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Abstract—This paper presents a data fusion structure based 
on comparing geometric configurations of serial connected 
multi-axle compliant framed robots.  Data sources include 
global odometry derived sources and a novel strain-
measurement based Relative Posture Sensor (RPS).  Geometric 
methods are used because stochastic data fusion, developed 
from prior research, was erroneous when applied to more 
generalized multi-axle configurations.  Our results show an 
excellent response predicting expected configurations and a 
reasonable response with un-expected configurations. 

I. INTRODUCTION 

ompliant Framed wheeled Modular Mobile Robots 
(CFMMR), shown in Figure 1, with a focus on pose 

estimation, are the subject of this research.   These robots 
use a novel yet simple structure providing suspension and 
highly controllable steering capability without complex 
hardware or mechanisms.  This is accomplished by coupling 
axle modules together with a slender flexible frame.  The 
slender geometry caters flexible movement and terrain 
adaptability by permitting roll and yaw while restricting 
pitch.    Roll provides the robot with suspension capabilities, 
while yaw allows the robot to easily steer and navigate 
terrain.  

Cooperative robotics poses a unique control problem since 
it deals with potentially complex interactions between 
robotic modules.  Our prior research successfully established 
a unique cooperative control architecture to help remedy this 
problem [1].  This architecture, which is transferrable to 
cooperative robotic systems on multiple scales, synchronizes 
kinematic motion controllers, robust dynamic controllers, 
and sensor fusion methods. Applying these methods to the 
CFMMR has made it a viable research platform for studying 
cooperative robotics.  Our progressive research is focused on 
using the CFMMR in a variety of configurations, thus 
making it more useful for cooperative robotics research.  
The focus of this paper is to take steps towards generalizing 
the sensor fusion problem by extending two-axle methods 
presented in [2] to multi-axle methods.      

  Building on [2], this paper improves localization through 
sensor fusion.  Effective localization improves drift, lowers 
antagonistic forces, improves available wheel traction, and 
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ultimately improves the robot’s mobility when combined 
with effective kinematic motion and dynamic control, 
effective localization.  Localization is particularly difficult in 
compliant robots because nonlinear frame dynamics alter 
relative poses in unexpected ways.  Additionally, many 
typical operating scenarios, such as planetary exploration, 
have poor or unavailable global positioning such that dead 
reckoning is the only alternative.  Unfortunately, dead 
reckoning is frequently derived from odometry which is 
susceptible to bias and drift.   

Our research architecture (Figure 3) builds upon Merrell’s 
foundational Two-Axle data fusion structure [2], called the 
Relative Measurement Stochastic Posture Error Correction 
(RMSPEC), which fuses a global dead-reckoning based data 
source (based on an Extended Kalman Filter) with a Relative 
Posture Sensor (RPS) [2], robust to bias and drift [3][2].  
The RPS consists of strain gauges attached to the compliant 
frame of the robot, signal processing circuitry, and 
mathematic algorithms to interpret signals into relative 
poses.  The RPS is simple and lightweight so it can sit on the 
robot without impeding full range of motion and uses cheap 
electronics which are resistant to environmental wear.  

Our new algorithm, the Geometric Relative Posture Error 
Correction (GRPEC) algorithm, builds upon RMSPEC to 
effectively localize multi-axle robots.  Extending GRPEC 
from RMSPEC has seen many challenges resulting from the 
need to select the most trustworthy axle to become the 
global reference.  Unlike RMSPEC, axle trustworthiness 
cannot simply be computed relative to the only other axle.  
We explore three methods to effectively localize these axles, 
of which Method 3 was successful. 

