
  

  

Abstract— A task-priority based framework for multiple 
tasks of highly redundant robots was derived using the 
Lagrangian multiplier method. The framework was proved to 
prioritize a generic number of tasks without algorithmic 
problems – so called an algorithmic singularity and an 
algorithmic error. The computational efficiency of the 
framework excels other conventional task-priority strategies. 
The efficiency and efficacy of the framework was demonstrated 
theoretically and experimentally through comparative study. 

I. INTRODUCTION  
t is challenging to control highly redundant robots such as 
humanoid robots. The difficulty mainly arises from the fact 

that a highly redundant robot is generally required to execute 
multiple tasks simultaneously while controlling a large 
number of degrees of freedom (DOFs). Task descriptions 
may involve the combination of balance and gaze for a 
humanoid robot to reach its hand for an object in space. Large 
number of DOFs of highly redundant robots involves high 
computational complexity which still remains as a barrier for 
applying advanced algorithms in spite of recent development 
on hardware.  

Task-priority strategy [1]-[4] can give a rational solution 
for compromising conflicts between tasks. Suppose that a 
target is located too far for a humanoid robot to reach its hand 
keeping balance. As a result, the humanoid cannot 
accomplish both tasks and there can be large error on both 
sides. These conflicts can be avoided by performing tasks 
according to the order of priority. The task with the higher 
priority is first performed and the task with the lower priority 
is performed next, utilizing kinematic redundancy. 

Conventional task-priority strategies suffer from two 
algorithmic problems – an algorithmic singularity [5] and an 
algorithmic error [6], which is also known as the residual 
error [4]. An algorithmic singularity occurs when the task 
with lower priority conflicts with the task with higher priority 
[7]. The task-priority strategy gives ill-conditioned solutions 
close to an algorithmic singularity region. The 
singularity-robust (SR) inverse [8], which is also known as 
damped least-squares inverse [9], has been developed to 
overcome the difficulties encountered near singularities. 
Although good conditioning of the solution is ensured, these 
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are obtained at the expense of increased task error. A few 
methods, which have no algorithmic singularity, have been 
proposed [7], [10]. These methods optimize the solution for 
each task first and project it onto the null space of prior tasks 
next. The main drawback of these methods is that large error, 
named by algorithmic error, exists in performing tasks with 
the lower priority even if tasks are compatible. A humanoid 
robot may not be able to locate hands or legs accurately due to 
the algorithmic error. A weighted pseudo-inverse method has 
been proposed for compensating the algorithmic error [4].  

A recursive formula is needed to prioritize multiple tasks in 
conventional task-priority strategies. This formula is 
generally concomitant with large amount of computational 
effort as the number of tasks increases. Furthermore, the 
computational complexity can be more burdensome for 
highly redundant robots because it is required to compute 
large dimensional matrices. The heavy charge of computation 
requires a large expense for powerful hardware of real-time 
control. A few algorithms have been developed to improve 
computational efficiency. The incremental method has been 
proposed to evaluate the null space projector efficiently [11].  

A new task-priority framework has been proposed for a 
generic number of tasks in this paper. The proposed 
framework is derived through minimization of task-error 
subject to the prior tasks execution by using the Lagrangian 
multiplier method. The proposed framework simultaneously 
has three merits as follows: 1) The proposed framework is 
robust for algorithmic singularities, 2) while it does not have 
an algorithmic error. 3) The computational efficiency of the 
proposed framework excels other conventional task-priority 
strategies.  

The paper is structured as follows: In section II, the 
proposed method will be derived and analyzed. In section III, 
the comparison will be covered. In section IV, the proposed 
method will be evaluated by simulations. Finally, the 
conclusion will be described in section V.  

II. OPTIMAL FRAMEWORK 

A. Problem Statement 
It is assumed that there are k tasks to be performed and 

each task requires im DOFs. The kinematic equation for each 
task is given as 

( )  for 1i i i k= ≤ ≤x f θ ,                      (1) 

where im
i ∈ℜx  denotes the i th task vector with respect to 

the base frame, n∈ℜθ  joint vector, and im
i ∈ℜf  a vector 
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consisting of im  scalar equations. It is assumed that the i th 
task has lower priority with respect to the previous 1i − th 
task.  

