
 
 

 

  

Abstract— The main objective of this paper is to develop an 
autonomous navigation system for robot arms so that they can 
operate in complex environments, such as kitchen, factory, etc. 
In order to solve the problem of planning in the dynamic 
environments, we proposed a CT-RRTs (Bi-direction RRTs in 
Configuration Time space) planner, which can make the robot 
arm reach goal successfully in the partially known dynamic 
environment while remains the greedy heuristics of the 
RRT-Connect. It is planned in the augmented state-time space 
of the robot arm configuration and the positions of the moving 
objects. Various techniques are used to accelerate planning 
and enhance its safety. We used the new planner to develop 
the dual-arm planner, and it can be used as the basis to solve 
higher level problems in motion planning. The experiments 
show that the proposed method can effectively resolve the 
dual-arm motion planning problem. 

 

I. INTRODUCTION 
n recent years, the humanoid robot arm has been widely 
developed. The purpose of designing and making a 

humanoid robot is to help people in operations, or even to 
substitute for people in some dangerous jobs such as 
repairing machines, experimenting chemical treatment, 
achieving precision in work, etc. The robot with its arms 
can help us do many things in conjugation with its arms. For 
example, the fixed-base robot arms perform a variety of 
tasks, including assembling, welding, and painting. In 
particular, the multi-arm robot has been gradually applied 
to the production line or service robots [4, 5, 6, 14, 21]. 
However, the multi-arm robot is unlike a common 
humanoid robot arm, which is usually composed of six or 
seven degrees of freedom joints. It is even more 
complicated.  

For robot applications in industry, e.g. automobile 
factory and production line, most trajectories for moving 
objects is near the workspace of the robot arm. A service 
robot usually consists of a mobile platform, two arms, head, 
and trunk. The mobile robot executes a given task in the 
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human-robot co-existence environment. The robot may use 
its arms to grasp a book and return it to the bookshelf. This 
is a very difficult challenge because there are many kinds of 
uncertainty to be considered, such as sensor measurement 
errors, command input noise, timing errors, etc. 
Furthermore, the robot and the robot arms need to avoid 
obstacles while the robot is moving to execute the task. If 
the time information and the trajectory of moving objects 
are added to the planner, it can find the better path than 
planning in the state space. 

In this paper, the motion planning of a dual-arm mobile 
robot in the configuration-time space will be proposed. 
Each arm is seven degrees of freedom, and is developed by 
our laboratory [22]. It can be shown that the proposed 
planner, CT-RRTs (Bi-direction RRTs in Configuration 
Time space), which takes the time information into account 
and remains the greedy heuristics of multi-RRTs, can find 
the better path in partially known dynamic environments. 

II.  RELATED WORKS 

A Rapidly-exploring Random Tree (RRT) [2,13] is a data 
structure and algorithm that is designed for efficiently 
searching in non-convex high-dimensional spaces. The 
RRT-Connect [11], which is often used in the high 
dimension C-space (configuration space), has greedy 
heuristics that aggressively tries to connect two trees in the 
connect function, one from the initial state and the other 
from the goal. The configuration space concept can be 
extended to dynamic environments by incorporating an 
absolute notion of time as an additional dimension [1]. The 
resultant space is called the configuration-time space 
(CT-space). In dynamic motion planning, it is useful for the 
arms to avoid colliding with moving obstacles by making 
some predictions of their positions.  

Many methods discussed above can be applied to 
CT-space, but seldom planners can work in the high 
dimensional CT space. In particular, as time goes forward, 
additional constraints are imposed on the validity of paths 
through the configuration-time space. Obviously, paths 
should be monotonically increased in the time dimension in 
order to prevent unrealistic time travel. Thus, the sampling 
based approaches are very popular in the high dimensional 
CT-space [9, 10]. 
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III. THE FRAMEWORK OF CT-RRTS 
In this paper, the CT-RRTs (Bi-direction RRTs in 

Configuration Time space) is proposed for planning a robot 
path in the dynamic environments. The planner is 
composed of RRTs Growth and Prune Trees. It is based on 
the bi-directions RRTs and improves its strength by 
modifying its function. It is performed in the CT space, and 
will not only preserve the RRT features but also plan a safer 
path, rapidly prune trees, and reduce the detour. The time 
information, cost, and risk estimates are added and new 
data structure is derived. 

