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Abstract—This paper presents a method of 3D mapping
using a binocular stereo camera with automatic recovery from
registration failure. We employ edge points as map element,
and apply a variant of ICP algorithm to the inter-frame
registration. The method detects failure in the registration due
to erratic camera motion or moving objects and recovers from
the failure by searching a good image to resume the registration
using edge-point SIFT descriptors. In experiments, our method
successfully coped with registration failure in 3D mapping in
indoor and outdoor environments under various conditions.

I. INTRODUCTION

Vision-based 3D Simultaneous Localization and Mapping
(SLAM) has been studied intensively because cameras pro-
vide a variety of useful information including geometry,
texture, and color and also because cameras are more suitable
for realtime 3D mapping than laser scanners. Most of the
conventional vision-based SLAM systems utilize corner-like
features [4], [6], [12] since data association for corner points
is relatively easy due to their distinguishability. However,
corner points cannot be detected sufficiently in non-textured
environments such as a corridor. In the previous work, we
proposed a 3D SLAM scheme with a stereo camera using
edge points [14]. An edge point is a point on an edge segment
detected in the image. A major advantage of the method is
that the estimation process is extremely robust due to plenty
of edge points, which can be detected from a few edge lines
in non-textured environments. Another important advantage
is that edge points provide the detailed shape of the objects
in the environment.
A problem in vision-based 3D SLAM is failure in feature

tracking and pose estimation due to erratic camera motion,
occlusion by moving objects, and illumination changes.
These kinds of failure are unavoidable since they are caused
by external factors. Thus, it is important to recover auto-
matically from failure. There are some studies in automatic
recovery. Chekhlov et. al [3] proposed robust monocular
SLAM using multi-resolution descriptors like SIFT. Williams
et. al [15] presented automatic relocalization scheme based
on a pose consensus approach. These methods build sparse
maps using corner points. Our system builds detailed maps
of large indoor and outdoor environments using edge points,
and we need another automatic recovery scheme.
This paper presents a method of 3D mapping using a

binocular stereo camera with automatic recovery from reg-
istration failure. Our method detects failure in registration
due to erratic camera motion or moving objects and recovers
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from the failure by searching an image similar to the image
just before the failure by manipulating the camera or waiting
for the moving object to pass by. For this purpose, we define
a score for failure detection, which is based on the ratio
of matched edge points and all the edge points. Also, we
define two scores for failure recovery, which are based on
SIFT descriptors and similarity transformation between two
images. The system enters the recovery mode when detecting
a failure, and resumes localization and mapping when finding
a good image for recovery.

II. 3D MAPPING USING IMAGE EDGE POINTS
This section briefly reviews the stereo SLAM presented in

the previous work [14]. We refer to a pair of left and right
images as stereo frame (frame, for short).

A. Intra-Frame Reconstruction
Edge points are detected using the Canny detector [2].

Note that edge points can be obtained from not only long
segments but also fine textures. Thus, our system can build
maps from textures on soil and asphalt.
Intra-frame reconstruction (i.e., between the left and right

images) is performed based on the epipolar geometry in
parallel stereo. We search the matching pair of edge points
between left and right images along the scanline since epipo-
lar lines are horizontal for parallel binocular stereo cameras.
The matching criterion is the normalized correlation of a
small window around the edge point. Also, the orientation
of the image gradient at the edge point is optionally used to
reduce outliers.
Multiple candidate matches are inevitably obtained espe-

cially when the edge direction is nearly parallel with the
epipolar line. The DP matching approach [11] is employed
to address this problem. After determining the matching pair,
the locations of edge points are refined at subpixel level. We
employ bilinear interpolation for subpixel matching.

