
Abstract—This paper investigates the estimation of 3D head 
poses and its identity authentication using a simple ellipsoid 
model. To achieve robust motion estimation even under 
time-varying lighting conditions, we incorporate illumination 
correction into the conventional 3D model-based tracking  
framework with a single camera. In addition, by computing the 
illumination bases online from the registered face images, after 
estimating the 3D head poses, user-specific illumination bases 
can be obtained, and therefore illumination-robust tracking 
without a prior learning process can be possible. Furthermore, 
our unified tracking is approximated as a linear least-squares 
problem; a closed-form solution is then provided. Therefore, it 
can be executed in real-time at 20 frames per second.  After 
recovering full motion of the head, we can register face images 
with pose variations into stabilized (frontal) view images which 
are suitable for pose-robust face recognition. To verify the 
feasibility and applicability of our proposed 3D head-tracking 
framework, we performed extensive experiments with three sets 
of challenging image sequences. 

I. INTRODUCTION

MART environments of the future will interact with us 
more like humans. A key components of that interaction 

will be their abilities to detect, track, and recognize our faces 
and even our expressions. A human face provides a variety of 
different communicative functions such as identification and 
the perception of emotional expression. For this reason, face 
analysis has been carried out by many researchers over the 
past two decades in terms of detection, tracking, and 
recognition [1]-[6].  

An accurate estimation of 3D head position and orientation 
is important in many applications. 3D head pose information 
can be used in human-computer interfaces (HCI), active 
telecommunication, virtual reality, and visual surveillance. In 
addition, a face image aligned in terms of the recovered head 
motion would facilitate face recognition and facial expression 
analysis.

Face recognition, as one of the primary biometric 
technologies, became more and more important owing to 
rapid advances in technologies such as digital cameras, the 
Internet and mobile devices, and increased demands on 
security. Face recognition has several advantages over other 
biometric technologies: It is natural, nonintrusive, and easy to 
use.
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Although significant work has been done in face 
recognition, the current systems are still not close to the 
human perceptual system. Traditionally, face recognition 
research has been limited to recognizing faces from still 
images. Most of these approaches discount the inherent 3D 
structure of the face and therefore deteriorate with changes in 
pose, illumination, and other disturbing factors, among which 
pose variation is the most difficult one to deal with [7]. 
Therefore, face registration (alignment) is the key of robust 
face recognition. If we can register face images into frontal 
views, the recognition task would be much easier. To align a 
face image into a frontal view, we need to know 3D pose 
information of a human head. 

With consideration of all of these issues, in this paper, a 
unified 3D head pose estimation method using a simple 
ellipsoidal head model [8] is presented. Our unified tracking 
is considering online illumination correction, and thus 
provides a stable 3D motion estimation even under 
time-varying lighting conditions. After recovering full 
motion of the head, face images with pose variations can be 
registered into stabilized view images, which are suitable for 
frontal face recognition. 

The remainder of the paper is organized as follows. Section 
II presents a unified 3D head pose estimation method 
including online illumination correction. Section III explains 
how to generate stabilized and mirrored texture maps, which 
are suitable for frontal face recognition, by using the unified 
tracking framework proposed in Section II. In Section IV, we 
provide extensive experimental results with three sets of 
challenging image sequences. Section V presents conclusions 
and discussions.  

II. UNIFIED 3D HEAD POSE ESTIMATION

Generally, image-based tracking is based on the brightness 
change constraint equation (BCCE). The BCCE for image 
velocity estimation arises from the assumption that image 
intensity does not change from one frame to the next. 
However, this assumption does not hold true under conditions 
of varying illumination. Tracking based on the minimization 
of the sum of squared differences between the input and 
reference images is inherently susceptible to changes in 
illumination. Hence, we need to consider the effect of 
ambient illumination changes for stable tracking even under 
such circumstances. 

, , .t m t i tI I I                                   (1) 
We assume that image intensity changes arise from both 
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motion and illumination variations as shown in (1). tI  is 
image gradient with respect to time t , and both ,m tI  and ,i tI
are the instantaneous image intensity changes due to motion 
and illumination variations respectively.  