A. Inserting Time Information 
In [19], the author adopted the distance measured from 

the leaf node to its parent to calculate time. If we know the 
node belongs to which layer, we can reckon the time of this 
node. While using RRT, only reckoning the time to check 
collision without adding time into configuration space is 
enough.  However, it will become very complicated since 
we do not know time relationship between the nodes of 
each tree with its parent except the root of tree. It is 
impossible to reckon time of each node. The time of the root 
of each tree is very hard to define when the root is not at 
start or goal. Therefore, it is desired to simplify this 
problem by reducing the forest based planner to bi-direction 
trees. 

We are inspired by [18] about estimating the time of goal. 
The minimum possible time ( , )

t start
h n n for traversing from 

the current start position nstart to any particular position ngoal 
can be computed by measuring the distance between nstart 
and ngoal. Since the length of each RRT step is set to the 
same value, we use the number of steps from current node 
to start to record the path length will not cause significant 
errors. The time of goal can be estimated by adjusting some 
parameters as  
Time of Goal ( , ) ( / )= ⋅ + ⋅

d t start goal e
w h n n w TimeError num (1)

where 
d

w and
e

w are the weight, and the TimeError is 
generated by RRT-Connect when failure is caused by time. 
It is very difficult to estimate time accurately since the 
period of reaching the goal depends on the complexity of 
the environment. Therefore, we must let the time of goal 
adjust by itself in each planning.  

 
However, each RRT-Connect failure caused by time still 

has much useful information. If we can effectively use this 
information, the planner can rapidly find a collision-free 
path. In the CT-space, only the dynamic objects will change 
the position along the time axis. In other words, static 
objects are time-invariant. Therefore, if we can keep the 
path away from the dynamic objects, their influences will 
be greatly reduced and the RRT-Connect success ratio will 
be greatly enhanced. 

For each RRT-Connect failure caused by the time, we 
will record the root of the path as ngoal. We add nodes from 
the path into start tree bit by bit and check if it is 
collision-free at the same time. These processes will stop 
until collision is detected or the node is ngoal. In this way, the 
CT-RRTs can maintain the RRT-Connect greedy heuristics 
since the start tree can rapidly close to ngoal. Table I is the 
pseudo code of this process, where the “timing” is the time 
of RRT extending one step from the line 4 in the function 
ReusePath. 
TABLE I THE REUSEPATH ALGORITHM.  
1. STnode = Connected node from Start Tree 
2. GTnode = Connected node from Goal Tree 
3. while GTnode ≠ qgoal do 
4.    GTnode.Time = STnode.Time + Timing; 
5.    Predict_Dynamic_Obstacle(GTnode.Time); 
6.    Update_Safety(GTnode); 
7.    if Collision(GTnode) || GTnode.Safety > Threshold then 
8.       return false; 
9.    end 
10.    Start Tree.addNode(GTnode); 
11.    Start Tree.addLink(GTnode , STnode); 
12.    STnode = GTnode; 
13.    GTnode = GTnode.Parent;    
14. end 
15. return true; 

B. Inserting Cost function 
In order to make the trajectory smoother and safer, some 

heuristic functions or cost functions are added. In other 
words, the cost function will make the tree grow toward a 
better area (i.e. less cost area). The search function has not 
only the distance factor but also the cost factor as 

2 2( ) ( ) cos ( )= +f q dist q t q   (2) 
where q is sampling node. Then, it is desired to find the 
minimum f(q) from the tree rather than finding the 
minimum dist(q). Furthermore, the cost function can 
consider both distance function and safety function.  
cos ( )= ⋅ + ⋅

d s
t w PathLength n w safety   (3) 
1) Distance cost 

The distance cost can make the path smoother because 
the tree will grow toward the less cost area. In other words, 
when the tree is expanding, the nearest-neighbor search 
function will choose the node which has the shorter path. 
When the weight of the distance cost is larger, the path will 
become more linear because the redundant twists and turns 
will cause higher cost. In order to reduce the computation 
time, we simply record the path length by the number of 
steps from current node to the start. Although increasing the 
weight of distance cost can make the path smoother, if it is 
too large, it will make RRT hardly find a path.  

2) Safety cost 
We use the constant velocity model with a Gaussian 

uncertainty to predict the path of the moving obstacles. 
Here, the Kalman filter is used to predict the path and 
estimate the uncertainty. For simplicity, we assume that all 
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moving objects are with constant velocity models.  
ˆ ˆ( 1 | ) ( ) ( | ) ( ) ( ) ( )+ = + +x k k F k x k k G k u k v k   (4)
where

 ( | ) , ( ) , ( ) , ( )= = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ Δ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X X

Y Y

Z Z

x v

x k k x F k I u k v G k I

x v

t  (5)

where the control input u(k) is the velocity of the moving 
objects, and the vector v(k) is the noise process caused by 
control input. Since the matrix F(k) is an identity matrix, the 
prediction process, Eq. (6) can be rewritten as Eq. (7). 

