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Abstract— In this paper, we suggest a new method of human
augmented mapping for indoor environments using only a
stereo camera. Through user’s help, a robot with a stereo
camera can investigate the environment without failure and
even more efficiently. Moreover, the user can share the in-
formation about the environment with the robot and add
semantic information to the environmental map. We employ
PCA features for visual landmarks and a hybrid map for
map representation. Particularly, we define two types of nodes,
U/R-nodes and divide the map building into three processes,
User’s Guidance, Robot’s Map Revision, and Robot’s Map
Completion. We implemented a human augmented mapping
system with a stereo camera and demonstrated it in rectangular-
shaped corridors. From the comparison with a manually-built
map, we showed the feasibility of the environmental map
generated by our proposed method.

I. INTRODUCTION

Map building is a prerequisite step for mobile robot
localization and navigation. Over the past several decades
many researches have been devoted on autonomous map
building such as SLAM [1] [2] and exploration [3]. Practical
results, however, have been made with range sensors like
laser range finders and sonar sensors. The reason there is
no fully automatic map building system using only vision
is because passive cameras cannot obtain complete depth
information in common environments which usually include
textureless objects.

Recently, human augmented mapping [5] has been intro-
duced for semi-autonomous map building. It addresses the
problems of vision-based autonomous map building that it is
difficult to carry out exploration in unknown environments
due to the incomplete depth information. Moreover, the main
purposes of automatically generated maps are for localization
and navigation, not for services. Thus, the user has to
understand the map and add sematic information like place
labeling for user-friendly services.

The main concept of human augmented mapping is that a
user guides his or her mobile robot through the environment,
while the robot interacts with the user and builds the map.
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By doing that, the robot can build the environmental map
efficiently, and the user can share the knowledge about
the environment with the robot. Another advantage of this
approach is that it makes vision-based map building possible;
only with cameras the robot may not decide where to go or
revisit the same place more than once. Through the user’s
help, however, those problems can be resolved and it can
even investigate user’s favorite places precisely.

P. Althaus and H. I. Christensen [4] proposed a semi-
autonomous map building system for domestic environments
with a laser scanner and sonar sensors. They employed
topological map representation of which nodes are necessary
for the robot to navigate the environment like a corridor,
room, and door. While the robot follows the user with a laser
scanner, it builds the map online by extracting doorways and
corridors from sonar data. However, the system is informed
through a wireless laptop whenever the user leaves a room
or enters a corridor.

E. A. Topp and H. I. Christensen [5] suggested a tracking
method for following and passing persons. Particularly, they
used the expression of ”Human Augmented Mapping” for
the first time in that paper and developed a human tracking
system with a laser scanner.

Albert Diosi et al. [7] proposed an interactive SLAM
method using a laser scanner and advanced sonar sensors.
The robot builds a occupancy grid map using a Kalman filter
framework while following the user. Their work is focused
on place segmentation after acquiring the occupancy grid
map using SLAM. For that, the user places virtual markers
in the map, while guiding the robot, and the robot labels
each rooms of the grid map using watershed segmentation
and marker-guided merging.

E. A. Topp and H. I. Christensen [6] enhanced their
previous researches [4] [5] and implemented a robot system
for human augmented topological mapping with a laser range
finder. In that paper, they suggested a general framework
of human augmented mapping which includes two types
of events, external input from the user and internal de-
tection from the robot. Particularly, they defined a region
descriptor with the mass and the maximum range along the
two principle components of the laser data and applied it
for a classification or categorization approach to facilitate
localization.

The novelty of our approach is to utilize only a stereo
camera for human augmented mapping, while registering
user’s interesting places with user’s minimum help. Thus,
without accurate range sensors like laser range finders the
robot can build the environmental map efficiently through
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following the user. Moreover, our approach solves map
building and place labeling problems at the same time.
We employ PCA features [9] as visual landmarks and a
hybrid map as map representation. Particularly, we define
two kinds of nodes, U/R-nodes and divide map building into
three processes, User’s Guidance, Robot’s Map Revision, and
Robot’s Map Completion. We also propose two-way pose
estimation to revise the erroneous global topological map
which is based on the incorrect odometry.

II. SYSTEM OVERVIEW

A. Robot System

In this paper, we only use a stereo camera as the sensor
modality. With other sensors like a laser range finder, we
might be able to build more accurate occupancy grid maps,
or assign each sensor to a specific function such as the stereo
camera for human following and the laser range finder for
map building, or vice versa [7].