B. Inter-Frame Registration Using Edge-Point ICP
A key to stereo SLAM is the estimation of the camera

motion between frames. Unlike intra-frame reconstruction,
epipolar geometry is unknown in inter-frame registration.
Thus, edge point correspondences are hard to obtain. Edge
points are prone to aperture problem, which can cause multi-
ple candidate matches including outliers. Random sampling
approaches for robust estimation such as RANSAC [5] are
not suitable due to a large number of edge points and multiple
candidate matches. To address this problem, we apply the
ICP algorithm [1] to the matching of the image edge points
and 3D edge points via perspective projection.
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1) Camera Motion Estimation: The camera motion from
time t−1 to t can be estimated by matching the edge points
in frame It−1 and those in frame It. We employ 3D-2D
matching, in which the 3D points reconstructed from It−1

are matched with the 2D points detected in It. This method
is stable since errors in depth have less influence on the
registration accuracy due to perspective projection. The 3D-
2D matching has been employed for model-based tracking
[8] and visual odometry [10].
The registration is performed by a variant of ICP algorithm

on the image plane. Let rt be the camera pose at t, P i
t−1 be

the i-th 3D edge point reconstructed at t−1, and pi
t−1 be the

projected point of P i
t−1 onto image It. Let qi

t be the image
edge point at t which corresponds to pi

t−1. We define cost
function G() as follows.

G(rt) =
1
N

N∑

i=1

d(qi
t, p

i
t−1) (1)

Here, d(qi
t, p

i
t−1) is the perpendicular distance between pi

t−1

and the edge segment which contains qi
t.

Camera motion rt and edge point correspondences are
searched by minimizing G(rt) using a gradient descent
method. The initial value of rt is set to rt−1, and the initial
corresponding point qi

t is set to the edge point which is the
closest to pi

t−1 in terms of Euclidean distance. By repeating
the minimization of G(rt) and edge point matching, the
optimal rt and edge point correspondences are obtained.
Here, we assume that the camera motion between frames
is small. If the camera motion is large, the ICP may fall
into local minima and the registration will fail. In this case,
the failure is detected using a measure to be mentioned in
Section III-B.
Due to a large number of edge points, the above ICP

algorithm is time consuming if all the edge points are
used. Thus, we employ a coarse-to-fine approach to improve
efficiency. In the early stage, we roughly estimate the camera
motion with a small number of edge points, and then we
refine the camera motion and edge point correspondences
by increasing the number of edge points [14].
2) Map Building: Based on the camera pose rt obtained, a

tentative 3D map is built by transforming the intra-frame 3D
points from the camera coordinates to the world coordinates.
Let P i

c be the i-th 3D point in the camera coordinates. The
location of 3D point P i can be written as P i = g(P i

c , rt),
where g() is the coordinate transformation based on the
rotation and translation components of rt.
The 3D points created at each frame are fused according

to the edge point correspondences between the frames. The
3D points obtained here are just used as a tentative map for
the camera motion estimation between keyframes. The final
map is created by the keyframe adjustment to be mentioned
below.

C. Keyframe Adjustment
The algorithm mentioned above suffers from accumulated

errors. To reduce the accumulated errors, the camera motion
and the 3D map are re-estimated by keyframe adjustment.

Fig. 1. Our edge-point based SLAM creates detailed 3D maps. Left: a
room of 7[m] × 8[m], right: corridors and stairs of about 40[m].

In keyframe adjustment, keyframes are extracted with an
interval d from the image sequence, and the camera motion
between keyframes is refined using the ICP algorithm in the
manner mentioned above. In the process, each 3D point P i

t−d

in keyframe It−d is projected onto keyframe It, and matched
with image edge point qi

t. Due to the errors accumulated
between keyframes, P i

t−d will not be projected exactly onto
the corresponding image edge point. The discrepancy is small
in general, and the keyframe ICP successfully converges
closely into the global minimum to update the camera motion
and the locations of the 3D points.
The keyframe adjustment just refines the camera mo-

tion between keyframes. It is unavoidable that small errors
accumulate in a long sequence even using the keyframe
adjustment. To reduce long-term accumulated errors, the
bundle adjustment will be necessary at a loop closing phase,
but it has yet to be done.
A 3D map is built by aligning the 3D points reconstructed

in the keyframe in the manner mentioned in Section II-B.2.
Fig. 1 shows examples of the maps created by the method.