Method 1, shown in Figure 2, selects the most trustworthy 
frame followed by selecting the most trustworthy axle of that 
frame corresponding to RMSPEC deviation metrics.  Figure 2 
illustrates this method leads to failure because the belief of 
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Figure 1: The Serial Connected 3 Axle CFMMR [4] 
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the axles’ configurations (thin lines) do not coincide with 
their actual configurations (thick lines) after the algorithm 
updates.  Method 2 attempts to correct failures seen from 
Method 1 by finding trustworthy axles considering the entire 
robot’s geometry.  This is accomplished using least squares 
regression effectively allowing all axles to have a relative 
degree of trustworthiness.  Despite difficulties predicting 
reasonable configurations this method has significant 
difficulty converging on a configuration, as shown in Figure 4 
where the error residuals of x and y coordinates never 
converges (even after 100 iterations). 

Our successful Method 3, which is illustrated in Figure 3, 
combines identification of trustworthy axles (method one) as 
they effect the robot’s entire geometry (method two).  First, 
global axle poses are derived from odometry (and known 
initial conditions), while, simultaneously, the RPS relative 
poses are obtained.  Second, odometry derived (OD) and 
RPS poses are fused to find trustworthy axles using a 
geometric comparison of axle configurations (GRPEC) 
opposed to stochastic methods (RMSPEC) thus outputting 
new poses which are fed back to update OD axle poses.  
Further, this unique structure may be extended to other 
cooperative robotic systems including manipulators and 
distributive sensor networks which are challenged by similar 
stochastic problems. 

The paper is organized as follows: Section II compares 
relevant contributions from other research, Section III 
outlines GRPEC’s Algorithmic developments, Section IV 

evaluates our algorithm experimentally, and Section V 
presents concluding remarks.  

II. BACKGROUND 

A detailed comparison of the CFMMR with existing 
robots and vehicles can be found in [5].  Most similar to the 
structure of the CFMMR is the snake robot Genbu [6] which 
evolved from early snake robots to provide active wheeled 
and passive joint morphology for improved terrain adaption 
and high speed capabilities.  Unlike the CFMMR which used 
a simple and inexpensive compliant frame to connect the 
axle modules, Genbu connects it’s axle modules with 
complicated and expensive mechanisms.  Similar to the 
RPS, Genbu compliant links are instrumented in order to 
obtain the axle modules relative positions. 

The need for relative position sensing, used in this 
research, is most similar and highly beneficial to compliant 
manipulators with large workspaces and limited weight.  The 
resultant links of these manipulators are long and slender 
resulting in limited stiffness, inherent vibration, significant 
deflection, and large settling time.  Research in this area has 
been motivated toward controlling the vibrations for fast and 
precise positioning.  Examples include damping out 
vibrations using strain data [7, 8], accelerometer data [9] and 
combinations of the two [10] to name a few.  Fortunately, 
the CFMMR’s nonholonomic constraints combined with 
effective inertia and damping of actuators, minimizes 
problems onset by vibrations.  However, both the CFMMR 
and long-slender manipulators use similar mathematical 
algorithms to predict relative deflections [2].  

Other than strain and mechanism measurement, other non-
contact distance measurements can be used to find relative 
poses [11].  GPS, laser radar, and computer vision are 
perhaps the most popular alternatives within the robotics 
community.  However, all of these methods are either 
expensive or incapable of accuracy on our required scale.   

The closest found example to our GRPEC data fusion 
algorithm, besides RMSPEC, is the IPEC algorithm [12].  
This algorithm detects the least trustworthy axle, based on 
odometry, and replaces it with the most trustworthy axle 
combined with data from a compliant linkage potentiometer.   

 
Figure 2: First Candidate Method Using RMSPEC; this doesn’t work 
because the belief does not coincide with the actual configuration after 
update. 

 
Figure 3: GRPEC’s role in axle correction 

 
Figure 4: Error Residuals for Least squares method using same 
configuration as Figure 2; the non converging error shows the robot 
cannot converge on a configuration. 
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This method works well, but, like RMSPEC, is not 
generalized to multiple-serial-axle configurations. 