However, we restrict the sensor modality to a stereo
camera for lowering the robot’s price and making the robot
system as simple as possible. Thus, our robot applies the
stereo camera for both human robot interaction and map
building, which means it cannot build a map, while inter-
acting with the user.

Fig 1. shows the mobile robot used in this paper. The
stereo camera is mounted on a pan/tilt module in front of
the laptop computer which displays the status of the robot.
Note that the sonar sensors attached to the robot are not used
in this paper. For your information, we do not actually use
the panning module, since it was not calibrated at that time.
Instead, the robot turns its body to look around.

Fig. 1. Our mobile robot system

B. Experimental Environment

In this paper, we only consider indoor environments like
corridors of office buildings. Fig 2. shows rectangular-shaped
corridors used in the experiments of which size is about 17m
× 10m. Note that the left side of the corridor is covered
with glass walls so that reflected and transmitted images
make vision-based exploration highly challenging. Moreover,
since the geometries of corridors are too simple and the
glass walls are transparent, a robot even with laser range
finders hardly succeeds in localization or navigation in those
environments. In other words, for those environments which
are quite common but too difficult to navigate, our vision-
based human augmented mapping approach is appropriate.

Fig. 2. The experimental environment, corridors

C. Map Building Process

In this paper, we assume that users have no background
knowledge about robotics. Thus, the mobile robot should
provide users with easy interaction methods and ask them
as little helps as possible for map building. For that reason,
we divide human augmented mapping into three processes.

1) User’s Guidance: The user guides the robot through
the environment and tells interesting places which are re-
quired for user-friendly services.

2) Robot’s Map Revision: The robot revises the erroneous
environmental map with accumulated data which is obtained
while following the user.

3) Robot’s Map Completion: The robot autonomously
follows the trajectory again and revisits some places to
acquire environmental data necessary for navigation and
localization.

Of course, three processes can be done at the same time.
But in that case, the user has to wait for the robot to
obtain environmental data even in non-interesting places,
which may bother naive users. However, with proposed
separate processes, all the user has to do is to guide the
mobile robot to favorite places in the first process, User’s
Guidance; anything else will be taken care of by the robot
autonomously.

III. VISUAL LANDMARKS AND MAP
REPRESENTATION

Map building is strongly connected with localization and
navigation, since the latter utilizes the result of the former.
In that sense, this paper is based on our previous work for
vision-based global localization [8] where we used manually
generated environmental maps. However, this section is more
than the summary of our previous work about visual land-
marks and map representation; we define two types of nodes,
U-node and R-node which is designed to minimize user’s
help while making the robot to build useful environmental
maps.

A. Visual Landmarks

In vision-based localization, a mobile robot matches visual
features in the current view with models in the environmental
maps and estimates its pose with matched ones. Here, we
employ PCA features [9] for visual landmarks which is
known to be suitable for vision-based localization due to its
robustness to scale, rotation and small amount of illumination
changes.
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By the way, since PCA features are extracted from images,
to localize the robot’s pose, we need to associate PCA
features with positional data in the three dimensional space.
Fortunately, you can obtain the 3D position of each pixel in
the camera coordinates directly through APIs of commercial
stereo cameras. In this paper, we just combine PCA features
with their 3D positions and call them 3D PCA features for
short.

B. Map Representation

Map representation tells about how to store visual land-
marks extracted from the environment. We employ hybrid
map representation consisting of a global topological map
and local metric maps [8].

Fig. 3. An example of a hybrid map, bird’s eye view

Fig 3. shows an example of a hybrid map. In the global
topological map, the connectivity between five nodes (i.e., 1-
2, 2-3, 3-4, and 3-5) and the relative poses between connected
nodes are recorded. In each node’s local metric map, 3D PCA
features are expressed in each node coordinates. Note that
the black points indicate 3D PCA features of each node, and
they are transformed with respect to the origin of Node 1 in
order to draw them in one picture.

