is 
the area moment of the cross section of the beam, s is the arc 
length along the beam, θ is the angle of the tangent to the 
beam from the horizontal, y is the transverse deflection of 
the beam which is a function of the position x along axial 
direction. In linear analysis, we say the slopes in (2) are 
small and neglect its powers and get the standard equation. 
For the large deflection case, the powers of the slope cannot 
be neglected. Therefore we start with (1) and integrate along 
the arc length s, for the length L of the beam. 
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Hence the angular deflection at the end of the beam, with 
no small deflection assumptions, is given by (3). From (3), 
the relationship between angular deflection and moment at 
the end of the beam is linear. Such a relation allows for a 
simple representation of a flexible link with sufficient 
accuracy using only a few parameters as discussed in the 
next subsection. Such simplifications are also possible for 
beams with other loading conditions. For a detailed analysis 
of beams with end loads and large deflection, see [15]. 

B. Pseudo Rigid Body Model 
The rigid body model allows the representation of large 

deflections of flexible systems by rigid bodies and spring 
elements. For instance, the large deflections of the beam 
described in the previous subsection can be modeled as 
shown in Fig. 4. The model is defined by the following 
parameters: r defines the distance of the hinge from the 
fixed end of the beam, l is the length of the beam, K is the 
spring constant of the torsional spring at the hinge, θ is the 
angular deflection of the torsional spring, f is the force at the 
end of the beam and y is the vertical deflection at the end of 
the beam. 

 
Fig. 2. Single link inflatable robot 
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The rigid body model consists of two bodies connected by 
a hinge through a linear torsional spring. Since inflatable 
links used in serial robots are essentially beams with pre-
stress due to internal pressure, we shall model the inflatable 
link using the rigid body model. Fig. 5 shows the 
components of the system being studied. For the 
experimental deflection testing discussed in the next section, 
a coupler B is fixed. The coupler B is attached to the link by 
the use of polymer adhesives and thermal welding. 

C. Experimental Deflection Testing 
To fit a rigid body model described in previous 

subsections to the inflatable beams fabricated by us, we 
conducted deflection tests. Fig. 4 shows the rigid body 
model that is fit to the system for deflection modeling. The 
inflatable beam was fixed at one end and weights were hung 
at the other end of the beam. 

For the system, we have the following relation between 
load f and deflection y: 
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K is the best linear least squares stiffness for the load 
deflection data and the offset c is the moment value at zero 
deflection. The value of r is taken from the literature [15] to 

be equal to 0.8517. In the experiments, we measure the tip 
displacements and we need to find the equivalent torsional 
stiffness K of the beam. Table 1 gives a sample of the load-
deflection data. The value of K and c obtained from the data 
is 3.8576 N·m/rad and 0.1205 respectively. It is to be noted 
c is not forced to zero (which would be the case in the 
absence of unmodeled physical phenomena, errors in the 
position/force readings, etc.) to get a more accurate 
approximation of K. 

The linear least squares fit of the form given in (4) is 
shown along with experimental data in Fig. 6. Although we 
obtained a linear torsion spring constant K for the deflection 
model of the inflatable beam, for generality, we shall use a 
spring with moment-angular deflection relation given by (5) 
in further analysis.  
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Equation (5) is useful if in addition to geometric 
nonlinearities, other nonlinearities due to material 
properties, motor-link coupling and other unmodelled 
effects in the system exist. In fact for all the analysis 
presented in subsequent sections, (5) can be replaced by any 
higher order function of the angular deflection as well, 
without affecting the validity of the analysis.  

III. SYSTEM MODEL AND BEHAVIOR 
To develop our control, we propose a rigid body model of 

the system as shown in Fig. 7. Since we have an inflatable 
link which has high surface compliance, a linear contact 
spring ks is a suitable choice. From the model, it can be seen 
that the system resembles a series elastic actuator (SEA) [3]. 

l×(1-r) 

r×l 

K 

f, y 
θ  

 

 
Fig. 4. Parameters of the pseudo rigid body model of the link 

TABLE I 
LOAD DEFLECTION DATA FOR INFLATABLE BEAMS 

y (mm) Load (N) 
0.6 6 
1.1 12 
2.6 32 
3.7 54 
4.3 62 
5.0 72 
5.6 84 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.25

0.5

0.75

1

1.25

1.51.5

θ (radians)

M
om

en
t (

N
-m

)

 

 

Experimental Data
Linear least squares fit

 
Fig. 6. Linear spring fit to the load deflection data 
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The rigid link in our model can be considered massless as 
we have an inflatable link and its mass can be neglected. 
The only source of inertia is the motor inertia (Jm). 

The equations for the system are given by: 
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In (6), Tm is the input torque to the motor, k1 and k2 are 
torsional stiffness coefficients of the spring, b is the viscous 
damping coefficient, θm and θl are described in Fig. 7. 
Further the torque due to contact with the object, TL is given 
by (7): 
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Here rllc =  and r is very close to 1. Note that from (7), TL is 
a function of θl. Further we define the torque TN at any 
deflection as: 
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Using (6) and (7), we can obtain the state space form of 
the dynamics equations: 
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where, lmm xxx θθθ === 321 ,, & .  

