

Abstract— The main objective of this paper is to develop an
autonomous navigation system for robot arms so that they can
operate in complex environments, such as kitchen, factory, etc.
In order to solve the problem of planning in the dynamic
environments, we proposed a CT-RRTs (Bi-direction RRTs in
Configuration Time space) planner, which can make the robot
arm reach goal successfully in the partially known dynamic
environment while remains the greedy heuristics of the
RRT-Connect. It is planned in the augmented state-time space
of the robot arm configuration and the positions of the moving
objects. Various techniques are used to accelerate planning
and enhance its safety. We used the new planner to develop
the dual-arm planner, and it can be used as the basis to solve
higher level problems in motion planning. The experiments
show that the proposed method can effectively resolve the
dual-arm motion planning problem.

I. INTRODUCTION
n recent years, the humanoid robot arm has been widely
developed. The purpose of designing and making a

humanoid robot is to help people in operations, or even to
substitute for people in some dangerous jobs such as
repairing machines, experimenting chemical treatment,
achieving precision in work, etc. The robot with its arms
can help us do many things in conjugation with its arms. For
example, the fixed-base robot arms perform a variety of
tasks, including assembling, welding, and painting. In
particular, the multi-arm robot has been gradually applied
to the production line or service robots [4, 5, 6, 14, 21].
However, the multi-arm robot is unlike a common
humanoid robot arm, which is usually composed of six or
seven degrees of freedom joints. It is even more
complicated.

For robot applications in industry, e.g. automobile
factory and production line, most trajectories for moving
objects is near the workspace of the robot arm. A service
robot usually consists of a mobile platform, two arms, head,
and trunk. The mobile robot executes a given task in the

This work is partially supported by the Department of Technology,

Ministry of Economic Affairs, Taiwan R.O.C. under grants
96-EC-17-A-04-S1-054.

Yi-Chih Tsai is with National Taiwan University, Taiwan, (e-mail:
ezi0613@gmail.com).

Han Pang Huang is a professor of Department of Mechanical
Engineering, National Taiwan University, Taipei, Taiwan (e-mail:
hanpang@ntu.edu.tw). He is currently the Director of Robotics
Laboratory.

human-robot co-existence environment. The robot may use
its arms to grasp a book and return it to the bookshelf. This
is a very difficult challenge because there are many kinds of
uncertainty to be considered, such as sensor measurement
errors, command input noise, timing errors, etc.
Furthermore, the robot and the robot arms need to avoid
obstacles while the robot is moving to execute the task. If
the time information and the trajectory of moving objects
are added to the planner, it can find the better path than
planning in the state space.

In this paper, the motion planning of a dual-arm mobile
robot in the configuration-time space will be proposed.
Each arm is seven degrees of freedom, and is developed by
our laboratory [22]. It can be shown that the proposed
planner, CT-RRTs (Bi-direction RRTs in Configuration
Time space), which takes the time information into account
and remains the greedy heuristics of multi-RRTs, can find
the better path in partially known dynamic environments.

II. RELATED WORKS

A Rapidly-exploring Random Tree (RRT) [2,13] is a data
structure and algorithm that is designed for efficiently
searching in non-convex high-dimensional spaces. The
RRT-Connect [11], which is often used in the high
dimension C-space (configuration space), has greedy
heuristics that aggressively tries to connect two trees in the
connect function, one from the initial state and the other
from the goal. The configuration space concept can be
extended to dynamic environments by incorporating an
absolute notion of time as an additional dimension [1]. The
resultant space is called the configuration-time space
(CT-space). In dynamic motion planning, it is useful for the
arms to avoid colliding with moving obstacles by making
some predictions of their positions.

Many methods discussed above can be applied to
CT-space, but seldom planners can work in the high
dimensional CT space. In particular, as time goes forward,
additional constraints are imposed on the validity of paths
through the configuration-time space. Obviously, paths
should be monotonically increased in the time dimension in
order to prevent unrealistic time travel. Thus, the sampling
based approaches are very popular in the high dimensional
CT-space [9, 10].