( 1 | ) ( ) ( | ) ( ) ( )+ = +TP k k F k P k k F k V k   (6)
( 1 | ) ( | ) ( )+ = +P k k P k k V k   (7)

v(k) relates to the control input and uncertainty will be 
enlarged with time increasing. It is reasonable to assume 
that the covariance matrix V(k) relates to time and velocity.   

2

2 2 2 2

2

( ) , where 
Δ

= = + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X Y X Z

X Y Y Y Z X Y Z

X Z Y Z Z

v v v v v
t

V k v v v v v v v v v
v

v v v v v

 (8)

This probabilistic model ( 1 | )+P k k  can be used to 
represent the uncertainty. Then an uncertain configuration 
is represented by the estimated position x and its 
covariance matrix ( 1 | )+P k k [12]. An uncertain position is 
shown geometrically as an ellipsoid [16] whose center is 
x : 

1 2( ) ( 1 | ) ( ) σ−− + − ≤Tx x P k k x x  (9)
where σ is the multiple of standard deviation or the 
confidence threshold.  

Uncertainty

Moving object

Sampling node
Uncertainty

Moving object

Sampling node

Fig. 1  Sampling nodes for safety cost 
As x closes to the prediction position ( x ), we will obtain 

smaller value from Eq. (9). Therefore, we use this point to 
define the safety cost. However, how do we make the arm 
become a point in order to calculate the safety cost? As 
shown in Fig.1, we choose some nodes to replace the whole 
arm. But if we choose too many nodes, it will enormously 
increase the computation time. If the nodes are sampled in 
the upper arm, it does not make sense because of the small 
workspace. Therefore, we choose tree nodes in the forearm 
to define the safety cost:  

1

1
 Cost

( ) ( 1 | ) ( )−
=

− + −
∑ T

i i i

Safety
x x P k k x x

 (10)

3) Re-planning 
Generally, dynamic motion planning is similar to static 

motion planning, except that the planning steps will be 
changed with system and world update steps. Applications 
for dynamic planning include navigation or manipulation 
planning in a world with unknown or moving obstacles [20]. 
Between planning iterations, several possible events may 
have occurred simultaneously: (1) the robot may have 
moved, and have discovered new obstacles to avoid, (2) the 
goal may have moved, (3) previously sensed obstacles may 
have moved [20]. In these situations, the planner should 
plan a different path that can lead a robot or a manipulator 
to reach the goal safely. 

Therefore, if we can efficiently reuse the information of 
configuration space from the last planning, it will save a lot 
of computation time and resource in the re-planning process. 
Especially, the planer is expected to find a path as soon as 
possible in anytime planning and dynamic environments. In 
this section, we will address several kinds of re-planning 
methods, ERRT[3], DRRT[7], RRF[15, 17], MP-RRTs[20], 
LRF[8], and compare their pruning time and the amount of 
remained information. The comparison of those algorithms 
is summarized in Fig.2. Clearly, DRRT is the most suitable 
one for our planner in that it does not generate other 
sub-trees and can remain the sub-branches from previous 
plan. Thus, the DRRT is used in the planner for fast 
re-planning. 

 Remain
Info. 

Pruning
time 

Fores
t 
based

ERRT Few Middle No 
DRRT Middle Fast No 
RRF Much Slow Yes 
MP-RRT Much Middle Yes 
LRF Much Fast Yes 

(a) (b) 
Fig. 2  The comparison table and relation diagram for various algorithm 

C. Anytime Planning 
While navigating among moving obstacles, it is 

important to know how long a query will take so that it will 
be possible to expect when a plan may become available for 
execution. If we want to plan the path that starts at tstart, then 
we cannot start computing the path at tstart, because the 
computation is immediately outdated [1]. Therefore, we 
must reserve ∆t time to plan the path in order to overcome 
this problem. The path and the estimating of the moving 
objects should begin at the tstart+∆t.  

 In such a case, it will be unwise to set the expected time 
too large, which will render the system unresponsive and 
waste all the computation resource left when a query 
finishes early. On the other hand, no query should be 
allowed to fail if safety is important. Thus, the planning 
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period cannot be set lower than the time consumed of the 
worst-case, which can be much longer than the average 
planning time for random path planners. 

