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Abstract— In this paper, we propose a control method to
swing up and stabilize a double Furuta pendulums (DFP).The
DFP is a rotational type inverted pendulum system that has a
base-link and two pendulums of different length at the both
ends of the base-link. The proposed method consists of three
controllers for the DFP, i.e., a swinging up controller for a long
pendulum, a controller to keep a long pendulum at the upright
position and to swing up a short pendulum simultaneously, and
a stabilization controller for both pendulums at the upright
position. Since the second controller has two objectives, we use
safe manual control[3] proposed by Åström and Åkesson.

This paper proposes a novel application of the safe manual
control. Swinging up and stabilization of the DFP was success-
fully achieved by appropriately switching three controllers. The
effectiveness of the proposed method was verified by simulation
and experiment.

I. INTRODUCTION

Inverted pendulums have been widely used as controlled

plants to evaluate validities of control theories. The double

furuta pendulums (DFP) has a rotational base-link and two

pendulums at the both ends of the base-link. The DFP is

controlled by a direct drive (DD) motor attached to the base-

link. The lengths of the two pendulums are different from

each other, and the characteristics of the DFP are changed

depending on the lengths of the two pendulums. From this

characteristics, the DFP is used as a benchmark to check

the abilities of control theories for underactuated mechanical

systems[2]. In this paper, we propose a control method to

swing up and stabilize the DFP. The designed controller can

stabilize both pendulums at the upright position, swinging

them up from the pendant position. Dynamics of the DFP are

changed fully depending on the states of the both pendulums.

In order to achieve the control objective, the proposed

method is consisted of three controllers. These controllers

are switched by the states of the DFP. The purposes of the

controllers respectively are as follows:

(1) swinging up a long pendulum,

(2) keeping a long pendulum around the upright position

and swinging up a short pendulum, and

(3) stabilizing both pendulums at the upright position.

Then, the first controller is designed by energy control[6] for

a long pendulum ignoring the motion of the short pendulum.
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The second controller is needed to control the pendulums so

that two different objectives can be simultaneously achieved,

i.e., a swing-up control and stabilization control. For this

purpose, we use safe manual control proposed by Åström,

Åkesson. Usually, the safe manual control is used for a

combination of manual control and automatic control, but

it also can be used for combining two different automatic

controls, i.e., a stabilization control of a pendulum and a

velocity control of the base-link of the inverted pendulum

system. In this paper, we apply the safe manual control,

replacing the manual control part with automatic swinging

up for a short pendulum. The third controller is designed by

common linear control theory because two pendulums can

be linearized around the upright position. The effectiveness

of the proposed controller is verified by simulation and

experiment.

II. DOUBLE FURUTA PENDULUM SYSTEM

In this section, an equation of motion of the DFP is derived

by Euler-Lagrange method. The schematic model of the DFP

is shown in Fig. 1. The parameters of the DFP are listed in

Table I. The equation of motion of the DFP is given by

M(θ)θ̈ + H(θ, θ̇) + G(θ) = τ (1)

where θ = [θ1, θ2, θ3]
T and τ = [τ1, 0, 0]T , and M(θ) is

inertia matrix, H(θ, θ̇) is term of coriolis force and friction

Long pendulum

(Link 2)

Short pendulum

(Link 3)

Base link

(Link 1)

1θ

2θ 3θ

Fig. 1. Schematic diagram of DFP
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TABLE I

PARAMETERS OF DFP(i=1, 2, 3)

mi Mass of link i (kg)

