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Abstract—A new noise reduction method suitable for au-
tonomous mobile robots was proposed and applied to pre-
processing of a hands-free spoken dialogue system. When a
robot talks with a conversational partner in real environments,
not only speech utterances by the partner but also various
types of noise, such as directional noise, diffuse noise, and noise
from the robot, are observed at microphones. We attempted
to remove these types of noise simultaneously with small and
light-weighted devices and low-computational-cost algorithms.
We assumed that the conversational partner of the robot was in
front of the robot. In this case, the aim of the proposed method
is extracting speech signals coming from the frontal direction of
the robot. The proposed noise reduction system was evaluated
in the presence of various types of noise: the number of word
errors was reduced by 69 % as compared to the conventional
methods. The proposed robot auditory system can also cope
with the case in which a conversational partner (i.e., a sound
source) moves from the front of the robot: the sound source
was localized by face detection and tracking using facial images
obtained from a camera mounted on an eye of the robot. As
a result, various types of noise could be reduced in real time,
irrespective of the sound source positions, by combining speech
information with image information.

I. INTRODUCTION
We attempt to achieve high-performance robot auditory

system that reduces various types of noise, such as directional
noise, diffuse noise, and noise from the robot, simultane-
ously, irrespective of source positions, with the compact
and light-weighted devices and the low-computational-cost
algorithms.
When a robot talks with a conversational partner in real

environments, only the speech utterances by the partner
should be extracted from noisy speech utterances that include
various types of noise, and then be precisely recognized.
In order to achieve such functions for autonomous mobile
robots, microphones and signal processing devices have to
meet certain constraints in their sizes and weights so as to
mount them on the robots. Miniaturization of these devices
needs low-cost computations. It should be noted that the
partner (i.e., sound source) can move in a conversation.
Noise reduction methods for robot auditory systems have

been researched in recent years. In order to cope with the
reflections and diffractions induced by the robot head or
body, precise head related transfer functions (HRTFs) were
measured in all possible areas around the robot[1]. However,
the measurement of such data for each robot and each
microphone arrangement is not practically feasible. In order
to solve this problem, the shape of the robot head was
approximated by a simple sphere for computing the HRTFs
geometrically[2]. In most cases, however, the robot heads
are far from spherical. An open-source software for robot

This work was partly supported by New Energy and Industrial Technol-
ogy Development Organization (NEDO).
K. Hosoya and T. Kobayashi are with Dept. of Computer Science, Waseda

University, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, JAPAN.
T. Ogawa is with Waseda Institute for Advanced Study, 1–6–1 Nishi-

waseda, Shinjuku-ku, Tokyo 169–8050, JAPAN.

audition, “HARK,” was developed[3]. This software can cope
with sound source localization, sound source separation, and
speech recognition. Auditory systems for various robots can
be developed by integrating multiple customizable modules
provided by this software, irrespective of the microphone
arrangements. However, geometric source separation used in
this software needs the locations of the microphones and
the sound sources. In addition, this software did not cope
with the voice of the robot. In a child care robot “PaP-
eRo,” direction-of-arrival (DOA) was estimated, and noise
was reduced by adaptive noise canceller with five-channel
microphones mounted on the robot head[4]. This robot could
detect double talk, and eliminate the robot voice using a
sound played on a loudspeaker. However, the performance
of this method was not evaluated in the situation where
the directional noise and the diffuse noise were observed
simultaneously. In a humanoid robot ”SIG2,” spectra of a
target speaker in front of the robot were estimated by using
complex spectrum circle centroid (CSCC)[5]. The purpose
of estimation of the target source spectra was voice activity
detection (VAD)[6]. In addition, this method did not cope
with diffuse noise.
In the present paper, we propose a new noise reduction

method using a square microphone array with four-line omni-
directional MEMS microphones. The proposed method can
reduce the directional noise, the diffuse noise[7][8], the robot
internal noise (i.e., the noise induced by the movements
of the robot and the noise from the motors mounted on
the robot), and the robot voices (i.e., synthesized speech
utterances played on a loudspeaker mounted on the robot)
simultaneously under the constraints of the compact micro-
phone arrangement and low-computational-cost algorithms:
simple beamforming was carried out for developing multiple
directivity patterns; time-frequency masking was carried out
with the outputs of the beamformers for reducing the direc-
tional noise, i.e., extracting a sound coming from a specific
area; multichannel Wiener filtering was carried out with the
coherences between the beamformer outputs for reducing
the diffuse noise; and the synthesized speech utterances by
the robot were eliminated by time-frequency masking. Since
the square microphone array was placed on the top of the
robot head, a null-directivity was given to the whole robot
during reduction of the directional noise. Therefore, the robot
internal noise can be eliminated in this stage.
In the proposed method, we assume that a conversational