III. FAILURE DETECTION AND RECOVERY
A. Types of Failure

This paper treats the following types of failure.
• Erratic camera motion
Rapid camera motion due to shake, slippage and colli-
sion can cause failure in feature tracking, and the ICP
can easily fall into local minima. Such motions are often
accompanied by motion blur, which drastically reduces
edge points and increase the probability of failure.

• Moving objects
The camera pose estimation requires static features.
Moving objects increase the probability of failure since
they decrease reliable static features and increases out-
liers and reprojection errors in the ICP.

• Illumination changes
Illumination change significantly affects image intensity
and can increase outliers.

B. Failure Detection

A measure of failure detection would be the average
matching error G(rt) in the ICP. If G(rt) is larger than
a threshold, the registration process is regarded as failed.
However, G(rt) tends to be large when the image contains
many outliers caused by moving objects. This makes it
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difficult to determine an appropriate threshold for G(rt).
Therefore, we employ the ratio of matched edge points as a
score of failure detection.

Rt =
|Mt|
|Et| (2)

Mt = {qi
t | d(qi

t,∃pi
t−1) ≤ th1, q

i
t ∈ Et}

Here, Et is the set of edge points detected in frame It, and
Mt is the set of the edge points which are matched with a
3D point in the map with the reprojection error of th1 or
less. If Rt is smaller than a threshold th2, the registration
process is regarded as failed. Intuitively, Rt is the ratio of
well-matched edge points, and its threshold th2 is relatively
easy to determine.
If the number of edge points largely changes per frame, Rt

may not be an appropriate score. For instance, if the number
of edge points detected in frame It is half of that in It−1, the
actual matching ratio between It and It−1 is half of Rt. This
situation is caused by motion blur and illumination changes.
To cope with this problem, the following score is employed.

St = Rt × |Et|
|Et−1| =

|Mt|
|Et−1| (3)

Note that under good camera motion, the number of edge
points between consecutive frames do not change signifi-
cantly since the displacement between consecutive frames is
small. The number of edge points largely changes only when
some failure occurs.
By examining whether St is less than a threshold th2,

we detect the failure mentioned in the previous section.
Erratic camera motion and moving objects will decrease
St due to false matching, and the accompanying motion
blur will significantly decrease St due to the reduction of
detected edge points. Illumination change will decrease St

mainly due to the reduction of edge points shared between
frames. Unfortunately, St cannot discriminate failure types.
The appropriate camera motion for recovery is different
between erratic camera motion and moving objects as will
be mentioned below. This must be determined by other
information source such as motion sensors.

C. Recovery from Failure

We assume that the system can take an image similar
to the image just before the failure by appropriate camera
manipulation. For example, in the case of erratic camera
motion by small slippage or collision, the system can obtain
a similar image by returning the camera to the correct pose.
In the case of moving objects and illumination change,
the system can obtain a similar image by waiting for the
condition to recover.
1) Scores for Recovery: Suppose that the system success-

fully builds a map up to frame It0 and failure occurs at frame
It0+1. Then, the system enters into the recovery mode to
find a frame which is similar to It0 . If the good frame It is
found, the system resumes the registration process from It.
The system searches a frame similar to It0 by manipulating
the camera in the case of failure due to erratic camera motion.

The system searches a frame similar to It0 by waiting for
the moving objects to pass by in the case of failure due to
moving objects. For illumination change, the system waits
for the image intensity to be stable. We assume that the
camera has automatic exposure. Then, the image intensity
changes a moment and soon returns to the almost same level
before the illumination change.
We define image similarity scores to search a good frame