A. Motion 
First, we assume static ambient illumination and thus that 

instantaneous image intensity changes arise from variations 
in motion only. If then, the following BCCE holds true. 
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where /xv dx dt  and /yv dy dt  are the x- and y- 
components of the 2D image velocity of object motion after 
projection onto the image plane. In addition, we replace 

/I t  with /mI t  to denote that the intensity changes are 
due to motion variations.  
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where xI , yI , and ,m tI  are the spatial and temporal 
derivatives of the image intensity computed at location 

Tx yp  respectively, where ,m tI  arise from the motion 
changes. However, we are interested in solving for 3D 
velocities of object points, which are related to 3D motion 
parameter estimation. Under the perspective projection 
camera model with focal length f , 2D image velocities can 
be related to 3D object velocities by the following equations. 
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where T
X Y ZV V VV  is the 3D velocity of a point 

TX Y ZP , corresponding to the image pixel p , in the 
camera coordinate frame. The relationship between the two 
corresponding velocities can be expressed in compact matrix 
form as shown below.  
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Any rigid body motion can be expressed in terms of the 
instantaneous rotations and translation of the object. For 
small inter-frame rotations, the rotation matrix can be linearly 
approximated as ( R I r ). I  is an 3 3  identity 

matrix, and []  denotes a skew-symmetric matrix. Also, 
assuming that time interval t  is unity, temporal derivatives 
of rotation and translation vectors can be approximated by 
finite differences r , t  respectively. 

,o

t
V R I P

r
                           (7) 

where oP  is a 3D sampled model point in the object 
coordinate frame corresponding to the point P  in the camera 
reference frame. R  is the rotation matrix computed in the 
previous frame between the camera and object coordinate 
frames. r  and t  are the inter-frame rotation and 
translation vectors expressed in the object coordinate frame, 
respectively. The above equation describes the relationship 
between the 3D object velocity in the camera coordinate 
frame and inter-frame rigid body motion parameters in the 
object coordinate frame. Substituting (6) and (7) into (4), we 
obtain a simple linear equation as shown below.  
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The above single linear equation relates the spatial and 
temporal image intensity derivatives to rigid body motion 
parameters under the perspective projection model at a single 
pixel. Because (8) is linear with respect to motion parameters, 
we can combine it across n  pixels by stacking the equations 
in matrix form. n  is the number of model points that can be 
seen from the camera under the current estimated head pose. 
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Let the left-hand side of (9) be M  and the right-hand side 

be ,m tI . Then, (9) can be represented in compact matrix form 
as shown below.
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B. Illumination
As mentioned in the beginning of Section II, BCCE does 

not hold true under time-varying illumination conditions. To 
handle face image variations due to changes in lighting 
conditions, many methods have been proposed in the field of 
face recognition thus far. Among them, for modeling 
illumination variations, subspace-based methods have often 
been used [9]. These kinds of methods model the face image 
variations due to illumination changes with a 
low-dimensional linear subspace. They approximate the 
intensity changes due to illumination variations as a linear 
combination of illumination bases that are obtained from the 
training samples of different people taken under a wide 
variety of lighting conditions. 

However, these kinds of subspace-based methods 
construct an illumination subspace from training images for 
different people, which includes not only illumination 
conditions but also face identities. This subspace is not 
capable of representing the lighting conditions uniquely, 
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because the intrinsic (facial geometry and albedo) and the 
extrinsic (illumination conditions) information is mixed. 
Otherwise, extremely large training sets would be needed. 
Furthermore, these methods need a prior training process and 
thus suffer from the cost of training data acquisition and 
processing.

Hence, in this paper, by computing these illumination 
bases online from the registered face images, after estimating 
the head poses, user-specific illumination bases can be 
obtained, and therefore illumination-robust tracking without 
a prior learning process can be possible as shown in Fig. 1. 
Therefore, we can approximate the intensity changes due to 
illumination variations as a linear combination of 
illumination bases obtained through online illumination 
modeling based on principal component analysis (PCA) as 
shown below. 

, ,i tI L                                      (11) 

where ,i tI  is the instantaneous image intensity changes due to 
illumination variations. The columns of the matrix 

1, , kL l l  are the illumination bases obtained by PCA, 

and  is the illumination coefficient vector. k  is the number 
of principal components. 