From the kinematic equations, the second-order 
differential kinematic equations are determined as 

( ) ( )   for 1i i i i k= + ≤ ≤x J θ θ J θ θ�� ���� ,           (2) 

where .( )  denotes the first order time derivative, ..( )  the 

second order time derivative and ( ) / ( ) im n
i i

×= ∂ ∂ ∈ℜJ f θ  
Jacobian of i th task. Equation (2) can be rewritten as 

( )   for 1i i i k= ≤ ≤J θ θ h�� ,                   (3) 

where im
i ∈ℜh  is defined as 

( )   for 1i i i i k− ≤ ≤h x J θ θ����� .              (4) 

The problem is to solve joint acceleration, n∈ℜθ�� , for 
given tasks, im

i ∈ℜh , according to the order of priority. 

B. Optimal Solution 

Let ( )iH θ�� be the criteria function for minimization of the 
i th task error as 

1( ) ( ) ( )
2

T
i i i i iH = − −θ J θ h J θ h�� �� �� .              (5) 

Also, let ( ) im
i ∈ℜF θ��  be the constraint function as 

1 1( )i i i− −= −
=

A AF θ J θ h
0

�� ��
,                       (6) 

where the augmented Jacobian, 1i−
AJ , and the augmented task 

vector, 1i−
Ah , are defined as   

1 1 2 1

TT T T
i i− −⎡ ⎤⎣ ⎦
AJ J J J� " , and           (7) 

1 1 2 1

TT T T
i i− −⎡ ⎤⎣ ⎦
Ah h h h� " .              (8) 

Let us define the Lagrangian function as the following: 
( ) ( ) ( ),T

i i i iL H= +θ θ λ F θ�� �� ��                    (9) 
where iλ  denotes an im -dimensional Lagrangian multiplier 
vector for the i th task. At the stationary points of iL , 

( ) ( ) ( )T
i i i iL H∂ ∂ ∂= +

∂ ∂ ∂
=

θ θ λ F θ
θ θ θ

0

�� �� ��
�� �� �� .           (10) 

From (5), (6), and (10), we can get the following equation 

1
T T T

i i i i i i−= − AJ J θ J h J λ��                      (11) 
It is assumed that there are ir  feasible directions (i.e. 
dimensions of joint acceleration space which can not affect 
prior tasks) for the i th task as 

1() )( i iir ρ ρ −−= A AJ J ,                    (12) 
where  )(ρ i  denotes the rank of i . 

Now, define ir n
i

×∈ℜZ  as a matrix consisting of the ir  
basis vectors spanning the null space of prior tasks. Then, iZ  
satisfies the following relationship 

1
T

i i− =AZ J 0 .                               (13) 
Note that iZ can be evaluated by using either singular value 
decomposition (SVD) [13] or the method in [14]. 

Multiplying  iZ  on both sides of (11) leads to  
T T

i i i i i i=Z J J θ Z J h�� .                       (14) 
By using (14), let us define the extended Jacobian as 

1

2 2 2
T

T
k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

E

J
Z J J

J

Z J J

�
#

,                          (15) 

and the extended task vector as 
1

2 2 2
T

T
k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

E

h
Z J h

h

Z J h

�
#

.                          (16) 

Now, the task-priority based kinematics equation is 
determined as 

=E EJ θ h�� .                            (17) 
The minimum norm solution for (17) is obtained as 

+= E Eθ J h�� ,                           (18) 

where ( )+i  denotes the Moore-Penrose pseudo-inverse of  i . 

C. Important Properties 

Let _
ir n

i feasible
×∈ℜJ  be a matrix consisting feasible rows of 

iJ  as 

1 1

_

( ) ( )i i

i feasible i

ρ ρ− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

A AJ J
J J

,                   (19) 

and let ( )
_

i im r n
i conflict

− ×∈ℜJ  be a matrix consisting unfeasible 
rows of iJ  as 

1
1

_

( ) ( )i
i

i conflict

ρ ρ−
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦

A
AJ

J
J

.                     (20) 

Without loss of generality, (3) can be rewritten as 
_ _

_ _

i conflict i conflict

i feasible i feasible

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

J h
θ

J h
�� ,                  (21) 

where ( )
_

i im r n
i conflict

− ×∈ℜh  and _
ir n

i feasible
×∈ℜh denote the 

corresponding task vectors of ih . If the i th task is 
compatible with prior tasks, then _i feasible i=J J , and 

_i feasible i=h h . 
 
Theorem 1. (Algorithmic Singularity) 

 If the Jacobians, iJ , have full rank (i.e. there is no 
kinematic singularities), then there is no algorithmic 
singularities in (18). 