to recover. The poses and scales of objects in the image
change as the camera pose changes. To evaluate the image
similarity independently of such changes, we utilize the
SIFT descriptor [9]. The SIFT descriptor is an orientation
histogram over 4 × 4 sample regions around the key point.
The SIFT descriptor is invariant to image rotation, transla-
tion, scale change, and small viewpoint change. Although
the conventional SIFT use blobs and corner points as key
points, we extend the descriptor to use edge points as key
points [13]. This is because blobs and corner points cannot be
detected sufficiently from non-textured environments. On the
other hand, edge points can be detected from even a few edge
lines in non-textured environments. Edge points are prone to
aperture problem, which can cause location uncertainty. This
is addressed by the similarity transformation estimation using
a voting scheme as will be mentioned later.
We define two scores for image similarity. One is the ratio

of matched edge points between It0 and the current frame It.
The similarity between two edge points q1 and q2 is defined
as the normalized correlation of the SIFT descriptors of q1

and q2. If the correlation exceeds a threshold th3, q1 and q2

are regarded as matched. A similarity score Qt of frame It

against It0 is defined as follows.

Qt =
|mt|
|Et| (4)

mt = {qi
t | D(qi

t,∃qj
t0) ≥ th3, q

i
t ∈ Et}

mt is the set of the edge points in Et which are matched
with an edge point in Et0 by SIFT descriptors. D() is the
normalized correlation function between SIFT descriptors.
The other similarity score is based on the similarity

transformation between It0 and It. As the transformation
parameters are close to 0 for rotation and translation, and
to 1 for scale ratio, the similarity between images is high.
To find the transformation parameters, we employ a voting
scheme in terms of similarity transformation. For each pair
of edge points matched between the two frames, we calculate
the similarity transformation parameter, and vote in the
parameter space (translation, rotation, and scale ratio).
First, the rotation angle ∆θ between each pair of edge

points in It0 and It is computed as Eq.(5). Here, θi and
θj are the orientations of an edge point in It0 and an edge
point in It, respectively. The orientation of an edge point is
obtained by the Canny detector. The scale ratio s between
each pair of edge points in It0 and It is also computed as
Eq.(6). Here, si and sj are the scales of an edge point in
It0 and an edge point in It, respectively. The scale of an
edge point is obtained by the scale space analysis presented
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in [7]. We calculate ∆θ and s for each pair of edge points
in It0 and It, and cast a vote in the corresponding bin in the
rotation-scale space. Local maxima in the voting space are
employed as candidate of rotation angle and scale ratio.

∆θ = θi − θj (5)
s = si/sj (6)

Then, the translation ∆x and ∆y are computed for each
candidate of ∆θ and s as Eq.(7) and Eq.(8). (xi, yi) is the
location of an edge point in It0 , and (xj , yj) is the location
of an edge point in It, and we calculate ∆x and ∆y for
each pair of edge points in It0 and It, and cast a vote in the
corresponding bin in the translation space. The maximum in
the voting space is employed in this voting.

∆x = xi − s (xjcos∆θ − yjsin∆θ) (7)
∆y = yi − s (xjsin∆θ + yjcos∆θ) (8)

Now, similarity score Tt is defined using transformation
parameters τ = (∆x,∆y, ∆θ, s).

Tt =
√

(∆x)2 + (∆y)2 + (k1∆θ)2 + (k2(s − 1))2 (9)

k1 and k2 are constants for weighting the parameters. In
implementation, k1 = 2, k2 = 100. In the case that It0 and
It are completely different, Qt ≈ 0 and Tt is undefined.
RANSAC [5] could be used for estimating the similarity

parameters, but is less suitable due to a large number of
edge points with multiple candidate matches. The multiple
candidate matches increase the actual outlier ratio, which
makes RANSAC inefficient.

Qt and Tt are correlated with the displacement between
frames, and they are good measures to evaluate the similarity
of the frames. On the other hand, St cannot be used as a
similarity measure when the displacement is large. This is
because the ICP will fall into a local minimum with a high
probability and St will be randomly set to a small value.
2) Procedure of Failure Recovery: The pseudo code of

failure recovery is shown below. First, the scores Q and
T and similarity transformation τ are calculated between
It0 and It (calSimilarity). If both of Q and T meet their
thresholds, the procedure returns It. The system resumes
the registration between It0 and It. If either of Q and T
does not meet its threshold, the robot (or human) capture
a new image by manipulating the camera (moveCamera,
captureImage) and repeats the evaluation of Q and T . In
this step, the robot should control the camera based on τ in
order to make the new image similar to the It0 . Since the ICP
easily falls into local minima when the displacement is large,
the camera control using τ is essential for efficient recovery.
This paper, however, does not consider the camera control,
and new images were taken by a human in the experiments.