Motion Planning of a Dual-Arm Mobile Robot in the
Configuration-Time Space

Yi-Chih Tsai, Han-Pang Huang, Member, IEEE

I

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2458

III. THE FRAMEWORK OF CT-RRTS
In this paper, the CT-RRTs (Bi-direction RRTs in

Configuration Time space) is proposed for planning a robot
path in the dynamic environments. The planner is
composed of RRTs Growth and Prune Trees. It is based on
the bi-directions RRTs and improves its strength by
modifying its function. It is performed in the CT space, and
will not only preserve the RRT features but also plan a safer
path, rapidly prune trees, and reduce the detour. The time
information, cost, and risk estimates are added and new
data structure is derived.

A. Inserting Time Information
In [19], the author adopted the distance measured from

the leaf node to its parent to calculate time. If we know the
node belongs to which layer, we can reckon the time of this
node. While using RRT, only reckoning the time to check
collision without adding time into configuration space is
enough. However, it will become very complicated since
we do not know time relationship between the nodes of
each tree with its parent except the root of tree. It is
impossible to reckon time of each node. The time of the root
of each tree is very hard to define when the root is not at
start or goal. Therefore, it is desired to simplify this
problem by reducing the forest based planner to bi-direction
trees.

We are inspired by [18] about estimating the time of goal.
The minimum possible time (,)

t start
h n n for traversing from

the current start position nstart to any particular position ngoal
can be computed by measuring the distance between nstart
and ngoal. Since the length of each RRT step is set to the
same value, we use the number of steps from current node
to start to record the path length will not cause significant
errors. The time of goal can be estimated by adjusting some
parameters as
Time of Goal (,) (/)= ⋅ + ⋅

d t start goal e
w h n n w TimeError num (1)

where
d

w and
e

w are the weight, and the TimeError is
generated by RRT-Connect when failure is caused by time.
It is very difficult to estimate time accurately since the
period of reaching the goal depends on the complexity of
the environment. Therefore, we must let the time of goal
adjust by itself in each planning.

However, each RRT-Connect failure caused by time still

has much useful information. If we can effectively use this
information, the planner can rapidly find a collision-free
path. In the CT-space, only the dynamic objects will change
the position along the time axis. In other words, static
objects are time-invariant. Therefore, if we can keep the
path away from the dynamic objects, their influences will
be greatly reduced and the RRT-Connect success ratio will
be greatly enhanced.

For each RRT-Connect failure caused by the time, we
will record the root of the path as ngoal. We add nodes from
the path into start tree bit by bit and check if it is
collision-free at the same time. These processes will stop
until collision is detected or the node is ngoal. In this way, the
CT-RRTs can maintain the RRT-Connect greedy heuristics
since the start tree can rapidly close to ngoal. Table I is the
pseudo code of this process, where the “timing” is the time
of RRT extending one step from the line 4 in the function
ReusePath.
TABLE I THE REUSEPATH ALGORITHM.
1. STnode = Connected node from Start Tree
2. GTnode = Connected node from Goal Tree
3. while GTnode ≠ qgoal do
4. GTnode.Time = STnode.Time + Timing;
5. Predict_Dynamic_Obstacle(GTnode.Time);
6. Update_Safety(GTnode);
7. if Collision(GTnode) || GTnode.Safety > Threshold then
8. return false;
9. end
10. Start Tree.addNode(GTnode);
11. Start Tree.addLink(GTnode , STnode);
12. STnode = GTnode;
13. GTnode = GTnode.Parent;
14. end
15. return true;

B. Inserting Cost function
In order to make the trajectory smoother and safer, some

heuristic functions or cost functions are added. In other
words, the cost function will make the tree grow toward a
better area (i.e. less cost area). The search function has not
only the distance factor but also the cost factor as

2 2() () cos ()= +f q dist q t q (2)
where q is sampling node. Then, it is desired to find the
minimum f(q) from the tree rather than finding the
minimum dist(q). Furthermore, the cost function can
consider both distance function and safety function.
cos ()= ⋅ + ⋅

d s
t w PathLength n w safety (3)
1) Distance cost

The distance cost can make the path smoother because
the tree will grow toward the less cost area. In other words,
when the tree is expanding, the nearest-neighbor search
function will choose the node which has the shorter path.
When the weight of the distance cost is larger, the path will
become more linear because the redundant twists and turns
will cause higher cost. In order to reduce the computation
time, we simply record the path length by the number of
steps from current node to the start. Although increasing the
weight of distance cost can make the path smoother, if it is
too large, it will make RRT hardly find a path.