Ji Moment of inertia of link i at COG (Nm·s2/rad)
Ci Friction coefficient of link i at pivot (Nm·s/rad)
li Length from joint 1 to joint i (m)
ri Length from joint i to COG of link i (m)
τ1 Input torque for base-link (Nm)
θi Angle of link i (rad)

force and G(θ) is gravity term,

M(θ) =





m̄1 m̄2 m̄3

m̄2 J̄2 0
m̄3 0 J̄3



 ,

H(θ, θ̇) =





h1

h2

h3



 , G(θ) =





0
g2

g3



 ,

where

m̄1 = J̄1 + J̄2 sin θ2
2 + J̄3 sin θ2

3,

m̄2 = −m2l2r2 cos θ2, m̄3 = −m3l3r3 cos θ3,

h1 = m2l2r2θ̇
2
2 sin θ2 + m3l3r3θ̇

2
3 sin θ3

+J̄2θ̇1θ̇2 sin 2θ2 + J̄3θ̇1θ̇3 sin 2θ3 + C1θ̇1,

h2 = C2θ̇2 −
1

2
J̄2θ̇

2
1 sin 2θ2,

h3 = C3θ̇3 −
1

2
J̄3θ̇

2
1 sin 2θ3,

g2 = −m2gr2 sin θ2, g3 = −m3gr3 sin θ3,

J̄1 = J1 + m1r
2
1 + m2l

2
2 + m3l

2
3,

J̄2 = J2 + m2r
2
2 and J̄3 = J3 + m3r

2
3

Here, the state is divided into four condition:

• Up-Up condition: both pendulums stay around the up-

right position.

• Up-Down condition: a long pendulum stays around the

upright position and a short pendulum is out of the range

around the upright position.

• Down-Up condition: a short pendulum stays around the

upright position and a long pendulum is out of the range

around the upright position.

• Down-Down condition: both pendulums are outside of

around the upright position.

Each condition is illustrated in Fig. 2.

III. CONTROLLER DESIGN

This section gives a control method to swing up and

stabilize the DFP. The proposed method consists of three

controllers.

• D-D controller: to transfer the states of the DFP from

the Down-Down condition to the Up-Down condition,

that is, for swinging up the long pendulum.

• U-D controller: to transfer the states of the DFP from

the Up-Down condition to the Up-Up condition, that

is, for keeping long pendulum near the upright position

and swinging up the short pendulum.

Down-Down Up-Down

Up-UpDown-Up

Transition of conditions

Not used

Fig. 2. Condition of DFP

• U-U controller: to stabilize both pendulums at the

upright position

Swing-up and stabilization control achieves by switching

three controllers.

A. D-D controller design

A D-D controller is designed to swing up the long pendu-

lum by energy control[3]. The long pendulum is assumed to

be a planar pendulum and have no influence of friction, for

simplicity, the term h2 of H(θ, θ̇) in (1) is omitted. Under

this assumption, the equation of motion of the long pendulum

is given by

J̄2θ̈2 = m2gr2 sin θ2 + m2r2θ̈1 cos θ2. (2)

The energy of the long pendulum is

E2 =
1

2
J̄2θ̇

2
2 + m2gr2(cos θ2 − 1). (3)

The energy E2 is to be zero at the upright position. From

(2) and (3), the time derivative of E2 is calculated as

Ė2 = m2r2θ̈1θ̇2 cos θ2. (4)

Here, a candidate lyapunov function for the long pendulum

energy is given by

V2 = (Er2 − E2)
2/(2m2r2). (5)

where Er2 is the reference energy. The time derivative of V2

is

V̇2 = −(Er2 − E2)θ̇2θ̈1 cos θ2. (6)

From (6), V̇2 can be negative semidefinite by using the angu-

lar acceleration of the base-link and the angular acceleration

of the base-link can be controlled by the input torque. Let the

acceleration of the base-link be a new control input. Then,

the input acceleration is chosen to be

θ̈1 = umax cos θ3sgn((Ec − E)θ̇3) (7)

where sgn(·) is

sgn(u) =











1 u > 0

0 u = 0

−1 u < 0

,
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and umax (> 0) is the maximum input acceleration. Substi-

tuting (7) into (6), V̇2 becomes

V̇2 = −umax cos θ2
2|(Er2 − E2)θ̇2| (≤ 0). (8)

Equation (8) shows that function V̇2 is negative semi-definite.

Thus, the long pendulum is swung up, because E2 goes to

zero.