The reason we employ hybrid map representation for
human augmented mapping is, first of all, because it is
similar with the way human beings do [10]. Secondly, it is
more appropriate to vision-based localization than a global
metric map. Since PCA features are basically extracted from
images, the descriptors of two PCA features in the same
position could be highly different from various views and
distances. Thus, it is better to express 3D PCA features in the
node coordinates where they are captured. Moreover, since
merging local metric maps into one global metric map causes
accumulated errors, the accuracy of the robot’s pose in a
global metric map decreases as the robot goes far from the
origin.

C. U/R-nodes

As mentioned above, all the user has to do in our map
building scenario is to bring the mobile robot where he or
she wants the robot to remember. More than that would be
uncomfortable and unnecessary for naive users. However, if
the user registers scattered regions in large scale environ-
ments so that local maps are not overlapped, it is difficult

for the robot to localize or navigate with that map. In other
words, additional data between two long-distanced nodes are
needed like stepping stones.

However, it does not match with our main concept that
the user should consider the distance between two nodes
and intentionally register unnecessary places between them,
or the robot is supposed to warn the user to add a new node,
whenever it moves too far from the lastly registered place.

Therefore, in this paper we define two types of nodes, U-
node and R-node. U-nodes are the regions where the user
registers to the robot in the User’s Guidance process. When
the robot is commanded to add a new U-node, it looks around
to capture omnidirectional images and build a local map by
extracting 3D PCA features from captured images. At the
same time, the user can label a U-node and attach semantic
information to it for user-friendly services on the future.
By doing that, the user can share the information about the
environment with his or her robot.

On the other hand, R-nodes are the places on the trajectory
which are inserted automatically by the robot for localization
and navigation. The user does not have to know about R-
nodes, because it is meaningless for the user. Note that U/R-
nodes are defined in the User’s Guidance process, and there
is only a front view image in R-nodes as environmental
data. That is why the robot should revisit R-nodes in the
Robot’s Map Completion process. How the robot determines
additional R-nodes on the trajectory and how it revisits them
without the user’s help will be described in section VI.

IV. USERS’S GUIDANCE PROCESS

In this process, the user guides the mobile robot just like
you do when your guest visits your home. For that, we
constructed four commands: FOLLOW, CREATE-A-NODE-
THERE, CREATE-A-NODE-HERE, and QUIT. Each com-
mand is inputted through virtual buttons on the screen. Since
you can use other methods for human robot interaction like
wireless laptops or verbal commands, we omit the details
about virtual buttons here.

Fig 4. shows the overall flowchart for the User’s Guidance
process. The details will be explained in the following
subsections.

A. Human Following

If the user commands FOLLOW, the robot recognizes the
face of the user and keeps the distance (in this paper, 2m)
between the robot and the user while following him or her.
We also implemented a tracking system so that the robot can
follow the user, even though he or she turns back and goes
forward. The implementation details of the face recognition
and tracking system is omitted due to the scope of this paper.
Of course, you can use remote controllers like a joystick or
keyboard for human following.

Note that while the robot follows the user, it saves some
data (a front view image, 3D positional data of each pixel in
the front view, and odometry data) regularly (in this paper,
every movement of 30cm and every turn of 10 degrees).
Those will be used in the next process to revise the errors in
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Fig. 4. Overall flowchart of the User’s Guidance process

the global topological map which is caused by the incorrect
odometer.

Of course, at the center of the front view there must be
the user, which is not good for extracting enough visual
landmarks from the image. Thus, we tilt the stereo camera
15 degrees up to reduce the portion of the user in the robot’s
view.

B. Creating a U-node

When the mobile robot arrives at the user’s favorite
place, the user blocks the camera to stop it. He or she
can command CREATE-A-NODE-THERE or CREATE-A-
NODE-HERE to register a U-node at the robot’s position
or at the user’s one, respectively. Sometimes there could be
some places where it is difficult to bring the robot like corner
points. The latter is designed for those cases.

At this time, the user can entitle the node and attach
semantic information for user friendly services. The robot
obtains the current pose from the odometer and records the
connectivity and relative pose in the global topological map.
For the local metric map of the current U-node, it looks
around and takes omnidirectional images(in this paper, 8
images every 45 degrees) to extract visual landmarks from
the environment.

C. Determining R-nodes

After registering a U-node, the robot determines where to
add R-nodes for localization and navigation. If the distance
between two nodes is too far, or one node is not visible from
the other, it is hard to localize and navigate between them.
Thus, in this paper the robot divides the trajectory equally to
make the distance between two nodes 2m ∼ 3m and inserts
R-nodes at those joints. Also, whenever it turns more than
20 degrees, a R-node is inserted. Here, in order to revise
the global topological map in the next process, R-nodes are
inserted at the points where the robot dumped environmental
data while following the user.