2) Safety cost
We use the constant velocity model with a Gaussian

uncertainty to predict the path of the moving obstacles.
Here, the Kalman filter is used to predict the path and
estimate the uncertainty. For simplicity, we assume that all

2459

moving objects are with constant velocity models.
ˆ ˆ(1 |) () (|) () () ()+ = + +x k k F k x k k G k u k v k (4)
where

 (|) , () , () , ()= = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ Δ ⋅
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X X

Y Y

Z Z

x v

x k k x F k I u k v G k I

x v

t (5)

where the control input u(k) is the velocity of the moving
objects, and the vector v(k) is the noise process caused by
control input. Since the matrix F(k) is an identity matrix, the
prediction process, Eq. (6) can be rewritten as Eq. (7).

(1 |) () (|) () ()+ = +TP k k F k P k k F k V k (6)
(1 |) (|) ()+ = +P k k P k k V k (7)

v(k) relates to the control input and uncertainty will be
enlarged with time increasing. It is reasonable to assume
that the covariance matrix V(k) relates to time and velocity.

2

2 2 2 2

2

() , where
Δ

= = + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X X Y X Z

X Y Y Y Z X Y Z

X Z Y Z Z

v v v v v
t

V k v v v v v v v v v
v

v v v v v

 (8)

This probabilistic model (1 |)+P k k can be used to
represent the uncertainty. Then an uncertain configuration
is represented by the estimated position x and its
covariance matrix (1 |)+P k k [12]. An uncertain position is
shown geometrically as an ellipsoid [16] whose center is
x :

1 2() (1 |) () σ−− + − ≤Tx x P k k x x (9)
where σ is the multiple of standard deviation or the
confidence threshold.

Uncertainty

Moving object

Sampling node
Uncertainty

Moving object

Sampling node

Fig. 1 Sampling nodes for safety cost
As x closes to the prediction position (x), we will obtain

smaller value from Eq. (9). Therefore, we use this point to
define the safety cost. However, how do we make the arm
become a point in order to calculate the safety cost? As
shown in Fig.1, we choose some nodes to replace the whole
arm. But if we choose too many nodes, it will enormously
increase the computation time. If the nodes are sampled in
the upper arm, it does not make sense because of the small
workspace. Therefore, we choose tree nodes in the forearm
to define the safety cost:

1

1
 Cost

() (1 |) ()−
=

− + −
∑ T

i i i

Safety
x x P k k x x

 (10)

3) Re-planning
Generally, dynamic motion planning is similar to static

motion planning, except that the planning steps will be
changed with system and world update steps. Applications
for dynamic planning include navigation or manipulation
planning in a world with unknown or moving obstacles [20].
Between planning iterations, several possible events may
have occurred simultaneously: (1) the robot may have
moved, and have discovered new obstacles to avoid, (2) the
goal may have moved, (3) previously sensed obstacles may
have moved [20]. In these situations, the planner should
plan a different path that can lead a robot or a manipulator
to reach the goal safely.

Therefore, if we can efficiently reuse the information of
configuration space from the last planning, it will save a lot
of computation time and resource in the re-planning process.
Especially, the planer is expected to find a path as soon as
possible in anytime planning and dynamic environments. In
this section, we will address several kinds of re-planning
methods, ERRT[3], DRRT[7], RRF[15, 17], MP-RRTs[20],
LRF[8], and compare their pruning time and the amount of
remained information. The comparison of those algorithms
is summarized in Fig.2. Clearly, DRRT is the most suitable
one for our planner in that it does not generate other
sub-trees and can remain the sub-branches from previous
plan. Thus, the DRRT is used in the planner for fast
re-planning.

 Remain
Info.

Pruning
time

Fores
t
based

ERRT Few Middle No
DRRT Middle Fast No
RRF Much Slow Yes
MP-RRT Much Middle Yes
LRF Much Fast Yes

(a) (b)
Fig. 2 The comparison table and relation diagram for various algorithm

C. Anytime Planning
While navigating among moving obstacles, it is

important to know how long a query will take so that it will
be possible to expect when a plan may become available for
execution. If we want to plan the path that starts at tstart, then
we cannot start computing the path at tstart, because the
computation is immediately outdated [1]. Therefore, we
must reserve ∆t time to plan the path in order to overcome
this problem. The path and the estimating of the moving
objects should begin at the tstart+∆t.