From (1), the acceleration of the base-link θ̈1 is derived

as

θ̈1 =
1

det(M)
(J̄2J̄3τ1 + q) (9)

where

q = −h1J̄2J̄3 + (h2 + g2)m̄2J̄3 + (h3 + g3)m̄3J̄2

det(M) = J̄1J̄2J̄3 − J̄2m̄
2
3 − J̄3m̄

2
2

Therefore, the input torque to generate the desired accelera-

tion of the base-link θ̈1 in (7) is given by

τ1 =
det(M)θ̈1 − q

J̄2J̄3

. (10)

B. U-D controller design

The objective of the U-D controller is to keep the long

pendulum around the upright position and to swing up the

short pendulum simultaneously.

In order to achieve the control objective, the safe manual

control[5] proposed by Åstöm is used. The safe manual

control is a method that allows an operator to control the

system manually with assistance of automatic control. In this

paper, the automatic control part of the safe manual control

is dedicated to stabilizing control for the long pendulum. On

the other hand, the manual control part is for swinging up

the short pendulum under an appropriate limitation for the

control input by the safe manual control, but it is different

from the original one in [5] from that the manual part in

this paper is also an automatic controller. Designing the U-

D controller is divided into four steps.

Step1. designing swinging up controller for the short pen-

dulum.

Step2. developing the controllability set of the long pen-

dulum around the upright position.

Step3. designing a stabilization controller for the base-link

and the long pendulum.

Step4. combining the two controllers designed by Step 1

and Step 3.

In designing the U-D controller, the control input is derived

based on the angular acceleration of the base-link, and then

at the final step, the designed angular acceleration of the

base-link is translated into the input torque. The details of

the above mentioned four steps are as follows:

Step1

In order to swing up the short pendulum, energy control

is used[6]. Under the same assumption as in designing the

D-D controller, the energy control is applied to the short

pendulum, omitting the term h3 of H(θ, θ̇) in (1). The

equation of motion and the energy of the short pendulum

are essentially the same as those in the previous section and

are given by

J̄3θ̈3 = m3gr3 sin θ3 + m3r3uE cos θ3 (11)

E3 =
1

2
J̄3θ̇

2
3 + m3gr3(cos θ3 − 1). (12)

where uE (= θ̈1) is the input acceleration. From (11) and

(12), the time derivative of E3 is

Ė3 = m3r3uE θ̇3 cos θ3. (13)

Consider a candidate of the lyapunov function for the energy

of the short pendulum, and E3 is defined as

V3 = (Er3 − E3)
2/(2m3r3) (14)

where Er3 is the reference energy. The input acceleration is

chosen to be

uE = umaxsgn((Er3 − E3)θ̇3 cos θ3). (15)

Then, V̇3 is calculated as

V̇3 = −umax|(Er3 − E3)θ̇3 cos θ3| (≤ 0). (16)

Thus, V̇3 is proven to be negative semi-definite from (16).

This means that the short pendulum can be swung up by the

control input (15).

Step2

In this step, the angular velocity of the base-link is assumed

to be a constant (θ̇1 = ω) and it is also assumed that there

is no viscous friction. Then, the controllability set of the

long pendulum on θ2−θ̇2 plane around the upright position

is derived. From (1), when the input acceleration is ±umax,

the equation of motion of the long pendulum can be rewritten

as

θ̈2 = ω2 sin 2θ2/2 + a sin θ2 ± b cos θ2umax (17)

where a = (m2gr2)/J̄2, b = (m2l2r2)/J̄2. The acceleration

θ̈2 satisfies the following relation.

θ̈2 =
dθ̇2

dθ2

dθ2

dt
= θ̇2

dθ̇2

dθ2

. (18)

By substituting (18) into (17), (17) is rewritten as

θ̇2

dθ̇2

dθ2

=
ω2

2
sin 2θ2 + a sin θ2 ± b cos θ2umax. (19)

Integrating (19) with respect to θ2 gives

1

2
θ̇2
2 = −

1

4
ω2 cos 2θ2 − a cos θ2 ∓ b sin θ2umax + CI (20)

where CI is a integral constant that θ̇2 = 0 at θ2 = θc, that

is,

CI =
1

4
ω2 cos 2θc + a cos θc ± b sin θcumax. (21)
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θc in (21) is the angle of the long pendulum that satisfies

(22).