IV. EXPERIMENTS
We conducted experiments in indoor and outdoor envi-

ronments. Images were captured manually by human with
Point Grey Research’s binocular camera Bumblebee2. The
baseline distance is 120 [mm]. The image size was reduced
to 320×240 pixels. No motion sensors were used.

Algorithm 1 find a good image for failure recovery.
(Q,T, τ) = calSimilarity(It0 , It)
while Q < th4 ∨ T > th5 do

t = t + 1
moveCamera(τ)
It = captureImage()
(Q,T, τ) = calSimilarity(It0 , It)

end while
return (It)

A. Failure Detection

We evaluated the score St of failure detection for erratic
camera motion, moving objects, and illumination changes.
The ground truth, i.e. whether the registration for each frame
fails or not, was determined by human.
1) Erratic camera motion: In this experiment, the camera

was moved rapidly to make a large displacement between
consecutive frames. In many cases, motion blur was accom-
panied. Fig.2 (a) shows an example. To create examples
without motion blur, we skipped several frames from image
sequence captured by normal camera motion. Fig.2 (b) shows
an example. The left image is It−1 and the right image is
It in both examples. In the examples, the reprojection of
the 3D map are represented by red dots. As can be seen
in Fig.2 (b), the 3D map are mismatched with the image.
In both examples, failure occurred at It, and St decreased
significantly.
Fig. 3(a) shows the distribution of St for 248 frames. The

frames consists of 32 scenes with erratic camera motion.
The last frame of each scene was captured under rapid
camera motion, and each scene has several consecutive
frames captured under moderate camera motion before the
last frame. Therefore, there were 32 erroneous frames and
216 normal frames. In this experiment, all the successful
frames were the normal frames, and all the failed frames
were the erroneous frames.
2) Moving Object: Fig.2 (c) and (d) show examples of

failure by moving objects. In both examples, failure occurred
at It (right image), and St decreased significantly. As can be
seen in It of Fig.2 (c) and (d), the 3D map are erroneously
matched with the moving object.
Fig.3(b) shows the distribution of St for 310 frames.

All the frames contains moving objects. In general, the
registration fails when the size of the moving objects is large.
However, if stable edge points are not sufficiently extracted
from the image, the registration can fail due to small moving
objects. The right image in Fig.2(c) shows an example of it.
The peak of the distribution lies at lower value of St than
the Fig.3(a). This is because the matched edge points were
reduced by moving objects.
3) Illumination Change: We made illumination changes

by turning on/off the light in rooms and by moving around
the boundary of the sunshine and shade. Fig. 2(e) and (f)
show examples. Since the camera used here has automatic
exposure, the image intensity changed at the moment of
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Fig. 2. Examples of score St under erratic camera motion, moving objects,
and illumination change.

Fig. 3. Distribution of score St

illumination change and returned to the almost same level
before the illumination change. Thus, the change in the image
intensity was not so drastic.

Fig. 3(c) shows the distribution of St for 163 frames. The
frames consists of 16 scenes with illumination change. The
last frame of each scene was captured under illumination
change, and each scene has several consecutive frames cap-
tured under stable illumination before the last frame. There-
fore, there were 16 frames under illumination change and 147
normal frames. In this experiment, illumination change had
only slight influence on the registration, and all the frames
were successfully processed including illumination change.
The edge point detection is robust to illumination changes,
and registration failure will not occur unless illumination
change is very large.