partner of the robot is in front of the robot. In order to cope
with the case in which the partner moves from the front of the
robot, the sound sources are localized by face detection and
tracking using facial images obtained from a camera mounted
on an eye of the robot. Although adaptive filtering (e.g.,
independent component analysis; ICA) can perform sound
source localization and separation, this method has unavoid-
able delays for making the filter converge, after the sound
source positions are determined. Moreover, the sound sources
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Fig. 1. Robot and microphone systems.

are not always at the same positions. Therefore, this method
may not suitable for robot auditory systems. In contrast, the
proposed system does not induce such delays by integrating
simple sound source separation using speech information and
simple sound source localization using image information.
The rest of the present paper is organized as follows:

The robot auditory system used is described in Section II.
In Section III, conditions and results of noise reduction
experiments in real environments are given. In Section IV,
sound source localization using face detection and tracking
is described. Finally, in Section V, the concluding remarks
are presented.

II. ROBOT AUDITORY SYSTEM
A. Microphone system
1) MEMS microphone: We used four-line analog MEMS

microphones, which were constructed using a semiconductor
integrated technology and were significantly compact and
light-weighted. We used SPM0208HD5 made by Knowles
Co., Ltd. The width, depth, and height of the microphone
is 4.72 mm, 3.76 mm, and 1.25 mm, respectively. We made
1.5-cm-square substrates. Each of these substrates comprises
a MEMS microphone and peripheral circuits with a pre-
amplifier. These substrates were mounted on the robot head
as shown in Fig. 1.
2) Microphone arrangement: Effects of the reflections

and diffractions induced by the robot head or body can be
eliminated by placing the microphones on the top of the robot
head. The microphones were placed in a squared form. We
call this arrangement of microphones “square microphone
array.” In the present study, each spacing of neighboring
microphones was 2.12 cm, and that of microphones in a
diagonal position was 3.0 cm. Notations of channels of the
microphones are defined as shown in Fig. 2. In the present
study, it is assumed that the target speech utterances come
from the front of the robot. In this case, the front, right, and
left direction of the robot are defined as zero, positive, and
negative degrees, respectively.

B. Noise reduction system
Figure 3 shows a diagram of the proposed noise reduction

method. The proposed method consists of four-stage signal
processing: 1) time-frequency masking for directional noise
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Fig. 2. Microphone arrangement. This figure shows the top view of the
robot.
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Fig. 4. Directional noise reduction system.

reduction, 2) multichannel Wiener filtering for diffuse noise
reduction, 3) single-channel Wiener filtering for residual
noise reduction, and 4) time-frequency masking for robot
voice reduction. In the present paper, xi(t) denotes a signal
received by the Mic-i at a discrete time of t, and Xi(ω, k)
denotes a STFT coefficient of xi, where k and ω denote a dis-
crete frame and a discrete frequency, respectively. Xr(ω, k)
denotes a spectral component of xr, which is a voice of the
robot.
1) Directional noise reduction: Figure 4 shows a diagram

of a directional noise reduction system. In this system, null
beamformers and subtractive beamformers were developed,
and then time-frequency masking was carried out using the
outputs of these beamformers. C1(ω, k) and C2(ω, k) denote
spectral components of the outputs of the null beamformers
that were developed by delay addition followed by subtrac-
tion with X1(ω, k) and X3(ω, k). C1(ω, k) and C2(ω, k)
were computed as follows:

C1(ω, k) = X3(ω, k) · exp(−jωτd) − X1(ω, k) (1)
C2(ω, k) = X1(ω, k) · exp(−jωτd) − X3(ω, k) (2)

where τd denotes a delay corresponding to the spacing of the
microphones placed in a diagonal position. The directivity
patterns of C1 and C2 are illustrated in Fig. 5. In this case,
C1 and C2 form the directivity with a null in a direction of
0◦ and that with a null in a direction of 180◦, respectively.

S1(ω, k) and S2(ω, k) denote a spectral component of
the output of the subtractive beamformer developed with
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Fig. 3. Diagram of the proposed noise reduction system.