 
Proof  From (21), the left-hand side of (14) is derived as 
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_ _

_ _

_
( ) _

_

_ _

( )

( )

i i i i i

T
i conflict i conflictT

i i i i
i feasible i feasible

i conflictT
r m r i i feasible r r

i feasible

T
i i feasible i feasible

× − ×

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎣ ⎦

=

J J
Z J J θ Z θ

J J

J
0 Z J θ

J

Z J J θ

�� ��

��

��

, (22) 

and the right-hand side of (14) is derived as 

_ _

_ _

_
( ) _

_

_ _

( )

( )

i i i i i

T
i conflict i conflictT

i i i i
i feasible i feasible

i conflictT
r m r i i feasible r r

i feasible

T
i i feasible i feasible

× − ×

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎣ ⎦

=

J h
Z J h Z

J h

h
0 Z J

h

Z J h

.    (23) 

From (22) and (23), (17) is equivalent to 

11 1

2 2 _ 2 _2 2 _ 2 _

_ __ _

m n
TT

feasible feasiblefeasible feasible

TT
k k feasible k feasiblek k feasible k feasible

×⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

J J
Z J hZ J J

θ

Z J hZ J J

��
##

. (24) 

Since _( )
i i

T
i i feasible r r×Z J  is invertible, (24) is equivalent to 

1 1

2 2

1 1

2 _ 2 _

_ _

( ) ( )

( ) ( )

( ) ( )
k k

m n m n

feasible r n feasible r n

k feasible r n k feasible r n

× ×

× ×

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J h

J h
θ

J h

��
# #

.             (25) 

Therefore, the optimal solution, (18), shares the same 
solution as  

1 1

2 2

1 1

2 _ 2 _

_ _

( ) ( )

( ) ( )

( ) ( )
k k

m n m n

feasible r n feasible r n

k feasible r n k feasible r n

+
× ×

× ×

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

J h

J h
θ

J h

��
# #

.              (26) 

Since the Jacobian, 1 2 _ _

TT T T
feasible k feasible⎡ ⎤⎣ ⎦J J J"  , 

has full rank, there is no algorithmic singularities in(18). ,   
 

Remark. It may be necessary to introduce a damping factor, 
λ , for ensuring good conditioning near algorithmic 
singularities since the numerical error can be magnified by 
the condition number of EJ . Introducing a damping factor, 
the solution in the proposed framework can be modified as 
follows: 

1 1

2 2 2 2 2 2( )

( )

T T

T T
k k k k k k

λ

λ

+
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

J h
Z J J I Z J h

θ

Z J J I Z J h

��
# #

.             (27) 

Similar to the SR inverse, the damping factors need to be 
tuned for minimizing degradation of the task accuracy. 
 
Lemma 1. The optimal solution, (18), can be obtained as 
follows:  

_ _ _ _
1

_ _

1

_ _ 1
1

1

_
1

ˆ ( ),

ˆ ,

ˆ ˆwhere , ,  and

k

i feasible i feasible i feasible i prev
i

i feasible i feasible i

i

i j feasible j feasible
j

i

i prev j
j

+

=

−
+

=

−

=

= −

⎧
⎪
⎪
⎪⎪ = − =⎨
⎪
⎪
⎪ =
⎪⎩

∑

∑

∑

θ J h J θ

J J N

N I J J N I

θ θ

�� ��

�

�� ��

.  (28) 

In (28), iN  denotes the null space projector for i th task 
 
Proof Michael Mistry, et al.proved that (26) is equivalent to 
(28) in [15]. ,  

 
The solution must satisfy _ _i feasible i feasible=J θ h�� , which 

means that the i th subtask is executed as much as possible 
within the feasible subspace.   

 
Definition 1. Let us define an algorithmic error as 

_ _ _i algorithm i feasible i feasible= −e h J θ�� .                      (29) 
 

Theorem 2. (Algorithmic error) 
If (28) holds, then there is no algorithmic error in (18). 
 