Fig. 1. Online illumination modeling. 

C. Combined into a Unified Framework 
Because we assumed (1) in the beginning of Section II, and 

because (10) and (11) are linear with respect to motion 
parameter  and illumination coefficient vector 
respectively, we can combine them into a unified framework 
as shown below. 

.tM L I                              (12) 

Let the left-hand side of (12) be A  and the right-hand side 
be b . Then, the least-squares solution of (12) can be easily 
obtained as shown below. 

12arg min .T T

s
s As b A A A b              (13) 

Due to the presence of noise, non-rigid motion, occlusion, 
and projection density, some pixels in the face image may 
contribute less to motion estimation than others may. To 
account for these errors, the pixel should be weighted by their 

contributions. If then, a weighted least-squares solution can 
be obtained as shown below. 

1
,T Ts WA WA WA Wb               (14) 

where W  is a diagonal matrix whose components are pixel 
weights assigned according to their projection densities as in 
[6]. Finally, motion parameters between the object and 
camera coordinate frames are updated by (15) and iterated 
until the estimates of the parameters converge. Initial motion 
parameters are assumed to be known. 

,  .R R R T R t T                      (15) 

III. FACE RECOGNITION

As mentioned in Section I, if we can align the face images 
with pose variations into canonical frontal views, the 
recognition task would be much easier, and higher 
recognition rate can be achieved. 

Fig. 2 presents how to obtain a pose-compensated face 
image when given 3D pose information of the head under 
perspective projection. The general idea of stabilization is as 
follows. First, a pixel in the stabilized texture map 
corresponds to one point on the surface of a 3D ellipsoid in 
the object coordinate frame. Second, we can estimate the 
current pose of the ellipsoid corresponding to a human head 
using the proposed unified motion estimation technique. If so, 
then we can project all surface points of the ellipsoid onto the 
input image plane under the perspective projection model. 
Following this procedure, we can find out the complete 
relationship between an arbitrary input face image and its 
corresponding stabilized texture map. 
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Fig. 2. Geometrical mapping from an input face image to its stabilized texture 
map under the estimated head pose and perspective projection. K  is the 
camera calibration matrix (represents intrinsic parameters) and is assumed to 
be known. R  and T  are the estimated rotation matrix and the translation 
vector of current head pose, respectively. 

However, there might be missing pixels in the stabilized 
texture map, which correspond to invisible regions from the 
camera due to self-occlusion and camera’s viewing direction. 
Therefore, such invisible regions are considered as missing 
pixels, and their intensities are set to be zeros in the stabilized 
texture map. This may deteriorate the recognition 
performance. However, fortunately, we know that a human 
face has a symmetric property around its vertical axis. 
Therefore, we can also generate a mirrored texture map 
through a simple mirror operation on the stabilized texture 
map around its vertical axis as shown in Fig. 3. By doing so, 
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we can make up for the missing pixels and improve the 
recognition performance. 

Finally, simple and efficient frontal face recognition can be 
easily carried out in the stabilized (or mirrored) texture map 
space, which is nearly linear-separable, instead of the original 
input image space that is highly nonlinear and complex. 

Fig. 3. Mirrored texture map generation. An input image (taken from CNN 
news) and its stabilized and mirrored texture maps are shown from left to 
right, respectively. 

IV. EXPERIMENTAL RESULTS

To verify the feasibility and applicability of our proposed 
3D head-tracking framework, we performed extensive 
experiments with three sets of challenging image sequences. 
All the three experiment sets of image sequences were 
collected with a vision module named "Bumblebee". All the 
image sequences were digitized at 30 frames per second at a 
resolution of 320 240 . Ground truth data for the first and 
second sets was simultaneously collected via a 3D magnetic 
sensor named "Flock of Birds". The magnetic sensor has a 
positional accuracy of 2.54mm  and rotational accuracy of 
0.5 . The first set consists of 20 image sequences (two 
sequences for each of 10 subjects) taken under near-uniform 
illumination conditions. The second set consists of 20 image 
sequences (two sequences for each of 10 subjects) taken 
under time-varying illumination. All the sequences in the first 
and second sets are 300 frames long and are including free 
and large head motions. The third set was collected for face 
recognition test and consists of 17 image sequences (16 males 
+ 1 female) taken under near-uniform lighting conditions. All 
the sequences in this set are 200 frames long and are also 
including free and large head motions. 