The “anytime” planning algorithms return a viable but 
probably highly sub-optimal solution at any time given a 
relatively short initial planning time, and given more time, a 
better solution will be planned. For these algorithms, the 
planning period can be set to any value larger than the 
longest initial planning time. And as they incrementally 
improve on their solutions while allowed, no computation 
resource is wasted when an initial solution is found early 
[8]. 

D. Framework of CT-RRTs 
In summary, the framework of the proposed CT-RRT 

consists of two main parts: RRTs Growth and Prune Trees. 
The RRTs Growth contains the cost computing, and 
RRT-connect. It generalizes bi-directional RRT by 
attempting to grow multiple pairs of trees into each other. 
First, a random sample qrand is generated; see line 2 in Table 
II. 

TABLE II  THE RRTS GROWTH ALGORITHM.  
1. for Each Tree Ti do 
2.       qrand = RandomSample(); 
3.       qnear = NearestNeighbor(qrand , Ti , dnear); 
4.    if  Extend (Ti, qnear ,  qrand ) then 
5.       Compute Safety(qnew); 
6.       Compute cost(qnew); 
7.       Ti.addNode(qnew); 
8.       Ti.addLink(qnear , qnew ); 
9.    end 
10.    for Each Tree Tj , such that i ≠ j do 
11.       qnear,j = NearestNeighbor(qnew , Tj ); 
12.       if Connect(Tj , qnear,j , qnew ) then 
13.          MergeTrees(Ti, Tj ); 
14.          return T 
15.       else if Time cause fail then 
16.             TimeError += (qnew.Time - qnear.Time); 
17.             ErrorNum++; 
18.             ReusePath(qnear , qnew); 
19.       end 
20.    end 
21. end 

For each tree Ti (Tstart or Tgoal), we try to extend Ti to qrand 
via some node qnew. In the extend function, we will estimate 
the time of qnew and predict the moving objects to check the 
collision. If the extend process is successful, we will add the 
qnew to the tree and compute its cost in order to search 
optimal node in the next NearestNeighbor() step. If the 
extend process is failure which is caused by time, we will 
reuse its information to extend the start tree toward the goal; 
see lines 15-19 in Table II. Finally, if some nodes are close 
enough, the Tstart and Tgoal are merged and the path is found.   

TABLE III THE PRUNE TREES ALGORITHM.  
1. nstart = ncurrent; 
2. Update(nstart.Time); 
3. estimate time of ngoal; 
4. ni = ngoal.Child; 
5. while ni = NULL 
6.    Update(ni.Time); 

7.    if ni.Time - nstart.Time < Threshold  then 
8.       RemoveNode(ni); 
9.    end 
10.    if ni.Parent = INVALID then 
11.        RemoveNode(ni); 
12.    end 
13.    if ni is invalid then 
14.        RemoveNode(ni); 
15.    end 
16.    ni = ni.Child; 
17. end 

The Prune Trees contains TrimRRT() of the DRRT and 
time estimating. Pruning the tree involves stepping through 
the RRT in the order in which nodes are added and all child 
nodes whose parent nodes are invalid are marked as invalid 
[7]. This effectively breaks off branches where they directly 
collide with new obstacles and removes all nodes on these 
branches. In addition to remove the invalid node by moving 
objects, the Prune Trees also filter the nodes of which time 
is invalid or unreasonable, see lines 6-8 in Table III. If we 
want to be careful about collision with moving objects in 
future, we can set a threshold to filter the nodes with high 
cost. 

TABLE IVI THE MASTER ALGORITHM.  
1. InitialRRTs(); 
2. RRTsGrow(); 
3. while Robot has not reached qgoal do 
4.    Check path collision and robot localization; 
5.    if solution path contain a invalid node then 
6.       PruneTrees(); 
7.       RRTsGrow(); 
8.       Update task paths; 
9.    end; 
10.    Send robot next waypoint for active task; 
11. end; 

The robot and planner must work together to accomplish 
a task when the robot’s motion and planning are coupled. 
This requires an interface much like a feedback loop 
between the planner and the robot [8]. The robot specifies 
its current or future location by sensing the environment, 
and predicts the moving objects to check whether the task 
path is valid or not. Through growth and pruning steps, the 
planner attempts to change in the environment or task, and 
reports an updated command to the robot. Table IV shows 
the main loop of the planner to execute tasks. 