However, R-nodes in this process is empty; their positions
are recorded in the global topological map, but there are
no local metric maps for them. Therefore, the robot should

revisit them and collect omnidirectional images like it did at
every U-node. Note that the global topological map in this
process is erroneous, since it is based on the odometry data.

V. ROBOT’S MAP REVISION PROCESS

The hybrid map built in the previous process is incorrect
and incomplete due to the erroneous odometer. Therefore, in
this process the robot revises the erroneous global topological
map using dumped data while following the user. We assume
that initially the robot made a U-node at the starting point,
otherwise a R-node is inserted at the starting point. Since the
nodes are connected in the global topological map, we revise
the global topological map incrementally, i.e., node by node
from the starting point.

In order to compensate the relative pose of two connected
nodes, we use dumped data along the trajectory; front view
images, 3D positional data of each pixel in the front views,
and odometry data. Here, the nodes can be an any type of
node, U-node or R-node. The difference is the number of
captured images; a U-node has omnidirectional images, but
a R-node has only one front view image. Although the image
of a R-node is one-directional and even covered by the user,
it is still useful for a temporary local metric map.

Now, we apply the particle filter to compensate the relative
pose of two connected nodes. Algorithm 1. (reproduced from
[1]) describes how to estimate the robot’s pose at time t
Xt with the previous pose Xt−1, the action ut, and the
observation zt. Since it is a well-known algorithm, we would
not explain it in details but how to be applied in this paper.

Algorithm 1 Particle filter(Xt−1 , ut, zt) from [1]

Xt = ∅
for m = 1 to M do

draw xm
t ∼ p(xt|ut, x

m
t−1) ← motion update

wm
t = p(zt|xm

t ) ← measurement update
Xt = Xt + 〈xm

t , wm
t 〉

end for
Xt = ∅
for m = 1 to M do

draw xm
t with probability ∝ wt

m ← resampling
Xt = Xt + 〈xi

t, 1/M〉
end for
return Xt

If node i is a U-node, it has a local metric map generated
in the previous process. On the other hand, in a R-node the
robot can build a temporary local metric map with a front
view image. Thus, in any cases, we have a local metric map,
odometry data, and dumped data for each step.

Now, given actions (odometry data) Ui:j and observations
(dumped data) Zi:j of every step from node i and node j,
we can calculate the relative pose of node j with respect to
node i using Algorithm 2.

In Algorithm 2., we apply the particle filter every step (line
3). After that, the relative pose between two connected nodes
can be computed from the weighted pose of all particles (line
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Algorithm 2 Pose estimation(Ui:j ,Zi:j )
1: randomly sample X0

2: for t = i to j do
3: Xt =Particle filter(Xt−1 , ut, zt)
4: end for
5: x =

∑M
m=1 wm

j × xm
j ← weighted pose

6: return transformation matrix iTj of x

5). Finally, the relative pose of node i respect to node j is
returned as a transformation matrix, iTj .

Here, we can use that transformation matrix as the revised
relative pose. However, the accuracy of the estimated robot’s
pose goes down as the robot moves from node i to node j,
since the map of node i do not perfectly cover to node j.
Fortunately, we have two local metric maps for node i and
j, which means we can estimate the relative pose in two
directions, forward and backward. One may think merging
the results of forward and backward pose estimation. But that
approach does not eliminate the accuracy degrading problem.
Therefore, we propose two-way pose estimation which is
described in Algorithm 3.

Algorithm 3 Two-way pose estimation(Ui:j ,Zi:j )
1: k = [(i + j)/2] ← middle point
2: iTk = Pose estimation(Ui:k ,Zi:k ) ← forward
3: jTk = Pose estimation(Uj :k ,Zj :k ) ← backward
4: iTj = iTk × kTj = iTk × (jTk)−1

5: return iTj

Rather than merging forward (from node i to node j) and
backward (from node j to node i) results, we pick the middle
point k on the trajectory between two nodes i and j (line 1).
And then, we estimate the forward pose from node i to point
k, iTk (line 2) and the backward pose from node j to point k,
jTk (line 3), respectively. The fusion of two estimated poses
to the middle point k produces the relative pose of two nodes
iTj (line 4).