X1(ω, k) and X3(ω, k), and a spectral component of the out-
put of the subtractive beamformer developed with X2(ω, k)
and X4(ω, k), respectively. S1(ω, k) and S2(ω, k) were
computed as follows:

S1(ω, k) = X1(ω, k) − X3(ω, k) (3)
S2(ω, k) = X4(ω, k) − X2(ω, k) (4)

The directivity patterns of S1 and S2 are illustrated in Fig. 6.
S1 forms the directivity that has maximum gains in directions
of 0◦ and 180◦, and nulls in directions of 90◦ and -90◦. S2

forms the directivity that has maximum gains in directions
of 90◦ and -90◦, and nulls in directions of 0◦ and 180◦.
In this system, only the signals that come from the frontal

direction of the robot, Ŝdir, were extracted by the following
time-frequency masking:

Ŝdir(ω, k) =

⎧⎪⎨
⎪⎩

S1(ω, k),
if |S1(ω, k)|> |S2(ω, k)|
and |C1(ω, k)|< |C2(ω, k)|

β, otherwise
(5)

where β denotes a flooring constant. In this time-frequency
masking, the directional noise coming from the sides of
the robot was suppressed by selecting the time-frequency
components in which S1(ω, k) was larger than S2(ω, k) (as
illustrated in Fig. 6), and then the noise from the backward
of the robot was suppressed by selecting the components in
which C2(ω, k) was larger than C1(ω, k) (as illustrated in
Fig. 5). Consequently, the speech signals coming from the
direction of the shaded area in Fig. 7 were extracted.
This directional noise reduction method separates sound

sources both on the plane containing the square microphone
array and in the frontal direction of the robot. In this method,
a null-directivity was given to the whole robot. Therefore,
this method can suppress robot internal noise, such as the
noise induced by the movement of the robot and the noise
from the motors of the robot.
2) Diffuse noise reduction: Diffuse noise included in Ŝdir

was reduced by multichannel Wiener filtering: spectral com-
ponents with low interchannel correlations were regarded to
be diffuse noise, and suppressed. First, four null beamformer
outputs were computed as follows:
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Fig. 5. Directivity patterns of null beamformer. Time-frequency masking
removes spectral components of the signals coming from the backward of
the robot (i.e., unshaded area).

B1(ω, k) = X2(ω, k) · exp(−jωτn) − X1(ω, k) (6)
B2(ω, k) = X3(ω, k) · exp(−jωτn) − X2(ω, k) (7)
B3(ω, k) = X3(ω, k) − X4(ω, k) · exp(−jωτn) (8)
B4(ω, k) = X4(ω, k) − X1(ω, k) · exp(−jωτn) (9)

where τn denotes a delay corresponding to the spacing of
neighboring microphones. Conventional methods compute
the multichannel Wiener filter Hm(ω, k) with the omni-
directional microphone observations[9]. In contrast, the pro-
posed method computes this filter with the null beamformer
outputs instead of the microphone observations as follows:

Hm(ω, k) =
1
2

∑
[abs{Bp(ω, k) · B∗

q (ω, k)}]
1
4

∑4
i=1[Bi(ω, k) · B∗

i (ω, k)]
(10)

where p and q were selected as {(p, q)} = {(1, 2), (3, 4)}
so that Bp and Bq could form line-symmetric directivity
to the axis containing both the target source and the center
of the microphone array: Bp and Bq have a difference of
90◦ in directivity. Figure 8 shows theoretical magnitude-
squared coherences (MSCs) computed using the observations
of the omni-directional microphones and those computed
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Fig. 6. Directivity patterns of subtractive beamformers. Time-frequency
masking removes spectral components of the signals coming from the sides
of the robot (i.e., unshaded area).

Fig. 7. Estimates of the directional noise reduction system. Spectral
components of the signal coming from directions of the shaded area are
extracted.

using the observations of the directional microphones with
a interchannel difference of 90◦ in directivity, when the
microphone spacing is 2.12 cm. This figure shows that the
MSCs computed using the omni-directional microphones are
not low but approximately one, especially in low frequencies,
when the microphone spacings are small. In contrast, the
MSCs can be eliminated by using the directional micro-
phones. Therefore, the use of the directional microphones
can be effective to diffuse noise reduction as compared to
the use of the omni-directional microphones. In the proposed
method, we used the outputs of the null beamformers that
have a difference of 90◦ in directivity. Therefore, this method
can eliminate the MSCs in diffuse noise fields as compared
to the conventional multichannel Wiener filtering, which
used the omni-directional microphone observations, and thus
improve the performance of diffuse noise reduction[7]. The
spectral amplitude of the result of the multichannel Wiener
filtering was computed as follows:

|Ŝm(ω, k)| = Hm(ω, k) · |Ŝdir(ω, k)| (11)

omni-directional 
microphone observation
beamformer outputs

omni-directional 
microphone observation
beamformer outputs

omni-directional 
microphone observation
beamformer outputs

Fig. 8. Theoretical magnitude-squared coherences as a function of
frequencies for the case in which microphones spacing is 2.12 cm.