III. GRPEC ALGORITHM DEVELOPMENT 

Like both RMSPEC and IPEC, the GRPEC identifies 
most trustworthy axle, sets it as the global reference, and 
then updates the other axles by robust relative data with the 
trustworthy global data.  The RMSPEC fuses this data based 
on data covariance using a covariance intersection (CI) filter.  
Due to intensified geometric complexity of multiple serial 
axle configurations, the primary intention of this paper is to 
design and evaluate the GRMSEC from a high level.  This 
evaluation analyzes snapshot configurations where 
covariance data is unobtainable, and thus CI filter is 
unnecessary.  By not using the CI filter, we assume RPS data 
is always more accurate than odometry-derived (OD) data, 
in the relative reference frame, which is reasonable since 
strain gauges are less susceptible to environmental 
disturbances than encoders. 

Identifying the most trustworthy axle, thus finding the 
correct robot configuration is accomplished through 
minimizing error between global data sets of pure OD data 
and RPS data made global by assigning it an OD global 
reference.  As an example three-axle serial configuration, 
Figure 1, this procedure is conducted for three different 
scenarios where RPS data is globally attached to either the 
first, second or third OD axle data and the error is calculated 
for each of these attachments.  This global reference 
attachment procedure is illustrated with the left-hand-side 
subfigures of Figure 5.  The candidate error metrics we 
consider are position error, orientation error, and deviation 
angle.   

To further illustrate this procedure both data sets (shown 
by the thin-dashed and thin-solid line types) and their error 
calculations are shown in the remainder of this section.  
First, the OD positions and orientations of all axles can be 
expressed globally as 
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where xODi is the OD horizontal position of the ith axle, yODi  
is the OD vertical position of the ith axle, φODi is the OD 
orientation of the ith axle; xOD, yOD, and ΦOD are the vector 
representations of xODi, yODi, and φODi, respectively, for all 
axles.  There are three relative position/orientation states for 
frames A and B, respectively, on the robot’s expressed as 
xRPSA, yRPSA, φRPSA, xRPSB, yRPSB, φRPSB.  Depending on a global 
reference; to Axle 1, 2, or 3; the relative data can be made 
global and expressed as 
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where xRi is the relative horizontal position of the ith axle, yRi 
is the relative vertical position of the ith axle, φRi is the 
relative orientation of the ith axle; xR, yR, and ΦR are the 
vector representations of xRi, yRi, and φRi respectively.  
Position errors of each axle are found by computing the 
norm of the x and y errors  
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where xy1Err, xy2Err, and xy3Err are the  composite x and y 
position errors from Axles 1, 2 and 3, respectively.  The 
orientation errors can be found by taking the absolute value 
of the difference between global and relative orientation as 
follows  
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where φ1Err, φ2Err, and φ3Err are the orientation errors of 
Axles 1, 2, and 3 respectively.   
The errors found in (3) and (4) are recalculated for each 

axle attachment (see Figure 5).  They are then added for an 
overall representation of axle trustworthiness as follows: 

 
Figure 5: Robot configurations (left-hand-side sub-figs) and deviation 
vectors (right-hand-side sub figs) for given global (thin-solid line) and 
relative (thin-dashed line) configurations. 
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where θxy
j and θφ

j  are the composite position and orientation 
errors, respectively, for axle j attachment where j=1, 2, or 3.  
The most trustworthy axle will also have the lowest 
composite error. 

To define deviation angle, we first define a pseudo-frame 
deviation vector connecting adjacent axles to each other.  
This is shown in Figure 5 by the thin linetypes where thin-
solid and thin-dashed linetypes represent global OD and 
RPS data.  In the RMSPEC, experimental results showed a 
smaller angular deviation of these vectors often indicated the 
most trustworthy axle in the two axle configuration.  
Therefore, the deviation angle could simply be defined as 
magnitude of the angle between the two vectors.   