IV. MOTION PLANNING FOR DUAL-ARM 
The motion planning for a dual-arm mobile manipulator 

is a very complicate and difficult problem, because it has to 
consider the mutual interference of two arms. While the 
workspace of two arms is highly overlapped, they have to 
avoid each other and accomplish the task at the same time. 
Fortunately, the overlapping area of workspace between 
two arms is often much smaller than the workspace of a 
single arm.  

Two arms should work simultaneously, and should not 
be broken by each other. The time schedule for dual-arm 
planner is given in Fig. 3. The single arm planner of the left 
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arm will consider the trajectory of another arm, the right 
arm, from the time when the left arm starts to move until the 
right one stops, and vice versa. As for cooperative handling 
problems, the time schedule should be modified. The arms 
begin to move simultaneously after the planning of each 
arm is finished. 

Fig. 3 The time schedule for dual-arm planner 
The proposed CT-RRTs planner is very suitable for the 

applications in the known environments. It can consider the 
moving objects trajectories and plan a collision-free path, 
especially when the trajectories are accurately known. 

The probability of collision between two arms is very 
low, when the nstart and ngoal are not in the overlapping 
workspace. Therefore, we divide the planning into two 
parts: two arms paths pass and do not pass the overlapping 
area. Then the problem is reduced to dependent part and 
independent part. 

In the dependent part, we treat one arm as the moving 
object, and then the other arm plans the trajectory to avoid 
collision. According to the distance length from start to goal 
and the environment complexity, we decide which arm is 
regarded as the moving object. Then, we use the proposed 
planner to plan the path in the known dynamic 
environments. On the other hand, in the independent part, 
we can use parallel processing to accelerate the planning 
speed. The flowchart in Fig.4 shows the planning process.  

V. EXPERIMENT RESULTS 
We have implemented the approach on a desktop 

computer with a 2.8 GHz duo Core processor and 2 GB 
DDR2-800 RAM. The two seven degrees of freedom robot 
arms are developed by our laboratory [22]. The scenario is 
that a mobile robot with two 7-DOF robot arms performs 
tasks in a complex configuration space. Several scenarios 
will be conducted to demonstrate the performance of the 
proposed planner. 

A. “Moving Objects” Scenario 
The first scenario is where three balls are moving with 

constant velocity in the pane, and a robot arm try to grasp 
the cup on the table, as shown in Fig. 5. The constant 
velocities of these three balls are about 0.28~0.43 m/s, and 
their speeds are faster than the robot arm. In this simulation 
there are two important assumptions about environment. 
The first is that we roughly know the velocity of balls. The 
second is that we have accurate model and position for 

static obstacles. Fig. 5 indicates that the simulation result is 
very successful. Practically, sometimes the planning failure 
will happen in the many times experiments. However, we 
can use the safety weight to avoid this situation at expense 
of increasing the process time of the planning. 

 

 
Fig. 4  The framework of motion planning for dual arm 

B.  “Dual-Arm planning” Scenario 
In this scenario, we mainly test the dual-arm planner in 

the overlapping workspace. We place six cups whose 
positions are in the overlapping workspace on the table, and 
command the two arms to grasp. During the moving 
process, two arms will interfere with each other. 

Fig. 6 shows the simulation for dual-arm planner. Since 
the CT-RRTs have considered the trajectory of another arm 
along the time axis, the planner can easily plan a better path. 
Moreover, because the planner will not stack up the states, 
it can rapidly check the collision. The robot can rapidly 
finish many tasks and two arms can work at the same time. 

 

 
Fig. 5  The simulation for moving objects scenario 
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Fig. 6  Dual-arm of scheduling scenario for CT-RRTs 

VI. CONCLUSIONS 
In this paper, the proposed CT-RRTs is to mainly solve 

the dynamic motion planning problems. It plans in the 
augmented state-time space of the robot arm configuration 
and positions of the moving objects. Various techniques are 
used to accelerate planning and enhance its safety. When 
deliberation time is limited, a partial plan can also be 
returned in an anytime fashion. If the environment is too 
complex to find a complete solution at first time, the 
planner can simultaneously plan a path while the robot arm 
is moving. Due to the advantage of anytime planning, we 
can save a lot of computation time in the motion process. 

 The proposed CT-RRTs were used to construct the 
dual-arm planner, and it can be used as the basis to solve 
higher level problems in motion planning. From the 
experiments, the proposed CT-RRTs are very efficient for 
planning a path in a clutter and dynamic environment. 
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