 In such a case, it will be unwise to set the expected time
too large, which will render the system unresponsive and
waste all the computation resource left when a query
finishes early. On the other hand, no query should be
allowed to fail if safety is important. Thus, the planning

2460

period cannot be set lower than the time consumed of the
worst-case, which can be much longer than the average
planning time for random path planners.

The “anytime” planning algorithms return a viable but
probably highly sub-optimal solution at any time given a
relatively short initial planning time, and given more time, a
better solution will be planned. For these algorithms, the
planning period can be set to any value larger than the
longest initial planning time. And as they incrementally
improve on their solutions while allowed, no computation
resource is wasted when an initial solution is found early
[8].

D. Framework of CT-RRTs
In summary, the framework of the proposed CT-RRT

consists of two main parts: RRTs Growth and Prune Trees.
The RRTs Growth contains the cost computing, and
RRT-connect. It generalizes bi-directional RRT by
attempting to grow multiple pairs of trees into each other.
First, a random sample qrand is generated; see line 2 in Table
II.

TABLE II THE RRTS GROWTH ALGORITHM.
1. for Each Tree Ti do
2. qrand = RandomSample();
3. qnear = NearestNeighbor(qrand , Ti , dnear);
4. if Extend (Ti, qnear , qrand) then
5. Compute Safety(qnew);
6. Compute cost(qnew);
7. Ti.addNode(qnew);
8. Ti.addLink(qnear , qnew);
9. end
10. for Each Tree Tj , such that i ≠ j do
11. qnear,j = NearestNeighbor(qnew , Tj);
12. if Connect(Tj , qnear,j , qnew) then
13. MergeTrees(Ti, Tj);
14. return T
15. else if Time cause fail then
16. TimeError += (qnew.Time - qnear.Time);
17. ErrorNum++;
18. ReusePath(qnear , qnew);
19. end
20. end
21. end

For each tree Ti (Tstart or Tgoal), we try to extend Ti to qrand
via some node qnew. In the extend function, we will estimate
the time of qnew and predict the moving objects to check the
collision. If the extend process is successful, we will add the
qnew to the tree and compute its cost in order to search
optimal node in the next NearestNeighbor() step. If the
extend process is failure which is caused by time, we will
reuse its information to extend the start tree toward the goal;
see lines 15-19 in Table II. Finally, if some nodes are close
enough, the Tstart and Tgoal are merged and the path is found.

TABLE III THE PRUNE TREES ALGORITHM.
1. nstart = ncurrent;
2. Update(nstart.Time);
3. estimate time of ngoal;
4. ni = ngoal.Child;
5. while ni = NULL
6. Update(ni.Time);

7. if ni.Time - nstart.Time < Threshold then
8. RemoveNode(ni);
9. end
10. if ni.Parent = INVALID then
11. RemoveNode(ni);
12. end
13. if ni is invalid then
14. RemoveNode(ni);
15. end
16. ni = ni.Child;
17. end

The Prune Trees contains TrimRRT() of the DRRT and
time estimating. Pruning the tree involves stepping through
the RRT in the order in which nodes are added and all child
nodes whose parent nodes are invalid are marked as invalid
[7]. This effectively breaks off branches where they directly
collide with new obstacles and removes all nodes on these
branches. In addition to remove the invalid node by moving
objects, the Prune Trees also filter the nodes of which time
is invalid or unreasonable, see lines 6-8 in Table III. If we
want to be careful about collision with moving objects in
future, we can set a threshold to filter the nodes with high
cost.

TABLE IVI THE MASTER ALGORITHM.
1. InitialRRTs();
2. RRTsGrow();
3. while Robot has not reached qgoal do
4. Check path collision and robot localization;
5. if solution path contain a invalid node then
6. PruneTrees();
7. RRTsGrow();
8. Update task paths;
9. end;
10. Send robot next waypoint for active task;
11. end;

The robot and planner must work together to accomplish
a task when the robot’s motion and planning are coupled.
This requires an interface much like a feedback loop
between the planner and the robot [8]. The robot specifies
its current or future location by sensing the environment,
and predicts the moving objects to check whether the task
path is valid or not. Through growth and pruning steps, the
planner attempts to change in the environment or task, and
reports an updated command to the robot. Table IV shows
the main loop of the planner to execute tasks.