Part of the reason this worked in the RMSPEC is because 
the pseudo-frame vectors also defined the relationship 
between the endpoints of the robot and reasonably shows 
deviation of the entire robot.  Because these vectors, by 
themselves, do not connect the beginning to the end of the 
robot they are incapable of measuring the entire robots 
deviation and the same metric can not be applied. Instead, a 
metric which measures the tendency of the entire robot to 
deviate to applied.  This is accomplished by the construction 
of two new vectors, which represent the robot-pseudo-frame, 
which only connects the front to the rear of the robot.  This 
is illustrated by the thick dashed lines in the right-hand-side 
subfigures of Figure 5 found by 
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where devOD and devR are the deviation vectors of the global 
and relative data sets for the three-axle robot.  Then, the 
angle between these vectors is the deviation angle and can 
be found by  
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Where θdev
j is the deviation angle for axle j attachment where 

j=1, 2, or 3.  Like (5), the most trustworthy axle (j) will also 
have the minimum θ.   

IV. EXPERIMENTAL EVALUATION 

A. Experimental Methods 

For the scope of this paper, evaluation of the preceding 
error metrics is based on static testing.  This testing 
procedure looks at snapshots of probable configurations, 
realized through prior research and experience with the 
CFMMR [1], and compares how well the algorithm 
converges using the candidate error metrics.  The advantage 
of this procedure is many configurations can quickly be 
studied, and furthermore, it can be used to more precisely 
identify the system’s failure modes.  

This procedure is illustrated by Figure 6.  The background 
photograph of the robot shows the actual global 
configuration of all three axles, the white-solid linetype 
represents the OD predictions of global states, and the white-
dashed linetype represents the correctly predicted global 
RPS.  These two data sources are fused together and then 
compared to the actual configuration.  In our tests, one of the 
axles is known and assigned as the true global axle.  Using 
our example scenario presented in Figure 6, we know either 
OD data from either Axle 2 or 3 is acceptable because it 
coincides with the actual global axle as shown in the 
photograph.  To perform quick testing, the actual global 
poses of the other axles are generated based on RPS data 
which was confirmed to be accurate (approximately 1-3 cm) 
relative to the ground truth. 

B. Performance Metrics 

Experimental Results are presented in TABLE 1, TABLE 2, and 
Figues 5-8.  TABLE 1 illustrates the decision making process 
of all four representative tests (displayed in Figures 5-8) 
through using the GRPEC’s minimum error selection 
criteria.  For each test, this table provides a brief description 
of the test, the corresponding error from fitting the RPS-OD 
globalized data to the actual global reference, the selected 
global reference based on minimum error (highlighted in 
gray), and two confidence measures which help evaluate our 
algorithm’s logic.  The logic of our algorithm is highly based 
upon the configuration illustrated in Figure 6 because it is 
very clear which axles are most trustworthy.  Thus, our 
confidence measures are catered toward this type of 
configuration.  Confidence measure 1 (CON1) measures how 
far the predicted and most erroneous axles are from each 
other.  It is calculated using the following formula 
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Figure 6: Static Testing procedure of GRPEC using OD and RPS data.  The 
background photo of the robot shows the correct configuration, OD data 
(white solid lines) shows where the robot initially localizes itself, and RPS 
(white dashed line) data shows where the robot will be localized if correctly 
updated.  

5570



  

where max(ERR.) and min(ERR.) are the maximum and 
minimum axle errors, respectively.  This metric quantifies 
how erroneous the largest error axle is in comparison to the 
smaller error axle, e.g. as CON1→1 we gain a high 
confidence in our update due to the large separation of 
maximum and minimum errors.  Confidence measure 2 
(CON2) measures how close the error of the most 
trustworthy (lowest error) axle is from the next most 
trustworthy axle.  It is calculated with the following formula 
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where med(ERR.) is the median error measurement, e.g. as 
CON2→0 we gain a greater confidence because this often 
implies either select the axle associated with mid(ERR.) or 
med(ERR.).  Although these confidence measures are useful, 
they have limitations discussed in the next section. 