Proof By substituting (28) into (29), an algorithmic error is 
derived as 

_ _

_

_

_

_ _

_

_ _ _

( ˆ )
ˆ( )
i feasible i

i algorithm i feasible i feasible

i feasible

i feasible i feasib

feasible

i feasible i feasiblele i prev

+

+

=

−

−

=

−

− J h

J J θ

e h J θ

I J

J J

�

��

�

. (30) 

Since iN  is idempotent, it is easy to show  

_ _
ˆ

i feasible i feasible
+ =J J I .                        (31) 

Substituting (31) into (30) leads to _i algorithm =e 0 . Therefore, 
the proposed optimal framework does not have an 
algorithmic error. ,  

III. SIMULATION  
The proposed optimal framework was validated and 

compared with other task-priority strategies, which can be 
applied for a generic number of tasks, are the resolved 
acceleration method [1], [3] and two resolved torque method 
— the operational space formulation [12] and the unifying 
framework [10].  

A. Settings 
The proposed method was implemented and verified in 

SimStudio environment, which is accurate dynamics 
simulation software. A humanoid robot which has 28 DOFs 
was used for a simulated experiment.  

The humanoid robot stabbed a dummy with a fencing 
sword in this simulation. The required tasks are described as 
follows: 
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1) Joint limit 
Joint limit task is defined as keeping each joint angle 

within its range of motion. 
2) Self-balance 
The self-balance task is defined by the global center of 

gravity coordinates, cogx , and the associated Jacobian, cogJ ,  
which can be expressed as, 

1

1 ( ) ( ),
n

cog com
i

m i i
M =

= ∑x x                       (32) 

1

1 ( ) ( ),
n

cog com
i

m i i
M =

= ∑J J                       (33) 

where ( )m i denotes the mass of the i th link, ( )com ix  the 
center of mass of the i th link, ( )com iJ corresponding 
Jacobian, and M the total mass of the humanoid robot. The 
global center of gravity is controlled at the center of feet.  

3) Left foot position 
The humanoid robot stepped one pace forward. 

    4) Left hand position     
The left hand position task is defined as stabbing the center 

of the target on a dummy with fencing sword. 
To validate the proposed method, two simulations have 

been performed. The objectives of each simulation are as 
follows: 

 One was performed to compare the subtask accuracy 
when given tasks were compatible. 
 The other was performed to compare the algorithmic 

singularity robustness when given tasks were not 
compatible. 
In the latter case, the target is located too far to reach the 

fencing sword while keeping joint-limit and self-balance. 

B. Results and Discussion 
1) Subtask accuracy  
A sequence of snapshots is shown in Fig. 5. The position 

error of the sword’s tip is described in Fig. 2. The simulation 
results show that the subtask was executed accurately using 
the proposed framework. As a result, the humanoid robot 
accurately stabbed the center of the target (see Fig. 3.).  

The subtask was executed accurately using the resolved 
acceleration method and the operational space formulation. 
However, the unifying framework failed to execute the 
subtask accurately due to the algorithmic error. Based on the 

 
Fig. 1.  Task description: A humanoid robot is required to execute four 
tasks simultaneously.  

2.5 3 3.5 4

-0.3

-0.2

-0.1

0

0.1

0.2

po
si

tio
n 

er
ro

r 
(m

)

time (sec)

 

 

x
y
z

2.5 3 3.5 4

-0.3

-0.2

-0.1

0

0.1

0.2

po
si

tio
n 

er
ro

r 
(m

)

time (sec)

 

 

x
y
z

 
(a)                                           (b) 

2.5 3 3.5 4

-0.3

-0.2

-0.1

0

0.1

0.2

po
si

tio
n 

er
ro

r 
(m

)

time (sec)

 

 

x
y
z

2.5 3 3.5 4

-0.3

-0.2

-0.1

0

0.1

0.2

po
si

tio
n 

er
ro

r 
(m

)

time (sec)

 

 

x
y
z

 
(c)                                          (d) 

Fig. 2.  Position error of the sword’s tip when tasks are compatible: (a) 
the proposed framework, (b) the resolved acceleration method, (c) the 
operational space formulation, (d) the unifying framework 
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Fig. 3.  Comparison of an algorithmic error: (a) the proposed optimal 
framework, (b) the unifying framework 
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Fig. 4.  Position error of the sword’s tip when tasks are not compatible: 
(a) the proposed framework, (b) the resolved acceleration method , (c) 
the resolved acceleration method (with SR inverse), (d) the operational 
space formulation, (e) the unifying framework 
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reformulation (see Appendix), the algorithmic error of the 
unifying framework can be derived as follows: 

2

_ _ _ _ _

_

_ _( ( ))

i algorithm i feasible i feasible i unifying framework

i feasible

feasibli i pre i ie v i
++

= −

=

−

≠

MJ θ N J h

h θ

0

e J

h
��

��

.   (34) 

Therefore, large tracking error occurred and the humanoid 
robot could not stab the center of the target (see Fig. 3.). 