0 =
1

2
ω2 sin 2θc + a sin θc ± b cos θcumax. (22)

As mentioned above, because it is assumed that the angular

velocity of the base-link is constant (θ̇1 = ω), the upper

boundary f+(θ2) of the controllability set of the long pen-

dulum on θ2-θ̇2 plane is

f+(θ2)=



























√

2
(

−ω2

4
cos2θ2−a cosθ2−b sinθ2umax+CI

)

(−π/2 ≤ θ2 ≤ θc)

−
√

2
(

−ω2

4
cos2θ2−a cosθ2−b sinθ2umax+CI

)

(θc ≤ θ2 ≤ π/2)

(23)

On the other hand, the lower boundary f−(θ2) is f−(θ2) =
−f+(−θ2) because of the symmetrical property of the

pendulum system.

Step3

A stabilization controller for the base-link and the long

pendulum is designed as a linear quadratic regulator. By

using a nonlinear feedback (10), the linearized state equation

of linearized model of the base-link and the long pendulum

at the upright position (θ2 = 0, θ̇1 = θ̇2 = 0) is given by

ẋu = Auxu + Buuu (24)

Au =









0 0 1 0
0 0 0 1
0 0 0 0
0 m2gr2

J̄2

0 −C2

J̄2









, Bu =









0
0
1

m2l2r2

J̄2









where the state vector is xu = [θ1, θ2, θ̇1, θ̇2]
T and uu is

the input acceleration. Then, consider a performance index

Ju =

∫

∞

0

[xT
u Quxu + ruu2

u]dt (25)

where Qu (≥ 0) is a weighting matrix, and ru (> 0) is

scalar weight. The input minimizing (25) is given by

uu = −r−1
u BT

u Puxu = −Fuxu (26)

where Pu is a symmetric positive definite solution of the

Riccati equation

PuAu + AT
u Pu − r−1

u PuBuBT
u Pu + Qu = 0. (27)

Step4

The control input which stabilize the base-link and the

long pendulum and swings up the short pendulum simulta-

neously, is designed. Here, the input acceleration is given

by

θ̈1 = satumax
(−Fuxu + uE). (28)

A saturation function satumax
(·) is defined as following

satumax
(u) =











umax u ≥ umax

u − umax ≤ u ≤ umax

−umax u ≤ −umax

(29)

If two control inputs are simply combined as written in

(28), the control objective are not achieved due to the

interaction of each input. To keep the long pendulum inside

the controllability set (23), all the inputs except for the input

for stabilizing the long pendulum, that is, the feedback term

−f1θ1 − f3θ̇3 + uE is limited as

θ̈1 = satumax
(−f2θ2 − f4θ̇2 + m) (30)

m = satma
(−f1θ1 − f3θ̇1 + uE)

where Fu = [f1, f2, f3, f4]. From the controllability set of

the long pendulum (23), the saturation limit ma is given as

ma =

{

m+
a (θ2) = f4(f

+(θ2) − d) − umax + f2θ2

m−

a (θ2) = f4(f
−(θ2) + d) + umax + f2θ2

(31)

where m+
a and m−

a are the saturation limits. d (≤ 0) is a

safety margin for robustness. Using the saturation limits ma,

the control input is limited to ±umax on the f+(θ2) − d or

f−(θ2)+d. Under the assumption that the angular velocity of

the base-link is constant (θ̇1 = ω), the set bounded f−(θ2)+
d and f+(θ2) − d is positively a invariant set.

Finally, the designed acceleration input is converted to the

torque input. The torque to generate the acceleration input

(30) is given by (10).