IV. MOTION PLANNING FOR DUAL-ARM
The motion planning for a dual-arm mobile manipulator

is a very complicate and difficult problem, because it has to
consider the mutual interference of two arms. While the
workspace of two arms is highly overlapped, they have to
avoid each other and accomplish the task at the same time.
Fortunately, the overlapping area of workspace between
two arms is often much smaller than the workspace of a
single arm.

Two arms should work simultaneously, and should not
be broken by each other. The time schedule for dual-arm
planner is given in Fig. 3. The single arm planner of the left

2461

arm will consider the trajectory of another arm, the right
arm, from the time when the left arm starts to move until the
right one stops, and vice versa. As for cooperative handling
problems, the time schedule should be modified. The arms
begin to move simultaneously after the planning of each
arm is finished.

Fig. 3 The time schedule for dual-arm planner
The proposed CT-RRTs planner is very suitable for the

applications in the known environments. It can consider the
moving objects trajectories and plan a collision-free path,
especially when the trajectories are accurately known.

The probability of collision between two arms is very
low, when the nstart and ngoal are not in the overlapping
workspace. Therefore, we divide the planning into two
parts: two arms paths pass and do not pass the overlapping
area. Then the problem is reduced to dependent part and
independent part.

In the dependent part, we treat one arm as the moving
object, and then the other arm plans the trajectory to avoid
collision. According to the distance length from start to goal
and the environment complexity, we decide which arm is
regarded as the moving object. Then, we use the proposed
planner to plan the path in the known dynamic
environments. On the other hand, in the independent part,
we can use parallel processing to accelerate the planning
speed. The flowchart in Fig.4 shows the planning process.

V. EXPERIMENT RESULTS
We have implemented the approach on a desktop

computer with a 2.8 GHz duo Core processor and 2 GB
DDR2-800 RAM. The two seven degrees of freedom robot
arms are developed by our laboratory [22]. The scenario is
that a mobile robot with two 7-DOF robot arms performs
tasks in a complex configuration space. Several scenarios
will be conducted to demonstrate the performance of the
proposed planner.

A. “Moving Objects” Scenario
The first scenario is where three balls are moving with

constant velocity in the pane, and a robot arm try to grasp
the cup on the table, as shown in Fig. 5. The constant
velocities of these three balls are about 0.28~0.43 m/s, and
their speeds are faster than the robot arm. In this simulation
there are two important assumptions about environment.
The first is that we roughly know the velocity of balls. The
second is that we have accurate model and position for

static obstacles. Fig. 5 indicates that the simulation result is
very successful. Practically, sometimes the planning failure
will happen in the many times experiments. However, we
can use the safety weight to avoid this situation at expense
of increasing the process time of the planning.

Fig. 4 The framework of motion planning for dual arm

B. “Dual-Arm planning” Scenario
In this scenario, we mainly test the dual-arm planner in

the overlapping workspace. We place six cups whose
positions are in the overlapping workspace on the table, and
command the two arms to grasp. During the moving
process, two arms will interfere with each other.

Fig. 6 shows the simulation for dual-arm planner. Since
the CT-RRTs have considered the trajectory of another arm
along the time axis, the planner can easily plan a better path.
Moreover, because the planner will not stack up the states,
it can rapidly check the collision. The robot can rapidly
finish many tasks and two arms can work at the same time.

Fig. 5 The simulation for moving objects scenario

2462

Fig. 6 Dual-arm of scheduling scenario for CT-RRTs

VI. CONCLUSIONS
In this paper, the proposed CT-RRTs is to mainly solve

the dynamic motion planning problems. It plans in the
augmented state-time space of the robot arm configuration
and positions of the moving objects. Various techniques are
used to accelerate planning and enhance its safety. When
deliberation time is limited, a partial plan can also be
returned in an anytime fashion. If the environment is too
complex to find a complete solution at first time, the
planner can simultaneously plan a path while the robot arm
is moving. Due to the advantage of anytime planning, we
can save a lot of computation time in the motion process.