An important issue is how to determine the threshold th2.
When th2 is small, the probability of mismatching increases
and as a result the 3D map will have large errors. Empirically,
when St is very small (0.3 or less), the process sometimes
fails catastrophically by motion blur, large skips, and large
occlusion. When St is moderate (0.4 to 0.5), the process has
registration errors but is continuable. From these facts, the
appropriate value of th2 would be 0.35 to 0.5 depending
on the required efficiency and accuracy. If th2 is large, the
process may frequently enter into the recovery mode even
for correct matching, which makes the process inefficient.

Fig. 4. Recovery from failure caused by rapid camera motion

B. Failure Recovery

We conducted experiments of failure recovery. The first
experiment examined recovery from failure caused by erratic
camera motion in mapping from 134 frames. Fig.4(a) shows
some frames of the image sequence. At frame 112, the
operator made erratic camera motion by turning the camera
away rapidly, and then returned the camera slowly to the pose
before the averting. Fig.4(b) shows St around frame 112. As
can be seen, St significantly decreases at frame 112. Tt meets
the threshold th5 = 20 at frame 120, and the system resumed
the mapping process. Tt is undefined from frame 112 to 116
since Qt is very small. Fig.4(c) shows the 3D map built from
the 134 frames.
The second experiment examined recovery from failure

caused by moving objects in mapping from 230 frames.
Fig.5(a) shows some frames of the image sequence. At frame
135, passersby occupied a large region in the image and the
registration failed. After waiting for the passersby to pass
by, the system resumed the mapping process at frame 140.
Fig.5(b) shows St around frame 135. As can be seen, St

significantly decreases at frame 135. Tt meets the threshold
th5 = 20 at frame 136, and the system resumed the mapping
process but failed again. Note that St is very small at frame
136. Tt meets the threshold th5 = 20 at frame 140, and
the system successfully resumed the mapping process. Tt is
undefined from frame 137 to 139 since Qt is very small.
Fig.5(c) shows the 3D map built from the 230 frames.

C. 3D Mapping with Failure Recovery

Fig.6 shows an example of 3D mapping with failure recov-
ery from 990 frames. The travel distance is about 45[m]. At
frame 408 in Fig.6, the operator made erratic camera motion
by turning the camera away rapidly, and returned the camera
slowly to the pose before the averting. The system entered
into the recovery mode at frame 408, and recovered from the
failure at frame 459. Soon after this, another failure occurred
by small shake, and was recovered again. At frame 618, the
operator made another erratic camera motion, and the system
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Fig. 5. Recovery from failure caused by moving objects

Fig. 6. 3D mapping under rapid camera motions and illumination changes.

recovered from the failure at frame 640. Illumination changes
occurred at frame 801 and 844 because of automatic lights
at the landing, but the illumination changes had no influence
on the mapping process.

Fig.7 shows another example of 3D mapping with failure
recovery from 1040 frames. The travel distance is about
60[m]. At frame 109, the registration failed due to a passerby.
Stable edge points were not sufficiently detected from the
background due to the darkness (weak intensity) of the
image, and a small moving object was able to affect the
registration process. The system recovered from the failure
after two frames. At frame 113, the registration failed due
to the same passerby again and recovered after two frames.
At frame 272, the registration failed due to passersby and an
automatic door. The system recovered from the failure after
two frames again. The movement of the second automatic
door had no influence. Illumination changes occurred when
going outside through the door and moving around the
boundary of the sunshine and shade, but the illumination
changes had no influence on the mapping process.

Fig. 7. 3D mapping under moving objects and illumination changes.

V. CONCLUSIONS
This paper has presented a method of 3D mapping using

a stereo camera with automatic recovery from registration
failure. We employ edge points as map element, and apply a
variant of ICP algorithm to the inter-frame registration. Our
method detects failure in camera pose estimation caused by
erratic camera motion or moving objects and recovers from
the failure by searching a good image to resume the registra-
tion using edge-point SIFT descriptors. In experiments, our
method successfully coped with failure in 3D mapping under
various conditions. Future work includes the integration of
the proposed system and a mobile robot platform.
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