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Abstract— A closed-loop observer to extract the center of 

mass (CoM) of a bipedal robot is suggested. Comparing with 

the simple conversion equation of using just joint angle 

measurements, it enables to get more reliable estimates by 

using both joint angle measurements and F/T sensor outputs at 

the ankle joint. First, a nonlinear type observer is constructed 

in the extended Kalman filter framework to estimate the 

flexible rotational motion of biped. It is based on the inverted 

pendulum model with flexible beam which is to simply address 

the flexible behavior of a biped, specifically in the single 

support phase. Then, the predicted estimates of CoM by the 

flexible motion observer are combined with the outputs of the 

CoM conversion equation and the final estimates will be 

determined according to the weighting value which penalizes 

the flexible motion model and the CoM conversion equation. 

Simulation results are followed to show the effectiveness of the 

proposed scheme. 

I. INTRODUCTION 

OTH reliable sensory information and stable control 

algorithm are indispensable to achieve stable walking of 

a bipedal robot. The zero moment point (ZMP) [1, 2] is 

popularly used as a stability index of bipedal robot and the 

walking controller is usually designed so that the robot 

follows a ZMP pattern which has been generated to guarantee 

a stable walking [3-5]. Recently, the notion of whole body 

coordination is widely adopted, where all the limbs of arms 

and legs are involved in performing specific tasks or arbitrary 

gestures [6-9]. Also, a dual-loop walking controller was 

suggested to raise the walking stability by controlling the 

center of mass (CoM) trajectory together with the ZMP 

trajectory. In authors‟ experience, it was actually hard to 

realize a stable bipedal walking without implementing a CoM 

controller even in the flat plane.  

In all these cases, we need real-time information on the 

center of mass of robot as well as ZMP during the bipedal 

motion. The ZMP history can be obtained with fair exactness 

by using F/T sensor at ankle joints, but still there is no 

suitable way to directly measure the global CoM position of 

the whole robot body. A possible way is to utilize the CoM 

conversion equation, the kinematic relationship between the 

global CoM and the local linkage parameters with joint 

angles. However, owing to the intrinsic uncertainties such as 
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manufacturing tolerance, play at joints, and sensory errors, a 

big difference may happen between the real and the estimated. 

Furthermore, due to the structural characteristic of bipeds 

consisting of tens of links and joints, it is inevitable to 

experience flexible motions which cannot be detected by 

internal sensors.   

Hence, in order to implement the whole body coordinated 

control through the CoM manipulation [7, 8] and also to 

ensure the stability margin of ZMP trajectory which is 

dynamically coupled with the CoM behavior in the 

ZMP/CoM dual-loop control [8, 9], it is earnestly desired to 

develop a CoM observer which enables to output more 

reliable estimates than currently available CoM conversion 

equation and integrate it to the robot controller.   

As an extended version of [10], we are to suggest a 

dynamical estimation algorithm for the CoM position. We 

adopt an inverted pendulum model with flexible beam and a 

nonlinear observer is designed to estimate the flexible 

rotational motion of a biped by using the discrete Kalman 

filter. Then, the CoM predictions from the flexible motion 

observer and the outputs of CoM conversion equation are 

balanced to determine final estimates. The suggested CoM 

observer requires measurements of ankle joint torque as well 

as all the joint angles.  

II. COM JACOBIAN RESOLUTION OF BIPEDAL ROBOT 

Bipedal robot is a kind of multi-body system with a lot of 

limbs (typically two arms, two legs and upper body), each of 

which consist of a number of links and joints. Also, it is a 

floating-body system where the origin of the body coordinates 

system (BCS) is moving along the walking motion. In order 

to implement a stable walking of bipedal robot, it is necessary 

to determine joint trajectories corresponding to the 

predefined ZMP/CoM trajectory for all sampling times. Then, 

we need a proper joint resolution scheme. The CoM Jacobian 

resolution method [7, 8] is a reasonable way to generate the 

joint trajectories to follow a given CoM trajectory while 

maintaining embedded motions.  

In Fig. 1, the CoM position and the end-point position of 

each limb are respectively given by  
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in the fixed world coordinate system (WCS), where 0r  is the 
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origin of BCS, 0R  the rotational matrix indicating the 

orientation of BCS with respect to WCS, n the number of 

limbs, and the superscript 0 means “with respect to BCS.” 

Then, 0c  denotes the position of the whole body CoM, 0

ic  

the center of mass position of the i-th limb, and 0

ir  the 

end-point position of the i-th limb in BCS. 

It we let  0 0 0

T
x r    the velocity of the body center, 

 
T

i i ix r    the end-point velocity of the i-th limb, iq  the 

joint velocity of i-th limb, and iJ  the Jacobian of i-th limb 

represented on WCS, the following relationship is given.  
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where [( ) ]   is a skew-symmetric matrix for the cross 

product. By differentiating (1), we have  
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where 0

ciJ  is the CoM position Jacobian of the i-th limb. 