Note that all the measured ground truth and the estimates of 
the visual tracking are expressed with respect to the initial 
object (head) coordinate frame for the comparison of 
estimation errors. 

A. Experiment 1: Near-Uniform Illumination 
The first experiment was designed to compare the 

performance of the proposed tracker including online 
illumination correction with that of a conventional optical 
flow-based tracker and also intended to evaluate the effects of 
online illumination correction. In this experiment, for 
modeling the illumination changes in face images, we used 10 
illumination bases. They were obtained through online 
illumination modeling based on PCA from the registered face 
images that had been stored until the previous frame. 

Fig. 4 presents typical tracking results on one of the test 
sequences from the first experiment set. The estimations for 
3D motion on this sequence are displayed in Fig. 5. This 

sequence involves large pitch, yaw, and roll motions up to 
26 , 60 , and 33   respectively. On the average, our 
proposed tracker shows a translational error of 6.91mm  and 
rotational error of 2.23  on this sequence. On the other hand, 
conventional tracking has a translational error of 49.03mm
and rotational error of 7.89  on this image sequence. 

Fig. 4. Typical tracking results on one of the sequences taken under 
near-uniform illumination. Frames 1, 55, 112, 164, 193, and 300 are shown 
(left to right, top to bottom). Rows 1~2: conventional method without 
illumination correction; Rows 3~4: our proposed unified method including 
illumination correction. 
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Fig. 5. Comparison between the ground truth and the estimated head poses on 
the sequence corresponding to Fig. 4. Red line: our proposed method; Blue 
line: conventional method; Black line: the ground truth. 
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TABLE I
MOTION ESTIMATION ERRORS ON 20 IMAGE SEQUENCES TAKEN UNDER 

NEAR-UNIFORM ILLUMINATION CONDITIONS

 Existing method Our method 
Trans. X [mm] 11.27   5.98 
Trans. Y [mm]   9.65   4.36 
Trans. Z [mm] 66.61 19.49 
Pitch [degree]   5.46   2.49 
Yaw [degree]   6.08   4.17 
Roll [degree]   2.54   1.76 

Average errors of 3D motion estimation on 20 image 
sequences are shown in Table I. As can be seen in this table, 
conventional single camera-based tracking is not robust to 
large out-of-plane rotations (especially for pitch and yaw) and 
translation in depth direction. On the other hand, even though 
there are no changes in ambient illumination, motion 
estimation is greatly improved through the proposed unified 
tracking including online illumination correction. This is 
because self-shading is likely to occur in face images even 
under uniform illumination, depending on the current head 
pose. Hence, our proposed unified tracking can provide 
robust motion estimation by reducing the negative effects of 
self-shading thanks to the illumination correction term. 

B. Experiment 2: Time-Varying Illumination 
The second experiment was set up to evaluate the 

performance of the proposed tracker under time-varying 
illumination conditions. In this experiment, we also used 10 
illumination bases obtained through online illumination 
modeling based on PCA. 

Fig. 6 presents typical tracking results on one of the test 
sequences from the second experiment set. The estimations 
for 3D head motion on this sequence are displayed in Fig. 7. 
This sequence involves large pitch, yaw, and roll motions up 
to 21 , 60 , and 35   respectively. Whenever there are 
changes in illumination, significant tracking errors occur in 
conventional single camera-based tracking. On the other hand, 
our method shows stable tracking even under time-varying 
illumination. On the average, our proposed tracking shows a 
translational error of 14.31mm  and rotational error of 3.25
on this sequence. On the other hand, conventional tracking 
has a translational error of 64.30mm  and rotational error of 
11.62  on this image sequence. 