C. U-U controller design

In this section, a stabilization controller for the DFP at

Up-Up condition is designed as a linear quadratic regulator.

The linearized model of the DFP at the Up-Up condition

(θi = 0, θ̇i = 0) is

Muu
¨̄θ + C ˙̄θ + Guuθ̄ = τ (32)

Muu =





J̄1 −m2l2r2 −m3l3r3

−m2l2r2 J̄2 0
−m3l3r3 0 J̄3



 ,

C = diag(C1, C2, C3),

Guu = diag(0,−m2gr2,−m3gr3)

where θ̄ = [θ1 − 2πn1, θ2 − 2πn2, θ3 − 2πn3]
T , and ni

is integer satisfying min
ni∈Z

|θi − 2πni|. The state equation of

(32) is given by

ẋ = Auux + Buuτ1 (33)

Auu =

[

O3×3 I3×3

−M−1
uu Guu −M−1

uu C

]

, Buu =









O3×1

M−1
uu





1
0
0













where x = [θ̄T ˙̄θT ]T . Consider a following criterion function

J =

∫

∞

0

[xT Quux + ruuτ2
1 ]dt (34)

where Quu (≥ 0) is weight matrix and ruu (> 0) is scalar

weight. The control input minimizing (25) is given by

τ1 = −r−1
uu BT

uuPuux = −Fuux (35)
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Input layer Hidden layer Output layer

Output

Input

Fig. 3. Neural network model

where Puu is a solution of the Riccati equation

PuuAuu +AT
uuPuu−r−1PuuBuuBT

uuPuu +Quu = 0. (36)

In implementation, the feedback gain Fuu is redesigned as

Fduu so that the discretized system has the same poles as

the continuous system (33) in the sense of the matched z

transformation.

D. Switching condition

In this section, switching conditions for each controller

to smoothly make all the states of the DFP system relayed

are explained. The timing to switch from the D-D controller

to the U-D controller is decided by only angle of the long

pendulum because the U-D controller has a wide effective

region where the controllability set of the long pendulum

is guaranteed to be (23). On the other hand, the effective

region, i.e., the stabilizable region for the U-U controller to

be able to catch the short pendulum at the upright position is

narrow, and five dimensions that consist of angular velocity

of each joint and angle of the both pendulums. Thus, the

switching condition should be decided on the five dimension

space. The stabilizable region of the U-U controller is derived

based on neural-network (NN). An acquired region is used to

see whether the states of the DFP is inside or outside of the

stabilizable region, and this result is used to determine the

switching timing from the U-D controller to the U-U one.

1) Stabilizable region of U-U controller: The stabilizable

region of the U-U controller for switching condition is

acquired by a three-layer NN. Inputs for the NN are the five

states of the DFP, i.e., the angles of both pendulums and the

angular velocity of each link. When these states are inside

the stabilizable region of the U-U controller, the output of

NN becomes larger than a threshold Ot. Hence, the numbers

of neurons of the input layer and output layer are respectively

five and one. The model of the NN is shown in Fig. 3. The

parameters of the NN are listed in Table II. The number

of neurons of hidden layer Nm is a design parameter. The

range of the acquired region is |θi| ≤ θi max(i = 2, 3), |θ̇i| ≤
θ̇i max(i = 1, 2, 3) where θimax and θ̇i max are the maximum

angle and angular velocity. The inputs for NN are given by

u1 =
θ2 + θ2max

2θ2max

, u2 =
θ3 + θ3max

2θ3max

, u3 =
θ̇1 + θ̇1max

2θ̇1max

,

u4 =
θ̇2 + θ̇2max

2θ̇2max

, and u5 =
θ̇3 + θ̇3max

2θ̇3max

.

The inputs for the hidden layer and output layer are

Ik =
5

∑

i=1

wI
ikOI

i , IO =

NM
∑

i=1

wO
i OO

i . (37)

An output function of each neuron is a sigmoid function

given by

O∗

i (β) =
1

1 + e−ǫβ
, (∗ = I, O) (38)

where ǫ is a positive constant. The synaptic weights are

learned by error back propagation.