3) Residual noise reduction: We attempted to suppress
residual stationary noise remaining in Ŝm, in which the
directional noise and the diffuse noise were approximately
removed, by general single-channel Wiener filtering.
The residual noise was estimated as the signals in the non-

speech parts that were detected with both the coherences
between the outputs of the null beamformers, computed in
the diffuse noise reduction stage, and the signal powers. The
single-channel Wiener filter Hs(ω, k) was computed with
such residual noise. A target source spectrum Ŝs(ω, k) was
estimated as follows:

|Ŝs(ω, k)| = Hs(ω, k) · |Ŝm(ω, k)| (12)

4) Robot voice reduction: Synthesized speech utterances,
which represented the voices of the robot, were played on the
loudspeaker mounted on the robot body. The powers of these
utterances observed at the microphones were not low because
the loudspeaker was close to the microphones. In this case,
these utterances were residual even after abovementioned
three-stage noise reduction was carried out. These residual
signals significantly degrade the performances of VAD used
in single-channel Wiener filtering and speech recognition.
We attempted to reduce these robot voices by the following
time-frequency masking:

|Ŝ(ω, k)| =
{

|Ŝs(ω, k)|, if |Sr(ω, k)|<η
γ, otherwise (13)

where Sr(ω, k) denotes a spectral component of the robot
voice sr; η denotes a threshold for time-frequency masking;
and γ denotes a flooring constant. In this experiment, η
and γ were arbitrarily determined so as to achieve the best
performance.
A phase of the observed signal was given to the spectral

amplitude |Ŝ(ω, k)| in order to recover the time-domain
signal.

III. EXPERIMENT
We conducted the following two experiments: the first

point to be investigated was the performances of the di-
rectional, diffuse, and residual noise reduction under the
condition that both the directional noise and the diffuse noise
were observed simultaneously; and the second argument
dealt with the performance of reducing the noise from the
robot in the situation where the robot uttered while moving,
such as the robot internal noise (i.e., the noise induced
by the movement of the robot and the noise from the

2739



θ

2.2 m

5.9 m

Target

Disturbance

Robot

2.3 m

4.
2 

m

= 45 , 60 , 90 θ

1 m

1 m
θ

2.2 m

5.9 m

Target

Disturbance

Robot

2.3 m

4.
2 

m

= 45 , 60 , 90 θ = 45 , 60 , 90 θ

1 m

1 m

Fig. 9. Recording environment.

motors mounted on the robot) and the robot voices (i.e.,
the synthesized speech utterances played on the loudspeaker
mounted on the robot).

A. Evaluation items and criteria
In the first experiment, the performances were investigated

for the case without any processing (no-process), and the
cases using four noise reduction methods, such as delay
and sum (DS) method followed by Zelinski’s post filtering,
which was conventional multichannel Wiener filtering[9]
(DS+MWF), generalized sidelobe canceller[10] (GSC), time-
frequency masking using interchannel phase differences[11]
(TFM), and the proposed method. In this case, DS+MWF,
GSC, and TFM used the signals received by the Mic-2
and Mic-4. In this experiment, the performances of noise
reduction were evaluated with the word accuracy, which is
frequently used in assessments of automatic speech recog-
nition systems, for separated speech utterances. The word
accuracy was calculated in a common manner as follows:

WA =
N − D − S − I

N
× 100 (%) (14)

where N , D, S, and I denote the number of words included
in correct word sequences, deletion errors, substitution errors,
and insertion errors, respectively.
In the second experiment, the performances of noise re-

duction were investigated for the case without any processing
(no-process), the case using the directional, diffuse, and
residual noise reduction in the proposed method (proposed-
DDR), and the case using the robot voice reduction in
addition to the proposed-DDR (proposed-DDRR). In this
experiment, the performances were evaluated with noise
attenuation (NA), which was calculated as follows:

NA = 20 log10

Pproc

Pobs
(dB) (15)

where Pproc and Pobs are a temporal-averaged amplitude
of the separated signal and that of the omni-directional
microphone observation, respectively.