TABLE II
MOTION ESTIMATION ERRORS ON 20 IMAGE SEQUENCES TAKEN UNDER 

TIME-VARYING ILLUMINATION CONDITIONS

 Existing method Our method 
Trans. X [mm]   18.85   6.92 
Trans. Y [mm]   16.02   5.51 
Trans. Z [mm] 112.37 30.10 
Pitch [degree]     9.91   3.84 
Yaw [degree]   18.89   4.30 
Roll [degree]     6.86   2.12 

Average errors of 3D motion estimation on 20 image 
sequences are shown in Table II. As can be seen in this table, 
there exist significant tracking errors in conventional tracking, 

because it cannot cope with illumination changes. On the 
other hand, our method shows slightly deteriorated but almost 
similar performance of motion estimation to that evaluated in 
Experiment 1 even under time-varying lighting conditions, 
thanks to the illumination correction term. 

Fig. 6. Typical tracking results on one of the sequences taken under 
time-varying illumination. Frames 1, 77, 127, 172, 197, and 285 are shown 
(left to right, top to bottom). Rows 1~2: conventional method without 
illumination correction; Rows 3~4: our proposed unified method including 
illumination correction. 
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Fig. 7. Comparison between the ground truth and the estimated head poses on 
the sequence corresponding to Fig. 6. Red line: our proposed method; Blue 
line: conventional method; Black line: the ground truth. 

C. Experiment 3: Face Recognition 
The third experiment was intended to verify that our 
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proposed head tracking method is helpful to improve the 
performance of face recognition. In this experiment, we 
constructed three test sets such as unregistered, stabilized, 
and mirrored sets. For the unregistered test set, we manually 
cropped 200 face images from the input image sequence for 
each of 17 classes. For the stabilized set, we obtained 200 
face images, registered into frontal views by the proposed 
unified tracker, for each class. For the mirrored set, we made 
a mirror operation on the stabilized test set. For face 
recognition on each test set, we used only a single frontal face 
image for the training and 200 face images, obtained by the 
aforementioned methods, for the test from each class. We 
performed PCA-based face recognition for each test set [10]. 

Fig. 8. 3D head pose estimation and 2D texture map-based face recognition 
on one of the image sequences from the third experiment set. Frames 1, 23, 47, 
55, 66, 80, 90, 107, 116, 145, 152, and 186 are shown (left to right, top to 
bottom). 

TABLE III
PERFORMANCE OF PCA-BASED FACE RECOGNITION ON OUR LABORATORY

TEST SETS

 Unregistered Stabilized Mirrored 
Recognition

rate 55.15% 83.74% 90.41% 

Fig. 8 shows the typical results of 3D head pose estimation 
and 2D texture map-based face recognition on one of the 
image sequences from the third experiment set. Our proposed 
unified tracking including online illumination correction was 
used for 3D head pose estimation, and PCA-based face 
recognition was performed on the mirrored texture maps. 3D 
head pose estimates and face recognition results are displayed 
in the top-left corner of result images. Mirrored view images 
generated by pose estimation, texture mapping, and mirror 
operation are displayed in the top-right corner of result 
images. They were used for face recognition, and this 
sequence showed 100% recognition rate. Table III shows the 
recognition rates with PCA-based classification for each test 
set. As can be seen in the recognition rates, we can verify that 

face registration is helpful to improve the recognition 
performance, and also the recognition rate using mirrored 
texture maps is much better. 

V. CONCLUSION

In this paper, we presented a long-term stable and robust 
technique for 3D head tracking even in the presence of 
varying illumination conditions. We incorporated the online 
illumination correction term into conventional 3D tracking 
with a single camera. This enables us to cope with large 
out-of-plane rotations and depth-motion even under 
time-varying illumination conditions. We approximated the 
intensity changes due to illumination variations as a linear 
combination of illumination bases. In addition, by computing 
these illumination bases online from the registered face 
images, after estimating the head pose, user-specific 
illumination bases can be obtained, and finally 
illumination-robust tracking, without a prior learning process 
that needs a great cost of training data acquisition and 
processing, can be possible.

This paper has shown the feasibility and applicability of 
the proposed approach by carrying out various challenging 
experiments. First, it was verified that the proposed unified 
tracking method is able to cope with fast and large 
out-of-plane rotations and depth-motion. This is true even 
under time-varying illumination conditions. Second, it was 
proved that our proposed unified head tracking method is 
helpful to improve the performance of face recognition (over 
90% recognition rate when using mirrored texture maps). 
Finally, our proposed method has shown computational 
efficiency and has achieved 20 frames/sec. processing speed. 
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