Again, the above equation can be rewritten as  

1 1 1 1 1 0 1 1 1 1

1 1 1 1 12 2

( ) ( )

( ) ,

v c

n n

ci i i i ci i ii i

c r c r J q c r J q J q

J J x X x J J X J q



 

 

        

   

    

  
   (5) 

where 1

1 1i iX X X , 0

0ci ciJ R J , and the subscript i = 1 

indicates the supporting leg and also i = 2 the shifting leg 

during the successive alternating gaits.  

By letting the end-point of the supporting limb stationary 

during the gaits, that is 1x = 0 ( 1r = 1 = 0) in (5), we have the 

following linear relationship between the CoM velocity and 

the joint velocity of the supporting limb.   
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while 
1 1 1[ ]T

vJ J J  and  1 1 1

T
x r   . 

When 1x = 0, we know that 0 1 1J q     from (3). By 

augmenting this to (6), we have  
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Finally, when the CoM trajectory, end-point trajectory of 

each limb, and the angular velocity of the body center are 

given, the desired joint velocity of the supporting limb can be 

determined as 
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Since the velocity of the body center is the same with 

respect to all the limbs, from (3) we have  

0 1 1 1 1( ) ( )i i i ix X x J q X x J q                     (9) 

Then, noting that 1x = 0, the joint velocity of the other limbs 

can be determined as 

1 1 1( ), 2, ,id i id i dq J x X J q i n               (10) 
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Fig. 1. Position of the BCS origin, CoM, and end-point of the i-th limb. 

III. MODELING OF WALKING MOTION 

A. Rigid Inverted Pendulum Model 

In generating walking pattern of a bipedal robot, an 

inverted pendulum model has been widely adopted, where the 

total mass is considered to be concentrated at the center of 

mass and the pendulum length is varied so that the CoM 

position in Z-direction is fixed [3-8].  

The zero moment point (ZMP) of a robot is defined as the 

point where the reaction moment about any axis on the 

walking plane is zero. It is well-known that the ZMP should 

lie inside the polygon of footprint boundaries in order for a 

biped not to be tumbled. In Fig. 2, if it is assumed that the 

Z-directional CoM position ( )zc  is fixed in the sagittal plane, 

we have the following relationship between ZMP and CoM.   
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where 2 /n zg c  and the ZMP ( , )x yp p p  in X and Y 

directions can be obtained by converting the torque 

measurements at the ankle joints. In terms of the above 

equation, it is possible to plan the reference trajectory of CoM 

which is dynamically matched with the ZMP pattern and 

utilize it in the bipedal robot control.   

   In Fig. 2, the center of mass of each linkage ( o

ikc ) can be 

determined by using given linkage parameters and joint 

sensor measurements and then the position of the whole-body 

CoM with respect to BCS is given by  

  with  o o ik

ik ik ik

i k

m
c c

m
                   (12) 
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where ikm  and o

ikc  are the mass and center of mass of the 

k-th link in the i-th limb, respectively. Hence, the CoM 

position equation in (1) can be rewritten as  

0 0

o

ik ik

i k

c r R c                        (13) 

The above is a currently available equation to get the CoM 

position of a bipedal robot and it could be a complete equation 

for any rigid multi-body system not considering joint 

flexibility. However, it may invoke a large error due to the 

play at joints and transmissions, the flexibility of links, and 

the uncertainty of the body center position.   
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Fig. 2. Rigid inverted pendulum model for a biped. 

B. Flexible Inverted Pendulum Model 

Considering the characteristics of a bipedal robot which 

consists of a lot of joints, it inevitably shows flexible motion 

during the walking motion. Actually, most of the 

uncertainties in determining the CoM position results from 

the flexibility of robot mechanism which cannot be detected 

by joint sensors. The flexible motion will become severer in 

the single support phase when one leg is swing than the 

double support phase and in XZ sagittal plane rather than in 

YZ frontal plane. In case of a human-sized bipedal robot, it 

denotes a lightly damped flexible mode which keeps residual 

vibration quite a long time [11]. 

In Fig. 3, the walking motion of a biped can be assumed to 

be a rotational motion of the flexible inverted pendulum 

about the ankle joint. It is assumed that the flexible beam is 

massless and the total mass is concentrated at the center of 

mass. And the beam length is varied according to the CoM 

position. In the sagittal plane, the sum of moments with 

respect to the origin of the toque sensor is given by 
2sin ( ) ( )s b bM mgl c u k u ml                (14) 

where u is the rotational angle of the CoM of rigid body 

when the flexibility of mechanism is not considered at all and 

 denotes that of flexible body. Also, bk  and bc  are the 

effective stiffness and damping coefficient of the flexible 

beam model, which must be identified through a proper 

experimental technique.  