2) State transition of Controller: Switching conditions

derived by the above are summarized as










U − Ucontroller if OO > Os, |θi − 2πni| < θi max

U − Dcontroller else if |θ2| < θmax

D − Dcontroller else where

where θmax is a positive constant.

IV. SIMULATION RESULT

The proposed method is evaluated by a numerical simula-

tion. Parameters of the DFP used in the simulation are listed

in Table III.

The sampling time is 2 ms. The initial condition is

x(0) =
[

0.0 3.124 3.14 0.0 0.0 0.0
]T

,the maximum input torque is ±3 Nm. The design parameters

are

U-D controller

Qu = diag(5.0, 5, 0 × 103, 0.1 × 10−6, 10.0),

ru = 0.1 × 10−6, Ec = 0, d = 30.0, θmax =
π

9

TABLE II

PARAMETERS OF NEURAL NETWORK

OI
i

i-th output of input layer

OH
i

i-th output of hidden layer

OO Output of output layer

IH
i

Input for i-th neuron of hidden layer

IO Input for neuron of output layer

wI

ik
Synaptic weight from i-th neuron of input layer to

k th neuron of hidden layer

wO
i

Synaptic weight from i th neuron of hidden layer to

neuron of output layer

ts Teacher signal

ui Input for i-th neuron of input layer

TABLE III

PHYSICS PARAMETERS OF DFP

i 1 2 3

mi(kg) 3.01 1.11×10
−1 2.90×10

−2

Ji(Nm·s2/rad) 5.00×10
−1 8.63×10

−4 2.81×10
−5

Ci(Nm· s/rad) 1.60×10
−1 2.08×10

−3 5.92×10
−4

li(m) - 1.44×10
−1 1.44×10

−1

ri(m) 0.0 2.0×10
−1 5.0×10

−2
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U-U controller

Quu = diag(0.1, 100.0, 100.0, 0.1 × 10−6, 0.1, 0.1),

ruu = 1.0

The simulation result is shown in Figs. 4 and 5. From Figs.

4 and 5, it is found that the long pendulum is swung up and

stabilized by switching the controller at 1.1(s) around the

upright position (θ1 = 0). Then, the short pendulum is swung

up after swinging up the long pendulum and stabilized by

switching the controller at 7.4(s) around the upright position

(θ2 = 2π). Although the input torque was saturated, the DFP

was successfully swung up and stabilized. The simulation

result shows that the proposed controller is effective to swing

up and to stabilize the DFP.

V. EXPERIMENTAL RESULT

In this section, experimental results using a DFP system

are explained. Control experiments starts in the Down-Down

condition of the DFP. An angular velocity is calculated by

using the difference approximation. The design parameters

are given as follows:

U-D controller

Qu = diag(5.0, 5, 0 × 103, 0.1 × 10−6, 10.0),

ru = 0.1 × 10−6, Ec = 0, d = 50.0, θmax =
π

9

U-U controller

Quu = diag(0.1, 100.0, 100.0, 0.1 × 10−6, 0.1, 0.1),

ruu = 1.0

The allowable maximum torque and the time are the same

as those of the previous simulation. The experimental results

are shown in Figs. 6 and 7.
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From Figs. 6 and 7, it is found that the proposed controller

swung up and stabilized the DFP (θ1 = 2π, θ2 = 2π, θ3 =
−2π). Eventually, swinging up and stabilization control for

the DFP has been achieved by the proposed controller. By

using the safe manual control, during swinging up the short

pendulum, the input was appropriately limited so that the

long pendulum can be stayed at the upright position.

VI. CONCLUSIONS

In this paper, we have proposed control method to swing

up and stabilize the DFP. The effectiveness was verified to

through the numerical simulation and experiments for the

DFP. A swing-up and stabilization simulation and experiment

is a success. Hence, It is found that a proposed controller is

effectiveness to swing up and stabilize the DFP.
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