2) Algorithmic singularity robustness 
The target is located too far to reach the fencing sword 

while keeping joint-limit and self-balance. A sequence of 
snapshots is shown in Fig. 5. The position error of the sword’s 
tip is described in Fig. 4. The simulation results show that the 
given tasks were performed according to priority without 
algorithmic singularities using the proposed framework. The 
humanoid robot could not reach its hand more because tasks 
with the higher priority, the joint-limit task and the 
self-balance task, must be performed first.  

Algorithmic singularities are defined as the configurations 

at which ˆ
i i i=J J N , the Jacobian projected on the null space 

of prior tasks, loses its rank. An algorithmic singularity 
occurs whenever tasks conflict as 

   1( ) ( ) ( )i i iρ ρ ρ−< +A AJ J J .                    (35) 
The resolved acceleration method without using the SR 
inverse showed unstable responses due to algorithmic 
singularities. With the SR inverse, the resolved acceleration 
method showed good tracking performance. The unifying 
framework does not have algorithmic singularities because 
ˆ

iJ  is not used. However, the unifying framework had large 
tracking error because the tip of the sword converged to 
non-optimal position after conflict occurred.  

3) Computational efficiency 
Using the proposed optimal framework, we were able to 

perform the computation of the control torque in less than 1.4 
msec using a PC with a 2.4 GHz Pentium CPU. Compared 
with other methods (the resolved acceleration method: 2.7 
msec, the unifying framework: 3.2 msec, and the operational 
space formulation: 4.8 msec), the proposed optimal 
framework showed the best computational efficiency. 

There are two reasons why the proposed optimal 
framework is more efficient than other methods. First, the 

null space projector in the proposed optimal framework can 

 
(a) 

 
(b) 

Fig. 5.  Snapshots of the proposed optimal framework: (a) when tasks are compatible, (b) when tasks are not compatible. 
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be evaluated more efficiently than other methods. The null 
space matrices, iZ , can be updated efficiently by using the 
method in [23] with 2( )O n  the computational complexity. 
The computational costs for the null space projectors, iN , in 
other methods reaches 2( )O kn . Second, the control torque 
can be computed more efficiently than the resolved torque 
methods using Newton-Euler rigid body dynamics 
formulations with ( )O n  computational complexity. The 
resolved torque methods requires explicit computation of 
M and 1−M  with computational costs at least reaching 

2( )O n  and 3( )O n , respectively. 

IV. CONCLUSION 
A new task-priority based framework for a generic number 

of tasks is described in the paper. The proposed framework is 
derived through minimization of task-error subject to the 
prior tasks execution by using the Lagrangian multiplier 
method. Based on the proposed framework, an inverse 
kinematics solution in acceleration level can be obtained 
without an algorithmic singularity and an algorithmic error. 
The computational efficiency of the proposed framework is 
better than other methods. This is useful for real-time control 
of highly redundant robots with many task-priority levels. 
The proposed framework has been verified through the 
simulation applied to a humanoid robot which has 28 DOFs.  

APPENDIX 

A.  Reformulation of the unifying framework  
The joint space dynamics equation is given as 

( ) ( , ) ( )= + +τ M θ θ C θ θ G θ�� � ,                (36) 

where n∈ℜτ  denotes joint torque, ( ) n n×∈ ℜM θ  inertia 

tensor, ( , ) n∈ℜC θ θ�  coriolis and centrifugal torque, and 

( ) n∈ℜG θ  gravity torque. 
The unifying framework was proposed as follows: 

1

1 1
_

_
1

,   

( ) [ ( ( ))]
where 

k

i
i

i i i i i post

k

i post i
j i

=

− + −

= +

= + +

⎧ = − − +
⎪
⎨

=⎪
⎩

∑

∑

τ τ C G

τ J M h J M τ C G

τ τ

. (37) 

Let us define _i postθ��  as 
1

_ _[ ( )]i post i post
−= − +θ M τ C G�� .             (38) 

Substituting (38) into (37), iτ  is obtained as follows: 

2

1
_

_

( ) ( )

( )

i i i i i post

i i i i post

− +

+

= −

= −M

τ J M h J θ

MJ h J θ

��

��
.               (39)  

The unifying framework can be reformulated as 

_
1

_i unifying framework

k

i=

= + +∑M θτ C G�� ,         (40) 

 where 
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+
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M
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