By neglecting the small magnitude of the damping term in 

(14), a simple nonlinear model for the flexible motion of a 

biped is given by 
2 ( ) ( ) sin ( ) ( )bml t k t mgl t ku t               (15) 

which expresses a dynamical relationship between the input 

of rigid body rotation and the output of flexible body 

rotational motion.  

In general, the torque sensor detects only the difference 

between the external force and the inertial force. Hence, in 

(14), the torque sensor at the ankle joint is to produce outputs 

as much as the sum of spring and damping force due to the 

relative motions between the rigid and flexible mode of the 

biped. And we have the measurement model of the torque 

sensor:  

( ) ( )s b bk u c u                         (16) 

Similarly, in the frontal YZ plane, it is possible to obtain 

the same forms of equations as (15) and (16) but with 

different stiffness and damping coefficient.  

In the next sections, the flexible motion model (15) will be 

applied to the design of a CoM estimation algorithm, while 

the rigid inverted pendulum model (11) is used to generate a 

CoM reference trajectory in the walking simulation.   
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Fig. 3. Flexible inverted pendulum model for the single support phase of bipedal 

walking in the sagittal plane. 

IV. COM ESTIMATION ALGORITHM BASED ON THE FLEXIBLE 

MOTION OBSERVER 

First of all, a flexible motion observer is constructed to 

estimate the rotational angle of CoM in the extended Kalman 

filter framework. It uses the motion model (15) of the flexible 

inverted pendulum and the measurement model (16) for the 

ankle torque. Then, by combining the predicted CoM position 

using the flexible motion observer with the output of the CoM 

conversion equation in (11), we propose a real-time 

algorithm to track the change of CoM position.  
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A. Flexible Motion Observer 

If a state vector 
1 2[ ] [ ]T Tx x   x   is defined, (15) can 

be transformed into the state equation: 
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where ~ (0, )N Qw denotes the model uncertainty.  

By approximating the above continuous-time equation 

with discrete sampling time, it can be rewritten as a discrete 

state equation:  
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If the small damping term is neglected in (16), we have the 

following measurement model for the flexible rotational 

angle.  

1
( ) ( ) ( ) ( )m s

b

k k u k v k
k

                     (19) 

where ( ) ~ (0, )v k N R  is the sensor noise. 

Given the motion model (18) and measurement one (19), a 

recursive algorithm can be constructed to determine the 

estimates of flexible rotational angle by adopting the 

extended Kalman filter [12]. In Table I, the predictor 

produces prior estimate in terms of the flexible motion model 

and the posterior estimate by the corrector corresponds to best 

estimates in the respect of the minimum variance of the 

estimation error.   

In order to implement the above flexible motion observer, 

ankle torque k , rotational angle of rigid pendulum ku , and 

the time-varying length of pendulum kl  must be updated at 

every sampling time. Also, the mass m and the spring 

constant k of the flexible beam should be given through an 

extra identification process.  

In this paper, only the sagittal plane walking is assumed. 

Then, the center of mass ( , )m xm zmc cc  of the rigid 

pendulum in Fig. 3 can be determined according to (13) using 

joint sensor measurements. If the origin of torque sensor is 

assumed to be identical to the end-point 1 1 1( , )x zr r r  of the 

supporting leg, we have the rigid body rotational angle: 

   
1 1

1

( ) ( )
( ) tan

( ) ( )

xm x

zm z

c k r k
u k

c k r k

  
  

 
                  (20) 

Also, when the ankle joint and CoM positions are given, the 

straight length of pendulum can be determined by  

   
2 22

1 1( ) ( ) ( ) ( )k x x z zl c k r k c k r k             (21) 

where the CoM position ( , )x zc c can be substituted with the 

real-time estimates.  

It is certain that the effect of the above flexible motion 

observer is largely dependant upon the reliability of model 

parameters. The total mass of robot can be readily obtained by 

using a scale and the length of pendulum can be evaluated 

with (21). However, the stiffness value bk  could be greatly 

changed according to the variation of robot posture. Bipedal 

walking is a repetition of single support and double support 

by alternating supporting leg and shifting one. In fact, 

dominant flexible modes of a bipedal robot are invoked 

during the swing motion of the single support phase, where 

the stiffness of robot structure is relatively much weaker than 

the double support phase. Actually, the suggested model in 

Fig. 3 is appropriate for the single support phase. Related to 

the experimental identification for the bipedal robot stiffness, 

an effective way was suggested in [11].  

 
TABLE I. FLEXIBLE MOTION OBSERVER. 