 The proposed CT-RRTs were used to construct the
dual-arm planner, and it can be used as the basis to solve
higher level problems in motion planning. From the
experiments, the proposed CT-RRTs are very efficient for
planning a path in a clutter and dynamic environment.

References

[1] J. V. D. Berg, “Path Planning in Dynamic Environments,”
Information and Computing Sciences, Universiteit Utrecht, 2007.

[2] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, pp. 2383-2388 vol.3, 2002.

[3] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, pp. 2383-2388, 2002.

[4] R. Buckingham, “Multi-arm robots,” Industrial Robots, vol. 23, pp.
16-20, 1996.

[5] Z. Doulgeri and J. Peltekis, “Modeling and dual arm manipulation of
a flexible object,” 2004 IEEE International Conference on Robotics
and Automation (ICRA 2004), vol. 2, pp. 1700-1705, 2004.

[6] Y. Fei, D. Fuqiang, and Z. Xifang, “Collision-free motion planning of
dual-arm reconfigurable robots,” Robotics and Computer-Integrated
Manufacturing, vol. 20, pp. 351-357, 2004.

[7] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” IEEE
International Conference on Robotics and Automation, pp.
1243-1248, 2006.

[8] R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy Reconfiguration
Forest (LRF) - An Approach for Motion Planning with Multiple
Tasks in Dynamic Environments,” IEEE International Conference on
Robotics and Automation, pp. 1316-1323, 2007.

[9] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized
kinodynamic motion planning with moving obstacles,” International
Journal of Robotics Research, vol. 21, pp. 233-255, 2002.

[10] M. Kallman and M. Mataric, “Motion planning using dynamic
roadmaps,” IEEE ICRA, vol. 5, pp. 4399-4404, 2004.

[11] J. J. Kuffner, Jr. and S. M. LaValle, “RRT-connect: An efficient
approach to single-query path planning,” IEEE International
Conference on Robotics and Automation, vol. 2, pp. 995-1001, 2000.

[12] A. Lambert and D. Gruyer, “Safe path planning in an
uncertain-configuration space,” IEEE International Conference on
Robotics and Automation, vol. 3, pp. 4185-4190, 2003.

[13] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” Technical Report, Computer Science Dept, Iowa
State University, 1998.

[14] S. Lee, H. Moradi, and Y. Chunsik, “A real-time dual-arm collision
avoidance algorithm for assembly,” IEEE International Symposium
on Assembly and Task Planning (ISATP), pp. 7-12, 1997.

[15] T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion
planning with roadmap management,” Journal of Information Science
and Engineering, vol. 23, pp. 525-538, 2007.

[16] R. C. Smith and P. Cheeseman, “On the representative and estimation
of space uncertainty,” International Journal of Robotics Research,
vol. 5, pp. 56-68, 1986.

[17] L. Tsai-Yen and S. Yang-Chuan, “An incremental learning approach
to motion planning with roadmap management,” IEEE Intl. Conf. on
Robotics and Automation, vol. 4, pp. 3411-3416, 2002.

[18] J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path
planning and replanning in dynamic environments,” IEEE
International Conference on Robotics and Automation, Orlando, FL,
United States, vol. 2006, pp. 2366-2371, 2006.

[19] H. C. Yen, “Path Planning for Mobile Robots in Dynamic
Environments,” Master Thesis, Graduate Institute of Mechanical
Engineering, National Taiwan University, 2007.

[20] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
Rapid Replanning in Dynamic Environments,” 2007 IEEE
International Conference on Robotics and Automation, pp.
1603-1609, 2007.

[21] M. Saha, P. Isto, and J.-C. Latombe, “Motion planning for robotic
manipulation of deformable linear objects,” Springer Tracts in
Advanced Robotics, vol. 39, pp. 23-32, 2008.

[22] J.Y. Kuan, H.P. Huang, " Independent Joint Dynamic Sliding Mode
Control of a Humanoid Robot Arm ," IEEE Intl. Conf. on Robotics
and Biomemetics (ROBIO), pp. 202-208, Hainan, China, 2008.

2463