The only difference between Algorithm 2. and Algorithm
3. is picking the middle point k, but that increases the
accuracy of the relative pose dramatically. By doing this two-
way pose estimation iteratively from the first node to the last
node, we can revise the global topological map.

VI. ROBOT’S MAP COMPLETION PROCESS

Now, we have a revised topological map, but R-nodes
still have insufficient environmental data. Thus, in this final
process the robot revisits R-nodes one after another to cap-
ture omnidirectional images and build local maps. However,
ironically, in order to revisit R-nodes local metric maps of
R-nodes are needed first. Therefore, to resolve that dilemma
we assume that the robot is placed near the starting point to
follow the trajectory again.

Fig 5. shows the overall flowchart for the Robot’s Map
Completion process.

Fig. 5. Overall flowchart of the Robot’s Map Completion process

First of all, the robot localizes itself in a node using our
previous work on vision-based global localization [8]. If the
current node is a R-node, then it captures omnidirectional
images and extracts 3D PCA features to build a local metric
map. After that, it updates the pose of the current node in the
global topological map. This is because the robot may not
arrive at the exact desired point due to odometry errors. Note
that U-nodes are not updated in this process, since those are
shared places with the user so that the robot cannot change
its position alone.

The robot moves to the next node and does the same
thing until there is no place to visit. Here, the details of
path planning and obstacle avoidance is omitted because it
is out of the scope of this paper. For that, we used APIs for
point-to-point movement in ARIA [11] and experimented in
a static environment.

Before moving on to the next node, the robot revises the
relative pose of the next node to the current node in the
global topological map, which will be explained precisely in
the following subsection.

VII. EXPERIMENTAL RESULTS

Fig. 6. Global topological map built in the User’s Guidance process

Fig 6. shows the erroneous global topological map ob-
tained in the User’s Guidance process. We guided our mobile
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robot counterclockwise along the corridor and registered U-
nodes(1, 7, 11, 17, and 21) at the four corners. Note that
U-node 1 and U-node 21 are the same place but they are not
coincident.

The omnidirectional images of four U-nodes are shown
in Fig 7. The 3D PCA features extracted from them are
recorded in each node’s local metric maps.

Fig. 7. Omnidirectional images of U-nodes

Fig 8. shows the revised and updated global topological
map in the Robot’s Map Revision and Completion process.
You can see the positions of R-nodes are different from those
of Fig 6. This is because the robot cannot revisit R-nodes
exactly due to the odometry error.

Fig. 8. Global topological map revised and updated in the Robot’s Map
Revision and Completion process

The robot started from node 1. Because it is a U-node, the
robot did not turn around to collect omnidirectional images.
After localizing itself, it revised the relative pose of node
2 to node 1 using dumped data. With the point-to-point
movement, it progressed to the next node, node 2. Now,
since node 2 is a R-node, the robot looked around and built
a local metric map. After that, it updated the pose of the
R-node with the current pose in the global topological map.
That procedure was repeated until the final node.

Note that although we do not employ loop closing, the
first and last node (Node 1 and Node 21) are located so
closely and the trajectory looks like a rectangle. We measured
the position of each node manually. The average positional
error is less than 30cm, and the rotational error of nodes is
less than 10 degrees, which is almost same with those of
manually built hybrid maps in the previous work [8].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we suggest a new method of human aug-
mented mapping for indoor environments using only a stereo

camera. Through the user’s guidance, our mobile robot with a
stereo camera can investigate the environment without failure
and even more efficiently. Moreover, the user can share the
information about the environment with the robot and add
semantic information to the environmental map.

We employ PCA features for visual landmarks and a
hybrid map for map representation. In order to minimize
user’s help, we define two kinds of nodes and separate map
building into three processes, User’s Guidance, Robot’s Map
Revision, and Robot’s Map Completion.

Particularly, the global topological map is erroneous in
the User’s Guidance process. Thus, we propose the two-
way pose estimation method to fix it in the Robot’s Map
Revision process. The experimental results show that the
environmental map generated by our proposed system is
acceptable and feasible for vision-based localization and
navigation.

However, in this paper we do not consider branch nodes
which is necessary for more complex topological map. Also,
we do not apply loop closing when revising the global
topological map.
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