C. Results and Discussion 

Table 2 shows the convergence for each of the four tests.  
For simplicity, actual data is generated by knowing one of 
the axle’s global poses and applying the RPS to find the 
other global axle configurations.  This is a reasonable 
procedure because the RPS accurately approximates the 
actual shape of the robot’s frames.  This explains why, in 
TABLE 2, there are errors of zero, signifying a pass (P), 
opposed to very small numerical errors.  A more significant 
error (such as 0.065 m) signifies a failed (F) configuration.   
According to results, all proposed error metrics reasonably 

identify the most trustworthy axle ultimately leading to the 
correct configuration.  As expected, configurations with the 
least amount of difficulty converging are those with a clearly 

deviant axle (test 1 and 4) which show an excellent response 
with respect to both confidence measures.  The other 
configurations (test 2 and 3), were implemented to test how 
the algorithm responded when the most deviant axle was not 
as clear.  Although these tests show a working architecture, 
at least with respect to minimization of θxy, It is important to 
note failures modes exist for all metrics.  For example, test 2 
fails when the curvature of both frames are equal and test 3 
fails when the curvature of one of the fames is about 67% of 
the other frame.  These conditions are not presented here 
because we feel it important to show our algorithm’s 
flexibility with unexpected configurations (test 2 and 3) 
Because confidence metrics are tailored toward tests 1 and 

4 it is reasonable that their values are not as insightful for 
tests 2 and 3.  E.g. it seems clear, based on the θxy/test 3 
confidence measures for (CON1=.511 and CON2=.016), that 
Axle 2 is correct, but this is certainly not the case for test 2 
where despite CON2 yielding lower confidence, the correct 
axle is still selected.  Likewise for θdev/test 3, confidence 
measures (CON1=.561 and CON2=.374), particularly CON2,, 
ensure less confidence in test 3.  Although this result is 
desirable, CON2 produces misleading results signifying 
future work must be done to further improve our 

TABLE 1: RESULTS OF 4 REPRESENTATIVE STATIC TESTS: FOR EACH TEST, THIS TABLE PROVIDES A BRIEF DESCRIPTION OF EACH TEST, THE 

CORRESPONDING ERROR FROM FITTING THE RPS TO EACH GLOBAL REFERENCE AND THE SELECTED GLOBAL REFERENCE BASED ON MINIMUM ERROR 

(HIGHLIGHTED IN GRAY) 

 

TABLE 2: ACTUAL POSITION ERROR (IN METERS) RESULTING FROM 

GRPEC DATA FUSION  
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understanding of confidence metrics for a wider 
range of configurations 

 Additional future work will improve these 
results through implementation of advanced data 
fusion techniques on both the axle level, using 
Extended Kalman Filters (EKF), and the frame 
level by using Covariance Intersection (CI) filter 
(similar to methods used in the original 
RMSEPC).  Also, we will focus on testing these 
algorithms under realistic dynamic conditions and 
more generalized configurations.   

V. CONCLUSION 

This paper explored geometric based 
localization techniques in Multi-Axle Compliant 
Framed Modular Mobile Robots.  The proposed 
algorithms show successful implementation of 
these algorithms on a high level and for 
generalized configurations.  Future work will 
extend these algorithms to more generalized 
configurations and test them using dynamic 
operating conditions. 
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Figure 7: OD axles located at x=[.8 .45 
.1]T, y=[.1 .1 .1], φ=[0 0 0] while the front 
RPS axle is in pure bending. 

Figure 8: OD axles located at x=[.8 .45 
.1]T, y=[.1 .1 .1],  φ=[0 0 0] while the 
front and rear frame in pure bending of 
opposite sign but unequal magnitude 

 

Figure 9: OD axles located at x=[.8 .45 
.1]T, y=[.1 .1 .1],  φ=[0 0 0]  while the 
front and rear frame in pure bending of 
same sign but unequal magnitude 

 

Figure 10:  OD axles located at x=[.7 .45 
.1]T, y=[.3 .1 .1],  φ=[π/3 0 0] while both 
RPS frames are straight. 
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