A. System Behavior 
The system described by (9) was simulated with an input  

u = Tm = 1. Fig. 8 describes the response with time. For the 
step input Tm = 1 applied at t = 0, the system exhibits stable 
characteristics as can be seen from the response. 

B. Lyapunov Stability Analysis 
We use the Lyapunov method for studying the stability of 

the system [16]. For understanding the stability properties of 
the system, we take the candidate Lyapunov function V as: 

 

∫∫ ++=
− 331

00

2
2 )()(

2
1 x

L

xx

N dTdTxV σσσσ  (10) 

 

V is a positive definite function as each of the terms 
involving the spring stiffness integrates to positive values. 
Here TL  and TN were defined in (7) and (8) respectively. 

Differentiating (10), we get: 
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Using (7) and (8) in (11), 
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As can be seen from (12), for the open loop response i.e. 
when u = 0, 0≤V& . Therefore as can be seen from Fig. 8, 
the system is stable. Further, asymptotic stability can be 
proved by invoking LaSalle’s theorem. For the closed loop 
system, the control law u needs to be chosen to ensure 
stability in the Lyapunov sense. 

IV. FORCE CONTROL 
Considering the system behavior, there are a number of 

options regarding what states we need to measure and the 
states we want to control. We shall explore two sensing 
options: a) place an encoder at the motor which gives the 
motor angle, b) place a force sensor at the contact tip to 
measure the contact force. We desire to maintain a constant 
reference force Fd given by: 
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The set point input us is: 
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This shifts the equilibrium to the desired state and all 
equations are now with respect to this equilibrium. 

A. Motor Encoder 
Here we measure the motor shaft angle x1 and velocity x2. 

It should be noted that we can use the motor encoder to 
control the contact force for a static object only. For moving 
contact objects, we would need another sensor to inform us 
about the position of the contact object. The output of the 
system is given by: 
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We choose the PD control law: 
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We modify the Lyapunov function V to V’ such that 
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Again differentiating (17) with time, 
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Clearly, 0≤′V& . Hence the system is stable in the sense of 
Lyapunov. Fig. 9 and Fig. 10 show the simulation of the 
above system. 

B. Contact Force Sensor 
Here we place a force sensor at the contact point and 

measure the contact force. We assume that the contact force 
lies in the plane of the actuation torque from the motor. 

The output of the system is given by: 
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The proposed control law u is: 
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Using (20) in (12),  
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From (21), stability of the system is unclear. It can be 
observed that if x3 << x2, then 0<V& . However if kp is 
increased to a sufficiently large value, V&  may not remain 
negative semi-definite and the system may become unstable. 
Fig. 11 shows the advantage of using force feedback in 
terms of convergence to the desired force level.  

 
 
 

C. Experimental Results 
Experiments using the system shown in Fig. 2 were 

performed. The system comprises of an inflatable link 
actuated at the base using a DC torque motor, a 500 CPR 
Motor Encoder and a Honeywell Force Sensor2. It should be 
noted that the range of forces applied to the link was limited 
in the experiments due to actuation limitations. Hence for 
the experiments, we operated only under small deflections of 
the beam. Control sampling frequency was 100 Hz. Fig. 12 
and Fig. 13 show the contact force evolution for different 
desired force values using PID control on motor position 
and force sensor feedback respectively. 
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Fig. 11. Contact force in simulation with and without feedback 
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Fig. 9. Model states in simulation with PD control on motor angle 
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V. DISCUSSION 
The use of a single contact force sensor allows the contact 

force to be controlled over the assumed contact point only. 
Using printed strain gages on the polymer used to fabricate 
the inflatable link allows the possibility of aggregate force 
sensing and multi-contact point force sensing. This would 
enable force control while contacting an external object with 
the inflatable link at any point on it. 

For our system, we consider force in a single plane only. 
Extension of force sensing and control to all 3 dimensions 
needs to be addressed. The system we described has a single 
active degree of freedom, therefore we can actively control 
force in a single direction only. We can increase the degrees 
of freedom in two ways: a) using multiple inflatable links, b) 
achieving motion through elastic deflection of the link in 
3D. We have recently prototyped a system utilizing the latter 
method, the description of which would be presented in a 
future publication. Creases caused due to sealing and 
flexural hinges made by introducing a narrow section 
between links could replace traditional hinges when multiple 
inflatable links are to be used. The design could involve the 
use of a robot structure that is either entirely inflatable or 
inflatable near the end effector of the robot. Inflatable 
structures could also be used as end effectors in the form of 
grippers. Beyond safety, these systems could also offer 
advantages of a deployable structure, accessibility in 
convoluted environments and a non-metallic structure 
suitable for applications such as image-guided surgery. 

VI. CONCLUSION 
A novel solution to making robots safe by the use of 

inflatable robot links has been proposed. Safety of such a 
system in environments involving humans is seen as the 
primary advantage of such a system. To extend the 
usefulness of such a system in robotic tasks such as 
manipulation and physical interaction with humans, force 
control for such a system was developed. Experiments with 
the system show stable contact force levels can be achieved 
with the system. 
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Fig. 13. Force at the contact point due to force feedback 
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Fig. 12. Force at the contact point due to position control on motor 
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