B. Speech materials
Figure 9 shows the recording environment. The micro-

phones were placed on the head of the conversation robot

TABLE I
EXPERIMENTAL CONDITION FOR SPEECH ANALYSIS.
sampling frequency 16 kHz
frame length 32 ms
frame shift 8 ms
analysis window Hamming window
analysis range of frequencies 300–5500Hz

TABLE II
EXPERIMENTAL CONDITION FOR ACOUSTIC FEATURE EXTRACTION.

sampling frequency 16 kHz
frame length 25 ms
frame shift 10 ms
analysis window Hamming window
pre-emphasis 1–0.97z−1

12 MFCCs, 12 ΔMFCCs,feature parameters
and a Δlog energy

“ROBISUKE”[12]. Both the distance between the target
source and the robot and the distance between the disturbance
and the robot were 100 cm. The target source was placed in
a direction of 0◦ and the disturbance was placed in directions
of 45◦, 60◦, and 90◦. The height of the target source and that
of disturbance source were 153 cm. The robot head and the
target loudspeaker were directed to each other as shown in
Fig. 9.
The target speech utterances consisted of 100 sentences,

which were spoken by 23 male speakers, taken from the
Japanese newspaper article continuous speech database. As
for the directional noise (i.e., disturbance speech utterances),
100 sentences were selected from the same database but
different from the target speech utterances. In this case, a
disturbance utterance was selected so as to be approximately
same in duration and energy as the target utterance recorded
simultaneously. Therefore, a SNR of the target speech utter-
ance to the directional noise was approximately 0 dB.
The diffuse noise was simulated by playing the noise from

a large air-conditioning machine on ten loudspeakers placed
in a square round the room. The diffuse noise was recorded
by the microphones on the robot head, and superposed on
the target speech utterances with the directional noise so that
a SNR of a target speech utterance to the diffuse noise would
be 10 dB.
Five types of robot movement noise including the motor

noise and 20 kinds of synthesized speech utterances by
the robot were recorded separately. We had a total of 100
types of noise from the robot by superposing each type of
robot movement noise on each robot speech utterance. These
movements and speech utterances were used in the situations
where the robot greet people.

C. Experimental condition
Experimental conditions for noise reduction and acoustic

feature extraction are shown in Tables I and II, respectively.
Acoustic models were trained with 20414 sentences spo-
ken by 133 male speakers, taken from the ASJ database,
which consisted of Japanese newspaper article sentences
(ASJ-JNAS) and phonetically-balanced sentences (ASJ-PB)
recorded with close-talking microphones. We adopted tied-
state triphones with 2000 states. The distribution function in
each state of the models was represented by a 16-mixture
Gaussian distribution with diagonal covariances. We used
word trigram language models that were constructed using a
lexicon with a vocabulary size of 20K.
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TABLE III
NOISE ATTENUATIONS OF THE PROPOSED METHOD WITH AND WITHOUT

ROBOT VOICE REDUCTION. A INPUT SOUND CONSISTS OF ROBOT

INTERNAL NOISE AND A ROBOT SPEECH UTTERANCE.
Notations Method NA (dB)
proposed-DDR w/o robot voice reduction -8.7
proposed-DDRR w/ robot voice reduction -64.4

D. Experimental result
The results of the first investigation are shown in Fig. 10.

This figure shows the word accuracies for various noise
reduction methods. The proposed method achieved a word
accuracy of better than 75% when the DOAs of the dis-
turbance were 60◦ and 90◦. In contrast, the word accuracy
became below 0% without any noise reduction because
insertion errors were significantly increased. In this case,
speech recognition systems did not work. The word accu-
racies were not improved even when DS method followed
by conventional multichannel Wiener filtering and GSC were
applied. Since DS method, multichannel Wiener filtering,
and GSC are difficult to achieve high performance under
the condition that microphone spacings are small, the ef-
fectiveness of those methods was not observed in the case
of the microphone arrangement we used. Time-frequency
masking using interchannel phase differences gave good
performances as compared to the DS method and the GSC.
The performance of this method, however, was significantly
degraded as compared to the proposed method.
The results of the second investigation are shown in

Table III. This table shows noise attenuation (NA) of the
proposed method with and without robot voice reduction
over the case without any noise reduction. The proposed
method with robot voice reduction eliminated the noise from
the robot by approximately -64.4dB as compared to the case
without any noise reduction. In contrast, the robot voices
could not be reduced without robot voice reduction. In this
case, the noise from the robot could be reduced by mere -
8.7dB as compared to the case without any noise reduction.