Motion model: 1 ( )k k k ku   x f x G w , ~ (0, )k N Qw  

Measurement model: 
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B. CoM Estimation Algorithm 

The overall flow of the CoM estimation algorithm is 

denoted in Fig. 4, where the CoM predictor determines the 

prediction values of CoM by using the real-time output of the 

flexible motion observer as follows.    
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Then, the CoM corrector produces final CoM estimates by 

combining the prediction values in (22) and the 

measurements in (13) as 

( )k k g m kK    c c c c
  

                      (23) 

where the gain matrix consists of weighting values. Here, if 

we assume 2

1  and 2

2  the variances of uncertainties of 

predicted values and measurements, respectively, the gain 

matrix can be determined as  
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Fig. 4. Overall flow of the CoM estimation algorithm.  

V. SIMULATION 

A. Walking Pattern Generation 

For the 6-DOF bipedal robot shown in Fig. 2, the 

parameter s of two legs and upper body are given in Table II 

and the center of mass of each linkage is assumed to be 

located at its geometric center. The walking pattern for the 

sagittal plane motion is given in Fig. 5, which includes the 

reference trajectories of ZMP and CoM in X-direction and the 

end-point trajectory of the swing leg 2 2( , )x zr r  in X and Z 

directions. The CoM trajectory is the solution of (11) for the 

specific ZMP pattern. In Fig. 5, the supporting phase is 

changed as double support (0~0.5 sec), single support 

(0.5~1.5 sec), and double support (1.5~2 sec). Also, the joint 

trajectories for the walking pattern were generated according 

to the resolution scheme (8) and (10). As a result, the two legs 

of a biped carry out the joint angle configuration change like 

Fig. 6 during a single gait. 

B. CoM Estimation Performance 

The flexible rotational equation of motion (14) was used as 

the real inverted pendulum model with the parameter values 

of m = 26 kg, k = 1000 Nm/rad, c = 7 Nm/rad, and l = 0.8 m. 

And the model parameters of the flexible motion observer in 

Table I were assumed to contain 15% errors with respect to 

the real values. Fig. 7 denotes the simulation results of the 

flexible motion observer, where the input u denotes the rigid 

body rotation, ( , )  are the time responses of flexible inverted 

pendulum according to the model (14), and ˆˆ( , )  are the 

observer outputs. It shows that the observer well reconstructs 

the real states in spite of the large parametric errors.  

Now, Fig. 8 is the result of the CoM estimation algorithm 

for the reference trajectories in Fig. 5, where the input of rigid 

body rotation will be naturally determined by (20) in the 

closed-loop observer. As shown, the proposed algorithm 

(„estimaor‟) enables to reduce the estimation error when 

compared with the open-loop style of CoM conversion 

equation („encoder‟). 

 
TABLE II. LINKAGE PARAMETERS. 

 

leg mass (kg) length (m) 

left 
11m = 4 (thigh), 12m = 3 

(calf),  13m = 1(foot) 

11l = 0.5 (thigh), 12l = 0.5 

(calf), 13l = 0.1 (foot) 

right 
21m = 4 (thigh), 22m = 3 

(calf)), 13m = 1 (foot) 

21l = 0.5 (thigh), 22l = 0.5 

(calf), 23l = 0.1 (foot) 

upper body ubm = 10 ubl = 0.5 

 

ZMP

CoM 2 xr

2 zr

 
Fig. 5. Reference trajectories of ZMP, CoM, and the end-point of swing leg 

during 30 cm single stride.  

 

 
 

Fig. 6. Change of joint angle configurations during a single gait.  

 

VI. CONCLUSION 

Comparing with the CoM conversion equation in (13) 

which depends on joint measurements only, the CoM 

estimation algorithm in Fig. 4 enables to produce more 

reliable estimates with the aid of torque sensor outputs at the 

ankle joint and the simple inverted pendulum model. In the 
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simulations, we have used the same values for model 

parameters. However, in applying the algorithm to the real 

biped, the following works must be considered: i) sensivity of 

the CoM estimation performance to the change of model 

parametric errors, ii) identification of stiffness parameters 

according to the supporting phase transitions.  
 

ankle torque

input (u)

ankle joint angle

( )t
( )t

ˆ( )t

ˆ
( )t

( )s t

( )m t

flexible motion 

estimates

 
 
Fig. 7. Performance simulation of the flexible motion observer. (a) flexible 

motion and the estimates (b) ankle torque and the conversion value (19) of  

angle joint angle. 
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Fig. 8. Simulation results of the proposed CoM estimation algorithm. Pxd: ZMP reference in X-direction, (Cxd, Czd): CoM reference in (X, Z) directions, (cx1, cz1): 

real CoM, cxhat: estimated CoM.  
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