IV. FACE DETECTION AND TRACKING USING
IMAGE INFORMATION

In the present noise reduction system, it is assumed that
the conversational partner of the robot is in front of the
robot. When the target sound source moves from the frontal
direction of the robot, it is localized by face detection and

tracking with the facial images obtained from a camera
mounted on an eye of the robot.
First, the robot seeks a conversational partner as a moving

object. Such an object was detected by calculating optical
flows over the captured image[13]. The robot then directs its
eyes to the direction of that object. In this case, we assume
that the detected object is the body or the waving hand of
the partner. After that, the robot attempt to detect and track
the face of the partner by reference to the position of the
body and the waving hand. This face detection and tracking
were carried out with the Haar-like features[14].
In the present study, a middle-ware for robot internal

communication, “MONEA,” was applied to the integration
of multiple modules, such as an image processing module, a
speech processing module, and a robot control module, and
the timing control of these modules[15].

V. CONCLUSION
We proposed a new noise reduction method suitable for

autonomous mobile robots, using the compact and light-
weighted MEMS microphones and the low-computational-
cost algorithm. The proposed method can cope with various
types of noise, such as the directional noise, the diffuse noise,
and the noise from the robot: the number of word errors was
reduced by 69% as compared to the conventional method,
and noise attenuation of -64.4dB in the noise from the robot
was achieved. Moreover, we could developed a hands-free
spoken dialogue system by integrating the proposed noise
reduction system and the sound source localization system
using face detection and tracking.

REFERENCES
[1] F. Asano et al., “Speech enhancement based on the subspace method,”

IEEE Trans. Speech Audio Process., vol.SAP-8, no.5, pp.497-507,
Sept. 2000.

[2] K. Nakadai et al., “Applying scattering theory to robot audition
system,” Proc. IROS2003, pp.1147-1152, Oct. 2003.

[3] K. Nakadai et al., “An open source software system for robot audition
HARK and its evaluation,” Proc. Humanoids2008, pp.561-566, Dec.
2008.

[4] M. Sato et al., “Auditory system in a personal robot, PaPeRo,” Proc.
ICCE2006, pp.19-20, Jan. 2006.

[5] T. Ohkubo et al., “Two-channel-based noise reduction in a complex
spectrum plane for hands-free communication system,” Journal of
VLSI Signal Processing System 2007, Springer, vol. 46, issue2-3,
pp.123-131, March 2007.

[6] H.-D. Kim et al., “Two-channel-based voice activity detection for
humanoids robots in noisy home environments,” Proc. ICRA2008,
pp.3495-3501, May 2008.

[7] S. Takada et al., “Speech enhancement using square microphone array
for mobile devices,” Proc. ICASSP2008, pp.313-316, March 2008.

[8] T. Ogawa et al., “Ears of the robot: Noise reduction using four-line
ultra-micro omni-directional microphones mounted on a robot head,”
Proc. EUSIPCO2008, Aug. 2008.

[9] R. Zelinski, “A microphone array with adaptive post-filtering for noise
reduction in reverberant rooms,” Proc. ICASSP1988, vol.5, pp.2578-
2581, April 1988.

[10] L. J. Griffiths et al., “An alternative approach to linearly constrained
adaptive beamforming,” IEEE Trans. Antennas and Propagation,
vol.30, no.1, pp.27-34, Jan. 1982.

[11] O. Yilmaz et al., “Blind separation of speech mixtures via time-
frequency masking,” IEEE Trans. Signal Process., vol.52, no.7, July
2004.

[12] Y. matsuyama et al., “Designing Communication Activation System
in Group Communication,” Proc. Humanoids2008, pp.629-634, Dec.
2008.

[13] B. Lucas et al., “An Iterative Image Registration Technique with an
Application to Stereo Visio,” Proc. IJCAI, pp.674-679, July 1981.

[14] P. Viola et al., “Robust real-time object detection,” Intl. J. Computer
Vision, vol.57, no.2, pp.137-154, Dec. 2004.

[15] T. Nakano et al., “MONEA: Message-oriented networked robot archi-
tecture,” Proc. ICRA2006, pp.194-199, May 2006.

2741


